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Introduction: Erannis jacobsoniDjak.(EJD) is one of the major pests that severely

threatens forest health. Its damage predominantly affects pine species, resulting

in significant changes to the biochemical composition of needle leaves. Needle

leaf water content exhibits a clear response to these changes and is highly

sensitive in reflecting the degree of tree damage.

Methods: In this work, we combine vegetation indices with machine learning

algorithms to estimate the water content of needles at a large scale. Multiple

vegetation indices are screened via recursive feature elimination cross validation

(RFECV), and then support vector regression (SVR) and back-propagation neural

network (BP) models are used to predict the leaf weight content fresh (LWCF) and

leaf weight content dry (LWCD) of needles over a large area. The water content

ranges were then classified based on the severity of damage derived from actual

sampling data. These ranges were used to categorize the estimated water

content, thereby assessing the degree of tree damage. The accuracy of the

method is verified by comparing the estimation results with field measurements,

and the results are combined with the classifications of the leaf loss rate(LLR) to

assess the severity of infestation.

Results: The results indicate that: 1) When estimating LWCD and LWCF using the

SVR and BPmodels, the SVRmodel demonstrated superior accuracy and stability

(MAE for LWCF = 0.1477, RMSE = 0.17314; MAE for LWCD = 0.10507, RMSE =

0.14760). 2) The classification accuracies of LWCD and LWCF were notably

higher in areas with light and medium damage, suggesting that these indices are

effective indicators for assessing damage caused by Erannis jacobsoni Djak. and

can serve as valuable tools for monitoring pest infestation and its progression.
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3) Through precision evaluation and supplementary validation, the results show

that LWCD is more stable and reliable than LWCF, demonstrating greater

credibility, particularly in terms of MAE and RMSE, where LWCD exhibits lower

values (MAE for LWCD = 0.10507, RMSE = 0.14760). This method’s high reliability

provides an effective approach for estimating leaf weight content, both fresh and

dry (LWCF and LWCD), and underscores its significant potential for the early

monitoring and management of forest pests.
KEYWORDS

Erannis jacobsoni Djak., leaf weight content dry, leaf weight content fresh, vegetation
index, remote sense
1 Introduction

Mongolia is dominated by mountainous terrain, and its

geological structure is complex and varied, encompassing a wide

range of typical ecosystem types such as alpine grasslands, primary

forests, steppes, and deserts. Among them, primary forests, which

are mainly composed of larch, account for 72% of the country’s total

forest area. In recent years, forested areas in the northern and

northeastern parts of the Mongolian Plateau have experienced

large-scale infestations by coniferous insects, especially Erannis

jacobsoni Djak.(EJD) (Bai et al., 2024; Xi et al., 2021). This pest

causes significant damage to forest ecosystems, and consecutive

years of infestation can result in the death of large areas of larch

trees. The needle water content has become a central monitoring

indicator of the response to this pest (Quemada et al., 2021; Tian

et al., 2022; Song et al., 2023). Abnormal reductions in needle

moisture content are often early indicators of the onset of

infestation activity. Monitoring this indicator not only serves as

an important early warning of pest presence but also helps

researchers recognize signs of pest damage in a timely manner.

This timely monitoring and early warning mechanism can be

effective in initiating necessary interventions to mitigate the long-

term impacts of infestations on forests. Given the threat to forest

ecosystems posed by EJD, early monitoring and prevention are

particularly important and urgently needed.

Traditional monitoring of forest pests and diseases is usually

based on ground surveys, but ground surveys are often difficult due

to limitations associated with complex terrain, lack of

transportation, and high human and material costs (Cornelius

et al., 2017). These methods are time-consuming, costly, and

inefficient over large areas of forest. In recent years, with the

rapid development of remote sensing technology, a variety of

remote sensing images have been widely used for monitoring

forest pests and diseases (Park et al., 2023; Dottavio and

Williams, 2024). Remote sensing technology can cover a wide

area and provide continuous monitoring data with high spatial

and temporal resolutions, which greatly reduces the costs of

traditional monitoring methods (Zhang et al., 2022; Decuyper
02
et al., 2022). In this context, the vegetation index, as an important

parameter in remote sensing technology, can be used to indirectly

assess the health of vegetation and has become an important

indicator for forest health monitoring (Huete, 2012; Zhang Y.

et al., 2024). Researchers have employed vegetation indices to

assess the severity of insect damage (Marx et al., 2024; Adan

et al., 2023), detect signals of forest degradation (Lasaponara

et al., 2024), and identify early indicators of pest infestations

(Tang et al., 2023; Zhang S. et al., 2024). Furthermore, other

scholars have used vegetation indices to estimate physiological

parameters such as chlorophyll content (Li et al., 2023; Sun et al.,

2021) and moisture levels (Zhang et al., 2019) in plants, achieving

promising results. In conclusion, the application of vegetation

indices as tools for the indirect monitoring of vegetation health in

several regions of the world has proven effective. This multi-index

approach not only enhances the reliability of monitoring data but

also provides valuable information resources for scientific

management and ecological conservation.

Moreover, in the remote sensing monitoring of vegetation pests

and diseases, machine learning techniques demonstrate

considerable potential, particularly in data analysis and model

prediction (Narmilan et al., 2022; Guo et al., 2024; Waters et al.,

2025). Research indicates that utilizing machine learning methods

to identify and predict pest risk across various plant species can

effectively reduce human errors and enhance operational efficiency

(Bai et al., 2014; Ahmad et al., 2021; Chithambarathanu and

Jeyakumar, 2023; Lee and Yun, 2024). These techniques can be

combined with vegetation index data obtained via remote sensing at

a large scale to achieve efficient and accurate pest monitoring.

