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Wheat rust is a severe fungal disease that significantly impacts wheat crops,

resulting in substantial losses in quality and quantity, often exceeding 50%. Timely

and early accurate estimation of disease severity in fields is critical for effective

disease management. Early identification of Rust at low severity levels can

facilitate prompt implementation of control measures, potentially saving crops.

This paper introduces an automated wheat rust severity stage estimation model

utilizing the EfficientNet architecture and attention mechanism. The

convolutional Block Attention Module was integrated into EfficientNet-B0 in

place of the SE module to enhance feature extraction by simultaneously

considering channel and spatial information. The proposed hybrid approach

aims to identify rust disease severity accurately. Themodel is trained on an image

dataset comprising three major rust types—stripe, stem, leaf, and healthy plants

captured under real-life field conditions. Each disease is categorized into four

severity stages: healthy, low, medium, and high. Experimental results

demonstrate that the proposed model achieves impressive performance, with

a training accuracy of 99.51% and a testing accuracy of 96.68%. Moreover,

comparative analysis against state-of-the-art CNN models highlights the

superior performance of our approach. An Android application was also

designed and developed to facilitate real-time classification of plant disease

severity. This system incorporates a severity model optimized for enhanced

classification accuracy and rapid recognition, ensuring efficient performance.
KEYWORDS

wheat rust, EfficientNet architecture, attention mechanism, disease severity estimation,
transfer learning
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1 Introduction

Wheat ranks among the primary staple crops globally, with

over half of its production dedicated to human consumption,

livestock feed, and processing. However, wheat-producing nations

face formidable challenges from plant diseases and pests,

jeopardizing agricultural sustainability and profitability. Among

these, rusts—comprising stripe, leaf, and stem Rust—stand out as

particularly menacing fungal diseases, prevalent across almost all

wheat-growing regions (Lu et al., 2017; Nigam and Jain, 2020).

Left unchecked, rusts can mutate into virulent strains, leading to

catastrophic crop failures. Conventional disease identification and

severity assessment methods rely on manual visual inspection,

which is fraught with inefficiencies, subjectivity, and labor

intensiveness (Bock et al., 2010; Mohanty et al., 2016; Arnal

Barbedo, 2019; Atila et al., 2021). Recent advances in computer

vision, artificial intelligence (AI), and deep learning offer

promising opportunities to automate disease detection and

severity assessment through image analysis. In the existing

literature, remarkable achievements in AI-based plant disease

classification (LeCun et al., 2015; Fuentes et al., 2021; Arnal

Barbedo, 2019; Chin et al., 2023; Pavithra et al., 2023; Dheeraj

and Chand, 2022, 2024) underscore the potential of these

technologies in integrated disease management.

However, while significant progress has been made in plant

disease detection, much of the research has primarily focused on

disease type classification, leaving a critical gap in the accurate

quantification of disease severity. This gap limits experts’ ability to

recommend optimal pesticide applications, compromising disease

control efficacy and environmental sustainability. Thus, there is a

growing demand for automated disease severity classification using

AI-driven approaches (Esgario et al., 2020; Wspanialy and Moussa,

2020; Hu et al., 2021; Nigam et al., 2021). Disease severity, a crucial

parameter for assessing the intensity of plant diseases, is

traditionally quantified by comparing the diseased area of a plant

part (such as leaves, fruits, or stems) to the total area of the affected

part, based on standardized severity grading systems (Bock et al.,

2022; Liu et al., 2020). For wheat stripe rust, severity evaluation is

essential for effective monitoring, but it has primarily been carried

out through visual observation, a method that requires experienced

assessors and is both time-consuming and prone to errors (Jiang

et al., 2022). Accurately estimating lesion areas according to severity

standards is challenging, further complicating the process.