Early monitoring of infestations is a challenge in forest

management, mainly because infestations are often difficult to

detect in the early stages through traditional ground surveys

(Rahimzadeh-Bajgiran et al., 2018; Bhattarai et al., 2023). This

monitoring difficulty not only delays the optimal time for pest

control but also leads to the rapid spread of pests and severe damage

to forest ecosystems, issues that must be urgently addressed. The

monitoring of the water content of needles and leaves provides an

effective solution for the early detection of insect pests, especially
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with the support of remote sensing technology (Curran, 1989;

Villacrés et al., 2021); notably, we are able to extract a variety of

vegetation indices closely related to plant physiological status by

analyzing spectral features. Since individual vegetation indices may

display inconsistent trends in different environments, the effective

selection and combination of indices are the keys to improving the

accuracy of conifer water content inversion (Ihuoma and

Madramootoo, 2019; Tan et al., 2019). On this basis, this study

aims to provide an efficient and reliable method to select sensitive

indices from multiple vegetation indices that effectively reflect

changes in the plant water content to improve the accuracy of

conifer water content estimation, which can be used to rapidly

estimate the conifer water content over a wide range of areas

damaged by the EJD. Moreover, the results provide an

experimental basis for the monitoring and management of forests

in the early stages of infestation and stress.
2 Research concepts and
research areas

2.1 Research concepts

This study combines drone and Sentinel-2 satellite imagery to

propose an overall research methodology for estimating needle leaf

water content under EJD stress (Figure 1).
Frontiers in Plant Science 03
2.2 Study area

2.2.1 Overview of the study area
The present study was conducted in the outbreak area of EJD in

Binder (longitude 110°46'33.6''E~110°46’33.6’’E, latitude 48°

26'34.8''N~48°26’34.8’’N), Kent Province, Mongolia (Figure 2). The

area is characterized by complex geomorphic features, such as

mountains, forests, grasslands, and river valleys. The Binder area is

known for its high elevation and undulating terrain, and the vegetation

is dominated by larch, forming a typical coniferous forest ecosystem.

Climatically, the region has a temperate continental climate, with long,

cold winters and short, wet summers. The annual precipitation is

relatively low, but localized areas receive significant rainfall in the

summer. According to reports, the Binder area experienced consecutive

large-scale outbreaks of EJD in 2017, 2018, and 2019, resulting in severe

damage to local larch forests. The needles of many trees were eaten by

the pest, which severely affected the stability of the forest ecosystem.

Owing to the periodic outbreaks of this pest, the Binder region has

become a key area of concern for domestic and international

researchers, prompting further strengthening of research on forest

health monitoring and pest control. In particular, during the 2019

outbreak, the pest destroyed many needles and leaves, significantly

reduced photosynthesis in trees, and impaired physiological functions,

resulting in the death of some trees. The infestation not only had far-

reaching impacts on forest ecosystems but also posed significant

challenges to the regional economy and forestry management,
FIGURE 1

Technical roadmap.
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highlighting the region’s vulnerability to pests. Some studies have

shown that the leaf loss rate (LLR) is an effective indicator of tree

damage, which can directly reflect the impact of an insect infestation on

tree health (Česľjar et al., 2022). Building on this, the present study

calculated the LLR through field surveys and categorized the severity of

damage into four levels based on the LLR: 0%–5% as healthy; 6%–30%

as lightly damaged; 31%–70% as moderately damaged; and 71%–100%

as severely damaged. This classification follows the methodology

established in our previous work (see Huang et al., 2019).
2.2.2 Ground truth and survey data
The lifecycle of EJD begins with an incubation period from late

April to mid-May, followed by a larval stage from late May to early

July, when the larvae cause severe damage to vegetation. This stage

is followed by the pupal stage from mid-July to early September,

followed by the plumage stage from early September to mid-

October, when the adults mate and lay eggs. Finally, from late

October to April, the eggs enter the overwintering period until they

hatch the following year (Li et al., 2023). In this study, drone images

were taken in the test area in June 2019, during the larval stage. In

total, 44 sample plots measuring 10 m × 10 m were selected within

the test area on the basis of the similarity of stand severity to provide

data support for the remote sensing monitoring of EJD infestations.
Frontiers in Plant Science 04
A DJI Mavic 2 professional drone was used to take aerial

photographs of the Binder test area (Figure 3), acquiring RGB

image data with a spatial resolution of 0.02 m. The Mavic 2 drone

can fly for 31 minutes, and its Hasselblad L1D-20c camera is

capable of taking nine medium-focus photographs with automatic

stabilization, from which ultra high-resolution images with 4x

resolution and 48 megapixels can be produced. Cloud-free, rain-

free, and wind-free conditions were chosen for operations during

the image capture process. To meet the flight and image quality

requirements, the unmanned aerial vehicle (UAV) flight altitude

was set to 60 m, and the heading overlap and side-to-side overlap

were 80% and 60%, respectively.

In each sample plot within the experimental area, five sample

trees were uniformly selected, from which needles were collected

and placed in a sealed plastic bag to prevent moisture loss. The fresh

weight (FW) of each sample was subsequently measured via an

electronic balance with an accuracy of 0.0001 grams. All the samples

were dried in a drying oven at 80°C for 48 hours and then weighed

again to record the dry weight (DW). The fresh leaf weight content

(LWCF) and dry leaf weight content (LWCD) of the needles were

calculated according to Equations 1 and 2.

LWCF =
FW − DW

FW
� 100% (1)
FIGURE 2

Overview map of the study area: (a) topographic map of Mongolia; (b) Binder region; (c) remote sensing image of the study area;
(d) UAV image of the study area.
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LWCD =
FW − DW

DW
� 100% (2)

To assess the severity of pine caterpillar infestation, this study

employs the LLR for classification. LLR is defined as the ratio of leaf

loss to the total number of leaves per unit area of the tree crown

(Huang et al., 2019). During the calculation, typical standard branches

were selected from five levels of the sample trees (upper, upper-middle,

middle, middle-lower, and lower), with one branch chosen from each

of the four cardinal directions (east, south, west, and north). The

number of affected and healthy needles was recorded for each direction.

The average LLR for all branches was then calculated using Equation 3,

yielding the LLR for the sample tree. The mean LLR of the five sample

trees was taken as the LLR for the plot. This methodology ensures a

thorough and accurate assessment of infestation severity. In the

formula, LLR represents the LLR for the branch, while Ni and Nh

denote the counts of healthy and lost needles, respectively.

LLR =
Ni

Nh + Ni
� 100% (3)
2.3 Remote sensing image data

The Sentinel-2 series of satellites was launched as part of an Earth

observation mission under the Copernicus program of the European

Space Agency. The satellites are mainly used for periodic high-

resolution imaging to monitor forest vegetation, land cover, soil

moisture, water resources, and natural disasters on the Earth’s surface.

The series consists of two satellites, Sentinel-2A and Sentinel-2B, with a
Frontiers in Plant Science 05
revisit period of 10 days for a single satellite and a joint revisit period of 5

days when the two satellites are working in combination, especially at

high latitudes in Europe, where the revisit period can reach 3 days. The

Sentinel-2 satellites carry a multispectral imager with 13 spectral bands;

however, the spatial resolution of these bands varies, including four

spectral bands with different spatial resolutions, which are used for the

monitoring of forest cover, soil moisture, water resources, and natural

disasters. Sentinel-2 includes multispectral imagers with 13 spectral

bands; however, the spatial resolution of these bands varies, with four

bands having a spatial resolution of 10 m, six bands with a spatial

resolution of 20 m, and three bands with a spatial resolution of 60 m.