In contrast, disease incidence, which only requires determining

whether a plant part is diseased or not, is easier to assess but does

not provide a precise estimate of severity. The relationship between

disease incidence and severity is influenced by factors such as lesion

distribution, wheat plant resistance to Puccinia striiformis (Pst), and

overall incidence levels (Chen et al., 2014), limiting the practical

utility of incidence-based severity estimation methods. Recent

machine learning advancements have provided some solutions for

severity estimation. For instance, Wang et al. (2017) developed a

model to predict disease severity at early, medium, and final stages,

achieving notable accuracy. Similarly, Liang et al. (2019) introduced

the PD2SE-Net model for horticultural crops, while Zhao et al.
Frontiers in Plant Science 02
(2021) proposed SevNet, which uses ResNet and CBAM to classify

tomato disease severity with impressive accuracies of 97.59% and

95.37%, respectively.

Despite these advances, research on cereal crop severity

estimation remains limited due to the scarcity of image datasets.

Notable exceptions include the BLSNet model for rice (Chen et al.,

2021) and models for maize common rust severity prediction by

Sibiya and Sumbwanyambe (2021) and Haque et al. (2022).

Particularly underexplored is the classification of wheat yellow

rust severity, with only one model—Yellow-Rust-Xception—

proposed for differentiating yellow rust stages, achieving a modest

91% accuracy (Hayit et al., 2021). Also, Jiang et al., 2022 and Jiang

et al., 2023 developed the machine learning models for severity

assessment in wheat stripe rust. However, no deep learning-based

model is developed in literature to estimate the severity of all three

wheat rusts. This highlights the pressing need for further research

and development to enhance the precision and reliability of disease

severity assessments, particularly in wheat crops.

Moreover, challenges persist regarding the availability of public

image databases, predominantly comprising lab-captured images

rather than real-world field scenarios (Mi et al., 2020; Nigam et al.,

2023). Hence, addressing these limitations is crucial for robust

automated disease severity detection systems trained on datasets

collected from natural field conditions.

Therefore, this paper focuses on the critical task of wheat disease

severity classification, addressing the challenges associated with

identifying and categorizing disease symptoms, understanding their

impact on crop health, and exploring effective management strategies.

The study emphasizes early detection of low-severity stages tomitigate

crop loss and support sustainable agricultural practices. The main

contributions of this research are summarized as follows:
• A comprehensive Wheat Disease Severity Dataset

(WheatSev) was created, comprising 5,438 real-field

images of wheat crops affected by stripe rust, leaf rust,

and stem Rust across various growth stages.

• A convolutional block attention module (CBAM) was

integrated into the EfficientNet B0 architecture to classify

wheat disease severity into three levels: low, medium, and

high. The CBAM-EfficientNet model demonstrated

superior classification performance compared to several

established architectures, including VGGNet19,

ResNet152, MobileNetV2, DenseNet169, InceptionV3,

and the original EfficientNet B0.

• The proposed model significantly improved classification

performance in terms of accuracy, recall, precision, and F1

score by leveraging the combined strengths of EfficientNet

B0 and CBAM layers. This approach effectively addressed

technical challenges such as vanishing gradients and

computational complexity while enhancing the robustness

of the model.

• Robust data augmentation techniques were employed to

increase data diversity, mitigating the risk of overfitting and

ensuring the model’s reliability in classifying diverse real-

world samples.
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• The model’s efficiency was validated through extensive

hyperparameter tuning, comparative analyses with state-

of-the-art architectures, and Grad-CAM visualizations.

Experimental results underscored the effectiveness of the

CBAM-EfficientNet B0 model for accurate wheat disease

severity estimation.
2 Materials and methods

This section delineates the tools, techniques, and procedures

employed in the present study, including the acquisition of the

image dataset and the proposed framework incorporating an

attention module within the EfficientNet architecture.
2.1 Image dataset

Images depicting wheat rusts at various severity level stages

were captured within the fields of ICAR-Indian Agricultural

Research Institute, New Delhi, India, spanning three consecutive

crop seasons. Image acquisition took place during sunny

conditions, typically between 11:00 am to 1:00 pm, at ten-day

intervals following the initial onset of disease symptoms. This

timing ensured consistent leaf growth stages across all

captured images.