Users can download these satellite images free of charge from the official

Copernicus website. The specific band information is detailed in

Table 1. Notably, the satellite has three bands in the near-infrared

spectral region, which is the only multispectral optical data source that

covers three bands in the red-edge range. Therefore, Sentinel-2 images

have significant advantages over other images in fields such as

vegetation health monitoring, crop growth assessment, and

chlorophyll concentration measurement in water bodies.
3 Research methods and
data processing

3.1 Super-resolution processing of remote
sensing images

This study selected two Sentinel-2 images acquired

simultaneously with the drone observations taken on 21 June
FIGURE 3

DJI “Mavic 2” drone.
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2019. Both images are Level-2A data, with the image processing

date being 16 October 2023. The images contained information

from a total of 10 bands, i.e., B2, B3, B4, B5, B6, B7, B8, B8A, B11,

and B12, with a spectral range covering 490 to 2190 nm. The 60-m

resolution coastal aerosol (B1), water vapor (B9), and cirrus (B10)

bands were excluded because they are not relevant to this study.

Then, the two-scene images were mosaicked to ensure complete

coverage of the study area, and the results were exported in TIF

format for subsequent analysis. During image analysis, the image

elements were first classified according to the degree of damage: (1)

healthy image elements, which mainly included healthy larch; (2)

mildly damaged image elements; (3) moderately damaged image

elements; and (4) severely damaged image elements, which mainly

consisted of severely damaged or dead larch.

To ensure the consistency and accuracy of the data in different

bands, the processing of remote sensing images was carried out via

SNAP 6.0 software. Given the different spatial resolutions of the

bands of Sentinel-2, the super-resolution enhancement technique

was used in SNAP to upgrade the 20-meter resolution band to 10

meters. This processing step was critical because it ensured

consistent spatial resolution across all bands, thereby improving

the accuracy and reliability of subsequent analyses. Super-resolution

enhancement is a technique via which one high-resolution image is

generated by fusing multiple low-resolution remote sensing images.

In this method, the spatial details of the image are first refined

through complex algorithms and interpolation techniques to extract

geometric information from high-resolution bands that are

independent of the spectral bands while preserving the reflectance

information from each low-resolution band. A hybrid model is

constructed to downsample the data from the high-resolution

bands to a consistent low resolution and optimize the shared

values and weights by minimizing the differences between the

high-resolution data and the downsampled reconstructed data.
Frontiers in Plant Science 06
After the shared values and weights for the high-resolution bands

were obtained, this information was applied to the low-resolution

bands to generate super-resolution images. Super-resolution

synthesis is widely used in the fields of environmental

monitoring, urban planning, and resource management and can

significantly increase the application value and analytical capability

of remote sensing data.
3.2 Mixed-pixel decomposition

In recent years, with the rapid development of remote sensing

technology, remote sensing images have been widely used in the

fields of feature information acquisition and environmental

monitoring. However, owing to the limitations associated with

spatial resolution and complex feature distributions, the mixed-

pixel phenomenon often occurs in remote sensing images, i.e., one

pixel may contain spectral information for multiple feature types

(e.g., buildings, vegetation, and water bodies). To address this

problem, researchers have proposed different mixed-image-

element decomposition models, which are mainly categorized into

linear and non-linear methods (Gao et al., 2020). The linear hybrid

image element decomposition model consists of two parts: end-

element extraction and abundance inversion. End-element

extraction is the key step, which directly affects the accuracy of

the decomposition results. The end elements represent the spectral

features of pure elements in the image, and after the end elements

are extracted, the spectral information from the hybrid image can be

decomposed to determine the abundance of different feature types.

The accuracy of end-element extraction crucially influences

abundance inversion.

In this paper, the HySime (hyperspectral signal identification by

minimum error) algorithm, a hyperspectral subspace identification
TABLE 1 Sentinel-2 spectral bands.

Band Resolution Central wavelength Primary application Band used in this study

B1 60m 443nm Coastline

B2 10m 490nm Blue light ✓

B3 10m 560nm Green light ✓

B4 10m 665nm Red light ✓

B5 20m 705nm Vegetation red edge ✓

B6 20m 740nm Vegetation red edge

B7 20m 783nm Vegetation red edge

B8 10m 842nm Near infrared ✓

B8a 20m 865nm Vegetation red edge ✓

B9 60m 940nm Water vapor

B10 60m 1375nm Shortwave infrared,
cirrus clouds

B11 20m 1610nm Shortwave infrared ✓

B12 20m 2190nm Shortwave infrared
frontiersin.org
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algorithm that was proposed by José M. et al., is used for end-

element extraction, implemented using Python. The algorithm

obtains the effective bands after hyperspectral dimensionality

reduction through a subspace identification step, which is an

important preprocessing step in processing algorithms such as

target detection, change detection, classification, and hybrid

image element decomposition and helps improve the storage and

reduce the complexity of hyperspectral data. On the basis of the

computational results of the HySime algorithm, three end elements

are identified in this paper (shown in Figure 4). The spectral

features of these end elements are used as a reference for

subsequent hybrid image element decomposition and

hyperspectral classification, similar to the samples in supervised

classification, which highly influence the accuracy of the

decomposition results. The core role of end-element extraction is

to obtain the spectral features of pure elements from a hyperspectral

image, which directly influences the accuracy of the abundance

inversion. Then, the vertex component analysis (VCA) algorithm,

which is based on the geometric form of the linear spectral mixing

model, is constructed, and the end-element spectra are extracted

step by step on the basis of orthogonal vectors. Next, the projections
Frontiers in Plant Science 07
of the image matrices are obtained on the basis of these orthogonal

vectors to provide support for subsequent hyperspectral analysis.

In the abundance inversion step, a fully constrained least

squares (FCLS) approach is applied for hybrid image element

decomposition; this is a remote sensing image processing

technique based on statistical methods. In hybrid image element

decomposition on the basis of remotely sensed images, each pixel is

treated as a hybrid image element consisting of multiple features,

and the contribution of each feature in the image element is

estimated from the image data. The FCLS method is used in this

decomposition process, and a system of linear equations is solved

under specific constraints.
3.3 Multispectral vegetation
index calculation

During the process by which larch is subjected to insect pest

stress, internal biochemical components, such as the needle water

content, significantly change with increasing pest severity, resulting

in different canopy reflectance responses. On the basis of this
FIGURE 4

HySime algorithm analysis: (a) Use of the HySime algorithm to estimate the number of end elements, with three identified; (b) spectral signature
curve of extracted end elements; (c) extracted vegetation information for pure end elements.
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TABLE 2 Vegetation indices and corresponding formulas.

Number Vegetation index Formula

1 Reflectance index 2 (ARI2) (B8=B3) − (B8=B5)

2 Chlorophyll concentration reflectance index (CCRI) B4=B5

3 Chlorophyll red edge index 1 (CRI1) (1=B2) − (1=B3)

4
Corrected transformed vegetation index (CTVI) NDVI + 0:5

NDVI + 0:5j j u
� �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NDVI + 0:5j j

p
5 Simple ratio 550/680 disease-water stress index 4 (DSWI-4) B3=B4

6 Enhanced vegetation index (EVI) 2:5� (B8 − B4)=(B8 + 6� B4 − 7:5� B2 + 1)

7 Enhanced vegetation index 2 (EVI2) 2:5� (B8 − B4)=(B8 + 2:4� B4 + 1)

8 Green normalized difference vegetation index (GNDVI) (B8 − B3)=(B8 + B3)

9 Modifies non-linear vegetation index (MNLI) 1:5(B80:5 − B4)=(B80:5 + B4 + 0:5)

10 Modified simple ratio - red edge (MSRreg) (B8=B5 − 1)=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(B8=B5 + 1)

p
11 Normalized difference green index (NDGI) (B3 − B4)=(B3 + B4)

12 Normalized difference infrared index 45 (NDI45) (B5 − B4)=(B5 + B4)

13 Normalized difference infrared index (NDII) (B8 − B12)=(B8 + B12)

14 Normalized difference moisture index (NDMI) (B8 − B11)=(B8 + B11)

15 Normalized difference vegetation index (NDVI) (B8 − B4)=(B8 + B4)

16 Normalized difference red edge index (NDREI) (B8 − B6)=(B8 + B6)

17 Normalized difference vegetation index-red edge (NDVIreg) (B8 − B5)=(B8 + B5)

18 Non-linear vegetation index (NLI) (B82 − B4)=(B82 + B4)

19 Optimized soil adjusted vegetation index (OSAVI) (B8 − B5)=(B8 + B5 + 0:16)

20 Optimize soil-adjusted vegetation index-red edge (OSAVIreg) (1 + 0:16)(B8 − B4)=(B8 + B4 + 0:16)

21 Pigment-specific simple ratio (PSSR) B8=B4

22 Renormalized difference vegetation index-red edge (RDVIreg) (B8 − B5)=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(B8 + B5)

p
23 Ratio vegetation index-red edge (RVIreg) B8=B5

24 Soil-adjusted vegetation index (SAVI) 1:5� (B8 − B4)=(B8 + B4 + 0:5)

25 Normalized difference 860/1640 (SIWSI) B8a − B11=B8a + B11

26 Vegetation growth cycle index (VGCI) (B8 − B4)=B4

27 Aerosol free vegetation index 1600(AFRI1600) B8 − 0:66½B11=(B8 + 0:66� B11)�

28 Aerosol free vegetation index 2100(AFRI2100) B8 − 0:5½B12=(B8 + 0:56� B12)�

29 Difference vegetation index (DVI) B8 − B4

30 Difference vegetation index (Reg.) (DVIreg) B8 − B5

31 Internal vegetation index 2 (Int2*) (B3 + B4 + B5)=2

32 Simple index 1 (SI1*)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B5� B4

p

33
Generalized multispectral normalized difference vegetation

index (GMNLI)
1:5(B80:5 − B3)=(B80:5 + B3 + 0:5)

34 Simple index (Reg.) (SIreg)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 + B5

p

35 Modified triangular vegetation index 2 (MTVI2) 1:5½1:2(B8 − B3) − 2:5(B4 − B3)�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2B8 + 1)2 − (6B8 − 5B40:5) − 0:5

p
36 Generalized difference vegetation index (GDVI) B8 − B3

(Continued)
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phenomenon, the multispectral vegetation index (MVI) was

selected as an index for estimating the LWC in this study.

Specifically, 40 vegetation indices, including the blue, green, red,

red-edge, near-infrared, and other bands, were calculated via

ArcGIS software (Gitelson and Merzlyak, 1994; Rondeaux et al.,

1996; Brodu, 2016; Chrysafis et al., 2020; Ma, 2023) (see Table 2 for

details), and the average vegetation index values of the blended

image elements were extracted. This process provided the necessary

database for the subsequent analysis and helped reveal the

relationships between the vegetation indices and conifer

water content.
3.4 Sensitive feature selection

Selecting sensitive features for multispectral vegetation indices

is crucial before modeling because using too many variables

increases the computational time and complexity of the model

and sometimes even reduces the accuracy of the model. In the fields

of statistics and machine learning, recursive feature elimination

with cross-validation (RFECV) is an efficient feature selection

method that combines recursive feature elimination (RFE) with

cross-validation (CV) (Awad, 2023) In this study, the RFECV

method is used to optimize model performance by progressively

eliminating the least important features and assessing the model

accuracy at each step via cross-validation to determine the optimal

number of retained features.

In RFE, the model is first trained using all available features, and

then the least important features are progressively removed on the

basis of the feature importance score provided by the model. The

process is repeated, removing one or more of the lowest-scoring

features at a time until a preset number of features is reached or a

certain model performance criterion is met. RFECV extends this

approach further by automatically determining the optimal number

of features through cross-validation, independent of the preset

number of features. In RFECV, the entire RFE process is repeated

with different cross-validation folds. For each feature subset, the

model is trained with a training set, and its performance is evaluated

with a validation set, where the model performance after each

feature elimination step is recorded, and the feature subset that

results in the highest cross-validation score is finally obtained.

By introducing CV, RFECV is not only able to find the feature

subset that performs best for the current data but also enhances

model generalization ability by repeating the training and

evaluation processes several times, thus reducing the risk of
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overfitting. This approach is particularly suitable for complex

datasets with many highly correlated features, significantly

improving the prediction accuracy and robustness of models.
3.5 Estimation models

In this study, two classical machine learning algorithms, back

propagation (BP) and support vector regression (SVR), were used to

model the water content of conifers, and the performance of the

models was systematically compared.

The BP algorithm is a widely used training method in the field

of artificial neural networks, particularly well-suited for multilayer

neural networks, such as multilayer perceptrons. In the training of

the BP algorithm, we employed Leave-One-Out Cross-Validation

(LOOCV) to evaluate the model's performance (Silva et al., 2024).

The LOOCV approach treats each data point as an individual test

set while using the remaining data as the training set. After

conducting multiple rounds of training and testing, the model’s

average accuracy was calculated. To prevent overfitting, we set the

number of iterations to 1,000 and implemented an early stopping

strategy. Additionally, we selected a learning rate of 0.01, 40 nodes

for the hidden layer, and applied standard gradient descent

for optimization.