A handheld mobile camera with a 20-megapixel resolution and

a 25mm wide-angle lens was utilized for image acquisition. The

deliberate use of mobile devices instead of professional cameras

aimed to mirror the tools commonly employed by farmers in

similar scenarios. The severity level estimation dataset

encompasses images of three major wheat diseases, categorized

into three severity levels by plant pathologists: low, medium, high

and healthy (Figure 1). Images were captured by directing the

camera lens toward regions of the leaves exhibiting disease

symptoms at various growth stages. Subsequently, pathologists

labeled the severity levels based on the percentage of disease

symptoms present. Images categorized as low severity level

exhibited severity symptoms ranging from 0 to 25 percent, those

classified as medium severity level ranged from 25 to 50 percent,

and high severity level images displayed more than 50 percent

disease symptoms. The images with no disease symptoms were

considered healthy as shown in Figure 1.

The primary emphasis of this study lies in low-level severity

image classification to facilitate timely disease detection and

mitigate crop loss. Initially, the severity stage estimation dataset

comprised 5438 images distributed across ten classes, including

three rust severity stages for each disease class and a class

representing healthy leaves (refer to Table 1). To enhance

classification performance and achieve balance among disease

classes, the original dataset underwent augmentation, resulting in

a total of 10252 images, with 1000 images allocated to each disease-

infected class.
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2.2 Data pre-processing and augmentation

Prior to model training, image pre-processing, and

augmentation were performed to enhance model performance.

Initially, duplicate, out-of-focus, noisy, or blurry photos were

eliminated from the dataset to ensure data quality. Subsequently,

the Augmentor Python package was utilized to augment the images

by employing various techniques such as zooming, flipping, and

rotating. This augmentation process aimed to diversify the dataset

and enrich it with variations, thereby facilitating robust model

training. Each class of severity stage images was augmented to

contain 1000 images, ensuring balanced representation across

classes (refer to Table 1). Additionally, the images were resized to

256 x 256 pixels to accommodate hardware constraints, optimize

computational efficiency, and enhance the model’s generalization

and performance. This pre-processing and augmentation pipeline

laid the groundwork for effective model training on the

augmented dataset.
2.3 Framework overview and structure

The research methodology is visually depicted in Figure 2.

Initially, images were captured from real-world wheat crop fields

using mobile devices. Domain experts labeled each image with the

corresponding type of wheat rust and its severity level, organizing

them into distinct folders. Subsequently, image processing

techniques, including resizing, filtering, and noise reduction, were

applied to refine the raw images. Augmentation techniques, such as

random rotation, translation, flipping, and zooming, were

employed to diversify the image dataset and validate the models

before experimentation. Two datasets were created: the original

dataset containing 5438 images and an augmented dataset

comprising 10252 images, both segregated into train, test, and

validation sets in an 80:10:10 ratio for experimentation purposes.

Initially, the performance of the fine-tuned EfficientNet B0 model

was evaluated on both datasets. Subsequently, to enhance the

model’s performance, the proposed model was developed by

integrating the CBAM module (Tan and Le, 2020) into the fine-

tuned EfficientNet B0 model. The attention mechanism’s channel

and spatial modules focus on key disease symptoms, aiding in

determining the severity level of wheat rust. Figure 2 illustrates the

flowchart of the wheat disease identification and severity stage

estimation framework, with subsequent sections elaborating on

each phase of the framework.
2.4 Architectural overview of EfficientNet
and attention mechanism integration

The EfficientNet B0 serves as the foundational model within the

EfficientNet family, encompassing a total of eight variants (B0-B7)