In contrast, support vector machine regression (SVMR) is a

regression technique based on the principles of support vector

machines (SVM). During the training of the SVMR model, we

also utilized LOOCV and optimized the model parameters by

selecting different training sets in each iteration. For the SVMR

model, we employed the radial basis function (RBF) kernel, with the

penalty parameter (C) set to 10 and the kernel parameter (g) set to
0.1. These hyperparameters were fine-tuned through cross-

validation to ensure strong generalization performance.

A key advantage of LOOCV is that it trains and tests the model

multiple times, with each data point serving as the test set once. This

allows for maximum utilization of the available data for training,

minimizing potential biases introduced by data partitioning. Thus,

LOOCV is particularly well-suited for small sample datasets,

ensuring optimal data usage while providing a reliable evaluation

of the model’s stability and generalization capability.

By employing this methodology, the performance of both the

BP and SVMR models was thoroughly evaluated, and optimal

hyperparameter configurations were identified. These models

have been widely applied in the early detection and management

of forest pests, playing a significant role in the protection of forest
TABLE 2 Continued

Number Vegetation index Formula

37 Non-linear vegetation index 2 (NLI 2) (B82 − B3)=(B82 + B3)

38 Chlorophyll index (Reg.) (CIreg) B8=B5 − 1

39 Soil chlorophyll content index (SCCI) 100� (B8 − B4)=NDVI

40 Red edge normalized difference vegetation index (red_edge_ndvi) (B8 − B5)=(B8 + B5)
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ecosystems. Through cross-validation, we have ensured the

predictive accuracy of the models, providing a solid technical

foundation for addressing similar challenges in future studies.
3.6 Evaluation of model accuracy

In this study, the root mean square error (RMSE) and mean

absolute error (MAE) are selected as the evaluation metrics

(Equations 4, 5), where the RMSE is a commonly used metric to

evaluate regression models and quantifies the difference between

the predicted values of the model and the actual observed values. It

provides a measure of the error, and the smaller the error is, the

better the performance of the model is in most cases. The MAE

usually ranges from 0 to infinity, and it is a measure of the average

of the absolute difference between the predicted and actual values.

Compared with the RMSE, the MAE is less sensitive to outliers and,

therefore, provides a more robust assessment of performance when

outliers are present in the data.

MAE =
1
no

n

i=1
yi − byij j (4)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n
i=1(yi − byı ̂)2

r
(5)
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4 Results and analysis

4.1 Supervised classification of remote
sensing data and forest cover extraction

In this study, we used the maximum likelihood (MLC) method

in ENVI software for the supervised classification of remotely

sensed data in the Binder area. During the classification process,

the study area was categorized into forests, water bodies, built-up

areas, agricultural land, and bare land. Owing to the presence of

cloud cover in the upper left corner of the study area, we removed

this area from the images. To verify the accuracy of the classification

results, we downloaded 2019 land use product data at a 10-meter

resolution for comparative analysis. Regarding the overall accuracy

(OA) and kappa coefficient, the results show that the OA reached

0.80 and that the kappa coefficient was 0.76. These results indicate

that the supervised classification had a high reference value. To

further analyze the forest cover, we extracted the forest part of the

data from the supervised classification map. Data processing was

performed via ArcMap software to convert the extracted forest

raster data into point data, and each image element representing the

forest was converted into a point. A total of 1,161,491 data points

were generated (Figure 5), which provided detailed basic data for

subsequent spatial analysis and model construction.
4.2 Sensitivity analysis of the
vegetation indices

The Pearson correlation coefficients (r) between these

vegetation indices and LWCD and LWCF were calculated in this

study (Figure 6). The results revealed that the r values of the

correlation coefficients of 38 out of 40 vegetation indices were

greater than 0.4 for the LWCF, indicating strong correlations; in

particular, the r values of AFRI1600, SIreg, and SCCI were greater

than 0.8, which demonstrated a very high correlation. However, the

r values of ARI2 and CRI were lower than 0.4, indicating weak

correlations. Similarly, the correlation coefficients between the

LWCF and ARI2 and CRI were lower than 0.4, whereas the R

values of the remaining 38 indices were greater than 0.4. In

particular, the correlation coefficients of three indices, namely,

AFRI1600, SIreg, and SCCI, were greater than 0.8, which

indicated that these indices are strongly related to the dry-weight

moisture content.

Overall, these 40 vegetation indices showed significant

correlations with the needle leaf water content, with AFRI1600,

SIreg, and SCCI displaying the highest correlations and associated

with changes in the needle leaf water content. Therefore, these

indices have high potential for application in monitoring changes in

the needle leaf water content and recognizing signs of pest stress.

To further screen the vegetation indices that were most sensitive

to the water content of needles, the RFECVmethod was used. In the
FIGURE 5

Forest data points extracted via supervised classification.
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analysis of LWCF, three multispectral vegetation indices, SIreg,

AFRI1600, and SCCI, were ultimately screened as the most

sensitive, whereas in the analysis of LWCD, a total of 10

multispectral vegetation indices, namely, NLI2, SIreg, AFRI1600,

CCRI, CTVI, INT2, NDMI, NLI, SCCI, and SI1, were obtained

through screening. On the basis of these final screened sensitive

vegetation indices, a model was constructed to estimate the dry-

weight water content and fresh-weight water content of EJD

under stress.
4.3 Water content estimation model and
accuracy evaluation

In this study, two water content estimation models, a BP neural

network and an SVR model, were constructed on the basis of
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sensitive vegetation indices via MATLAB software, and the results

of the performance evaluation are shown in Table 3. The LWCD-

SVR model performed the best, with an MAE of 0.10507 and an

RMSE of 0.14760, whereas the LWCF-BP model displayed

comparatively lower accuracy, with an MAE of 0.15860 and an

RMSE of 0.19549. To visualize the model fitting effect, a 1:1 fitting

plot was created (Figure 7). On the basis of the performance of the

two models under LWCF and LWCD conditions, the MAE and

RMSE of the SVR model under LWCF conditions were better than

those of the BP model, indicating its higher predictive performance.

Under LWCD conditions, the models performed similarly, but the

RMSE of SVR was slightly lower, indicating that it had an advantage

in dry-weight moisture content estimation.

From the modeling perspective, the R² values under LWCD

conditions were better than those under LWCF conditions for both

the SVR and BP models, indicating a good model fit in the

prediction of the dry-weight moisture content. In particular, the

SVR model displayed the most stable performance under LWCD

conditions and was able to capture important data trends.
4.4 Spatial distribution of the
water content

To visualize the water content of needles under the stress of EJD

infection in the experimental area, in this study, we first performed

the supervised classification of remote sensing images, extracted the
TABLE 3 Comparison of the estimation models’ accuracies.

Accuracy metrics

Water content

BP SVMR

MAE RMSE MAE RMSE

LWCF 0.15860 0.19549 0.1477 0.17314

LWCD 0.13136 0.16831 0.10507 0.14760
FIGURE 6

Correlation coefficients between the water content and vegetation indices and sensitive vegetation index selection.
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forest area data, and finally acquired 1,161,491 forest pixel points

via ArcMap software. For these extracted forest pixel points, we

calculated the sensitive vegetation index features and applied them

as input variables in the regression model that displayed the highest

accuracy. By inputting these features into the SVR model,

regression plots of the dry-weight moisture content and fresh-

weight moisture content in the test area were generated. To

further assess the health status of the needles, the moisture

content range was categorized based on the degree of damage in

the actual sampling data. Consequently, the estimated moisture

content was classified into four levels: healthy (LWCF: >0.7; LWCD:

>2.1), slightly damaged (LWCF: 0.5–0.7; LWCD: 0.6–2.1),

moderately damaged (LWCF: 0.1–0.5; LWCD: 0.1–0.6), and

severely damaged (LWCF:<0.1; LWCD:<0.1) (Figure 8).

In the visualized macroregional LWCF results, the central and

southern regions are greenish in color, indicating that these regions

generally contain healthy elements. In contrast, the northern region

of Binder includes distinct orange and red areas, suggesting that the

region is severely affected by pests. In addition, red pixels are

scattered in the eastern and western regions, implying that there

are some highly damaged elements in these regions. In Figure 8c, in

the comparison of the actual damage with the predicted damage,

two out of the six healthy samples were incorrectly predicted to be

mild; four out of the 15 mild samples were predicted to be

moderate; two out of the 18 moderate samples were predicted to
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be mild, and one was predicted to be severe; and two out of the five

severe samples were predicted to be moderate.

In the visualized macroregional LWCD results, the overall color

is skewed toward yellow, which indicates that most of the image

elements in the region are only mildly affected. However, in the

northern part of Binder, orange and red areas are evident, indicating

that the region is severely affected. In addition, some red pixels are

distributed in the eastern and western regions, indicating the

presence of heavily damaged elements in these regions. In

contrast, there are more healthy elements in the central and

southern regions, indicating that the vegetation in this region is

in relatively good condition. In Figure 8d, in the comparison of the

actual damage level with the predicted damage level, only one out of

the six healthy samples was incorrectly predicted to be mild; one out

of the 15 mild samples was predicted to be moderate; four out of the

18 moderate samples were predicted to be mild; and three out of the

five heavily damaged samples were predicted to be moderate.
4.5 Potential influence of the water
content on the identification of larch stress
by EJD

The LLR has been shown to be an effective indicator of tree

damage and is often used to assess plant health. The LLR reflects
FIGURE 7

1:1 straight line fitting of predicted and measured values in the study area.
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FIGURE 9

Comparative analysis of LLR classification and moisture content classification.
FIGURE 8

(a) Spatial distribution of the macroregional LWCF; (b) spatial distribution of the macroregional LWCD; (c) comparison of projected vs. actual values
of LWCF in the study area; (b) comparison of projected vs. actual values of LWCD in the study area.
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changes in tree health under damage and stress conditions and is

potentially correlated with changes in the water content of needles.

Therefore, in this study, we selected the LLR in the field study area

as an independent validation indicator to assess the accuracy of the

needle leaf water content estimated on the basis of the vegetation

indices. On the basis of 44 measured data points, we also estimated

and categorized the LLR in the field study area and analyzed it in

comparison with the categorized results of the vegetation index-

estimated needle leaf water content, as shown in Figure 9.

The validation results indicate that the severity of leaf loss rate

estimates in the field survey area shows a high degree of consistency

with the severity of moisture content estimates, suggesting that leaf

loss rate can effectively assist in validating the moisture content

estimated through vegetation indices. Specifically, as shown in

Figure 9a, the classification of LWCF and leaf loss rate is

consistent across most areas. Notably, in moderately damaged

areas, the performance of LWCF is particularly outstanding, with

classification results aligning closely with the leaf loss rate. In

healthy and lightly damaged areas, the classification results of

LWCF and leaf loss rate are also relatively similar, indicating that

fresh weight moisture content is a good reflection of tree health.

However, in severely damaged areas, there are considerable

discrepancies between the classifications of fresh weight moisture

content and leaf loss rate. Figure 9b shows that the overall

consistency between LWCD and leaf loss rate is slightly higher

than that of LWCF, especially in healthy and lightly damaged areas,

where the classification consistency is stronger. However, in

moderately damaged areas, the performance of LWCD is slightly

inferior to that of LWCF.

We randomly selected a subset of data from the field survey area

and used the leaf loss rate classification as the ground truth to

conduct a confusion matrix analysis (Figure 10). In the confusion

matrix for LWCF, the OA was 74.50%, with a user accuracy (UA) of

68.18% for the healthy category and a producer accuracy (PA) of

88.23%. For the lightly damaged category, the UA was 82.00% and
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the PA was 63.56%. In the confusion matrix for LWCD, the OA was

75.75%, with a UA of 71.21% and a PA of 90.38% for the healthy

category, and a UA of 86.00% and a PA of 64.66% for the lightly

damaged category. These results indicate that the classification

accuracy of LWCD is superior, especially in the healthy, lightly

damaged, and severely damaged categories, where both UA and PA

show improvement.
5 Discussion and conclusions

5.1 Sensitivity of vegetation indices

When larch is stressed by EJD, its internal biochemical

components, such as water content, change significantly. This

change produces different spectral responses in the visible and

near-infrared bands, so the combination of these bands can be

used to extract a vegetation index that reflects the health of the

vegetation. In particular, when forest trees are stressed by insect

pests, the response of each band is obvious, so the extraction of a

sensitive vegetation index is especially critical because it can

effectively reflect the changes in the water content of needles and

leaves, thus providing a reliable basis for the estimation of the water

content. In this work, 40 vegetation indices and Pearson values were

calculated with respect to the water content, among which the most

sensitive index was the SCCI, which can accurately capture

vegetation health and changes by combining the near-infrared

band information, red light band information, and NDVI. Under

stresses caused by drought, pests, or diseases, the water content and

chlorophyll content of coniferous trees decrease simultaneously.

Owing to its sensitivity to chlorophyll changes, the SCCI can be

used to detect water stress and reflect water content changes at an

early stage and is therefore used for plant health monitoring and to

provide early warnings of water stress. SIreg combines information

from the blue band and the red-edge band to capture water content
FIGURE 10

Confusion matrix for field-observed regions.
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changes in conifers, especially B5, which plays a key role in

monitoring the water content. When plants are subjected to water

stress, the amount of intracellular water decreases, leading to

changes in reflectance in the red-edge band. B2, although mainly

used for other purposes, when combined with B5, can provide

additional information regarding the photosynthesis and health

status of plants under stress conditions. AFRI1600, which can be

used to assess the moisture content of vegetation through the

shortwave infrared band, can be combined with information from

the near-infrared band to reflect the health status of vegetation.

Therefore, this index is very sensitive to changes in the water

content under drought conditions and can be effectively used for

monitoring the moisture and stress levels of vegetation. These three

indices were selected as sensitive vegetation indices to both LWCF

and LWCD, and seven more indices were selected for the LWCD:

NLI2, CCRI, CTVI, INT2, NDMI, NLI, and SI1. Among them, NLI2

is an enhanced vegetation index that reflects vegetation health on

the basis of square information from the near-infrared band and the

green light band (B3) to provide accurate assessments of the water

content and photosynthesis efficiency of vegetation. The CCRI is

mainly used to assess the chlorophyll concentration of plants. The

ratio of the signal in the red light band to that in the red edge band

can be used to assess the health of vegetation, especially under stress

conditions, and the CCRI can be used to detect physiological

changes in vegetation. The CTVI is an improved version of the

NDVI designed to reduce noise and data fluctuations through the

correction and transformation of NDVI values, especially in areas

with low vegetation cover or under stress. By correcting and square-

root transforming the NDVI, this index reflects the health of

vegetation more consistently and shows greater robustness than

the NDVI, especially when dealing with more complex vegetation

or environmental conditions. INT2 is a composite vegetation index

that captures the overall health of vegetation by combining the

signals from the green, red, and red-edge bands and, in particular,

reflects the chlorophyll content and water content. The NDMI is

mainly based on information from the near-infrared band and the

shortwave infrared band. B8 is used to reflect the cellular structure

and water content of vegetation, and healthy vegetation is most

reflective in the near-infrared band. B11 is used to identify changes

in moisture content, especially soil moisture and vegetation water

contents. The index can be used to effectively monitor changes in

the moisture content of vegetation by comparing reflections in the

near-infrared (NIR) and shortwave infrared (SWIR) bands. The

NLI is mainly based on information from the near-infrared and red

light bands, and through the non-linear computation of these two

bands, it can be used to accurately assess the health of the vegetation

and the chlorophyll content. In particular, the sensitivity to

vegetation health is enhanced by the use of the square of the NIR

band signal, which provides valuable information regarding

photosynthetic efficiency and water content changes in

vegetation. This non-linear combination is ideal for enhanced

vegetation differentiation and health status assessment, such as in

large-scale ecosystem monitoring and management. SI1 combines

the red edge band and red light band signals and synthesizes the
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information from these two bands via square-root transformation;

the result can then be used to assess the health status of vegetation.

In this study, the near-infrared band was used the most because

it is very sensitive to changes in the moisture content, and healthy

vegetation has a relatively high reflectance in the near-infrared

band, whereas the reflectance decreases significantly under water

stress. Thus, the NIR band plays a crucial role in monitoring plant

water content and health. The second-most-important band is the

shortwave infrared band, which is capable of capturing changes in

the moisture content of vegetation, and B11 displays high

sensitivity, especially when assessing moisture stress in vegetation.

The shortwave infrared band is often combined with the near-

infrared band and is commonly used for monitoring vegetation

under drought and stress conditions. Additionally, the red light

band reflects the chlorophyll absorption of vegetation. Healthy

vegetation absorbs a large amount of red light, so the red band is

ideal for assessing changes in chlorophyll content, especially when

affected by stress, pests, or diseases, and the reflective properties of

the red band can change significantly. Since the chlorophyll content

is closely related to the water status of plants and water stress

usually leads to a decrease in the chlorophyll level, the red light band

can not only reflect changes in chlorophyll but also indirectly reflect

changes in the water content. Therefore, the sensitivity of the red

light band to chlorophyll makes it suitable for water content

estimation. In addition, the red edge bands are spectral regions

located between red and near-infrared light regions, and these

bands are important for vegetation monitoring and are

particularly sensitive to vegetation water content and chlorophyll

concentrations. Changes in the cellular structure and water content

of the leaves during vegetation growth significantly affect the red

band reflectance. Finally, the green band is also used to monitor the

health and growth status of vegetation by reflecting the chlorophyll

content and photosynthetic efficiency. Healthy vegetation has

specific reflectance properties in the green light band; thus, this

band is useful for supplementing the estimation of water and

chlorophyll levels.

In summary, the indices are based on combinations of different

spectral features and can be used to assess vegetation health and

water content changes from multiple perspectives, providing

comprehensive and precise tools for vegetation monitoring under

different environmental conditions. The selection and combination

of these sensitive indices provide strong support for the water

content prediction model in this study and improve the accuracy

and stability of remote sensing-based monitoring.
5.2 Evaluation of estimation
model accuracy

In this study, the SVR-predicted and measured values were

fitted hierarchically into three categories, namely, mild, moderate,

and severe, with the aim of accurately classifying the physiological

status of plants with different degrees of damage. Compared with

the overall fit, the graded fit reveals subtle differences in the regions
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of each level of damage, avoiding trend confusion and thus

improving the analysis accuracy. Scatter plots revealed that the

LWCF and LWCD exhibited different trends in the mild, moderate,

and severe damage regions. The LWCD results were better than

those for LWCF in mildly damaged areas, whereas in moderately

damaged areas, the LWCF was more sensitive than the LWCD and

better able to capture plant health. However, the correlation

between the LWCF and LWCD was significantly weaker in

heavily damaged regions, likely because plant physiological

changes were extreme in these areas, resulting in small

fluctuations in the water content and insufficient information for

differentiating the degree of damage. In addition, there were fewer

data points in the heavily damaged areas, and the insufficiency of

samples increased the volatility of the regression analysis results,

further affecting the fitting effect. Therefore, reducing the number of

data points is an important factor contributing to the instability of

regression analysis results in heavily damaged regions. This suggests

that the performance of the model is limited by the number of

samples and the sensitivity of physiological indicators in heavily

affected regions (Figure 11).

In this study, the LWCF and LWCD were also estimated at a

large scale via SVR, and their spatial distributions were obtained.

The LWCF is the water content of the plant in its natural state and is

based on the ratio of the water content to the total weight of the

plant when it is fresh. This metric can accurately reflect the

immediate physiological state of plants under well-watered

conditions and is directly related to photosynthesis, stomatal

regulation, and the water evaporation rate of plants. When a

plant suffers from insect damage, its water regulatory mechanism

and leaf health are immediately affected, and changes in the LWCF

can sensitively reflect the water status of the plant; thus, the health

trend of the plant can be predicted. By monitoring changes in the
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LWCF, it is possible to assess whether plants are able to maintain

their growth via normal photosynthesis and transpiration in the

short term. This analysis aids in the development of effective

management and protective measures to ensure plant survival

under pest stress. Table 3 shows that the MAE and RMSE of the

SVR model were also slightly lower than those of the BP model in

the prediction of the LWCF, indicating that the SVR model is

superior for predicting the fresh-weight water content. Figure 7 also

shows that the SVR model yields a better fit than the BP model. On

the basis of the LWCF fitting graph, for healthy samples, the fitting

results for light and medium damage are better and the results for

heavy damage, as also illustrated in Figure 8. Moreover, most of the

areas in Binder are healthy or mildly affected, indicating that

photosynthesis and transpiration are normal in most areas in the

short term, resulting in sustained growth. The figure also shows that

many areas in Binder are mildly damaged, with outbreak areas

evident in the north, east, and west.

The LWCD is the proportion of water contained in the dry

matter remaining after the plant has been completely dehydrated

(e.g., by drying and other processes); it reflects a plant’s ability to

hold water under water deficit conditions and is an important

indicator for assessing plant health and drought tolerance. When

plants are subjected to insect pests, their water regulation ability and

leaf health are strongly affected, and changes in the LWCD can

directly reflect the physiological status of plants under insect pest

stress. By monitoring the LWCD, changes in plant health status can

be recognized in a timely manner, providing a scientific basis for the

development of pest control strategies and reducing the degree of

ecological damage caused by pests. Table 3 shows that in the

prediction of the LWCD, the SVR model performed better than

the BP model did, and the MAE and RMSE of the SVR model were

lower than those of the BP model, which indicates that the SVR
FIGURE 11

Scatterplots of mild, moderate, and severe damage predicted with the SVR model compared with the true values.
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model yields better prediction accuracy in estimating the dry-

weight water content. Figure 7 also shows that the SVR model

yields a better fit than the BP model does. On the basis of the fitting

graph of the LWCD, the overall fit is better than that for the LWCF,

but there are some problems in the heavily damaged area. In

particular, some of the heavily damaged data points are close to

moderately damaged data points, making it difficult to clearly

distinguish between them. This may be because the range of

variation in dry-weight moisture content is not limited to the

interval of 0–1. Notably, the data were normalized for

presentation. Since normalization compresses the range of true

values of dry-weight moisture content, it results in heavy and

medium damage values being similar, thus creating spatial

overlap in the fitting results. In addition, even in the non-

normalized case, the small magnitude of water content changes

and the tendency for physiological responses to be similar in the

heavily and moderately affected regions results in overlapping data

regarding the needle and leaf water contents, further increasing the

difficulty of classification, as shown in Figure 8. Moderate and

severe damage is evident in the north, east, and west, which is

consistent with the LWCF results.

The results in Figure 8 are consistent with the findings in

Figure 7, further validating the prediction ability of the model under

different stress levels. The model performs best in healthy, light, and

moderate damage cases, and there is some error in the predictions

for areas of heavy damage. The above analysis provides a basis for

improving the model.
5.3 Comparison analysis of leaf loss rate
and leaf water content

In this study, the high degree of consistency between the leaf

loss rate and leaf water content estimation results validates the

effectiveness of remote sensing data in forest health monitoring.

Notably, in moderately damaged areas, the classification results of

LWCF closely align with the leaf loss rate, indicating that fresh

weight moisture content effectively reflects tree health. However, in

severely damaged areas, significant misclassifications were

observed, especially where the classification results of both LWCF

and LWCD failed to accurately identify these areas. This

discrepancy may be attributed to the greater variability of fresh

weight moisture content in severely damaged areas, which leads to a

more ambiguous signal in the remote sensing data, thus affecting

classification accuracy.

In the confusion matrix analysis, the overall consistency of

LWCD was slightly higher than that of LWCF, particularly in

healthy and lightly damaged areas, where it demonstrated higher

classification accuracy. However, in moderately damaged areas, the

performance of LWCD was slightly inferior to LWCF, suggesting

that dry weight moisture content is less effective in identifying

moderately damaged areas. For severely damaged areas, both

LWCF and LWCD showed misclassifications, particularly where

some severely damaged areas were misclassified as lightly or

moderately damaged. This indicates that both moisture content
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estimation methods still require improvement in their ability to

adapt to extreme damage zones.

Although the LWCD yielded better results than the LWCF,

importantly, both performed relatively well in classifying areas of

light and moderate damage. These findings suggest that the use of

either the LWCD or the LWCF can provide effective support for

monitoring larch looper. Accurate identification of light damage

provides a critical basis for early monitoring, which can aid in

establishing timely preventive and management measures to avoid

further deterioration. Accurate identification of moderate damage

can effectively reflect the physiological changes in plants under

stress, providing a scientific basis for the development of targeted

restoration and protection strategies.
5.4 Conclusion

In this study, we used UAV and remote sensing data combined

with field measurement data to select sensitive vegetation indices for

the LWCD and LWCF in larch under geometrid stress via RFECV,

constructed effective LWCD and LWCF estimation models via SVR

and BP methods, and mapped large-scale regional visualizations

based on the LWCD and LWCF classification models with the

highest accuracy. The conclusions are as follows:
1. When the LWCD and LWCF were estimated via the SVR

and BP models, the SVR model yielded higher accuracy

and stability.

2. The high classification accuracy of the LWCD and LWCF

in mildly and moderately infested areas suggests that they

can be used as effective indicators for assessing EJD

abundance to assist in monitoring the occurrence and

development of infestations.

3. Through model accuracy assessment and auxiliary

validation, the prediction results show that the LWCD-

based results are more stable and reliable in terms of

performance and have greater credibility than the

LWCF results.
In this work, we provide high-precision estimation models for

the LWCD and LWCF under larch looper stress conditions, thus

providing reliable technical support for the early monitoring of this

pest. By establishing such an early warning system, monitoring

methods based on the LWCD and LWCF can help forestry

departments recognize and respond to potential pest risks in a

timely manner, providing a scientific basis for protecting the

environment and guaranteeing the sustainable development of

forestry resources.
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