(Figure 3). EfficientNet B0 architecture achieves high accuracy and

computational efficiency through a compound scaling approach as
frontiersin.org
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described by Atila et al. (2021). The EfficientNet architecture

employs the Mobile Inverted Bottleneck Convolution (MBConv)

as its primary building block, introduced by Sandler et al. (2018)

and illustrated in Figure 3. The MBConv block comprises three

components: a 1 × 1 convolution (1 × 1 Conv), Depth-wise

convolution (Depth-wise Conv), and a Squeeze-and-Excitation

(SE) module. Initially, the output of the preceding layer is passed

through the MBConv block, where the number of channels is

expanded using a 1 × 1 Conv. Subsequently, a 3 × 3 Depth-wise

Conv reduces the number of parameters, followed by channel
Frontiers in Plant Science 04
pruning that compresses the channel count through another 1 ×

1 Conv. A residual connection is then introduced between the input

and output of the projection layer to enhance feature

representation. The SE module, as shown in Figure 3,

incorporates two key operations: squeeze and excitation. The

squeeze operation is performed using global average pooling

(AvgPooling), while the excitation operation involves two fully

connected layers activated sequentially with a Swish activation

and a Sigmoid activation function. This design facilitates efficient

parameter utilization while maintaining high performance.
FIGURE 1

Wheat rusts images at severity levels: Low, Medium, High and Healthy.
frontiersin.org
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However, the SE module focuses on channel-wise feature

recalibration by emphasizing informative channel characteristics

while suppressing less relevant ones. However, this approach

primarily addresses channel-specific information and overlooks

spatial context, which is critical for visual recognition tasks such

as severity estimation. This limitation negatively affected the

model’s classification accuracy for severity estimation.

To address this, the (CBAM) was integrated into EfficientNet-B0

in place of the SE module to enhance feature extraction by

simultaneously considering both channel and spatial information.

The modified network, referred to as EfficientNet-CBAM, is

illustrated in Figure 4. Key modifications include the replacement

of the SE module in each MBConv layer with a CBAM module,

allowing the network to retain vital spatial information alongside

channel-specific features, particularly for identifying disease severity

symptoms. Additionally, a CBAM module was introduced after the

final convolutional layer, refining the extracted features and
Frontiers in Plant Science 05
improving the network’s classification performance. The final

convolutional layer of EfficientNet B0 produces feature maps,

which serve as input for the Convolutional Block Attention

Mechanism (CBAM) module (see Figure 4).

Attention mechanisms, extensively utilized in research,

augment feature extraction and boost model performance in

image classification tasks (Woo et al., 2018; Wang et al., 2017).

Our architectural design incorporates a convolutional block

attention module with two key components: the Channel

Attention Module (CAM) and the Spatial Attention Module

(SAM) (refer to Figures 5). These two modules work together to

improve feature extraction and representation within the generated

feature maps (Woo et al., 2018). The input feature map W,

representing the wheat rust-infected leaf image, undergoes

processing within the CAM, producing the channel attention

feature map Mc. This map highlights essential image information,

which is then used to generate the refined feature mapW’. Element-
FIGURE 2

Overview of automated severity stage estimation framework.
TABLE 1 Description of image dataset for severity stage estimation.

Disease Class Name # Original images Severity level (%) #Augmented images

No Disease Healthy 1252 0 1252

Yellow Rust YR_Low 216 0-25 1000

YR_Medium 288 25-50 1000

YR_High 501 >50 1000

Brown Rust BR_Low 395 0-25 1000

BR_Medium 595 25-50 1000

BR_High 216 >50 1000

Stem Rust SR_Low 780 0-25 1000

SR_Medium 706 25-50 1000

SR_High 489 >50 1000

Total no. of images 5438 10252
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FIGURE 4

Improved EfficientNet B0 architecture: SE module replaced with CBAM module.
FIGURE 3

Baseline architecture of EfficientNet B0.
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wise multiplication between Mc and W yields the improved feature

map W’. Subsequently, W’ is subjected to processing within the

Spatial Attention Module, generating the spatial feature map Ms.

This map selectively emphasizes significant image areas. The

enhanced feature map W’ is subsequently combined with the

spatial feature map Ms. This multiplication yields the ultimate

feature map W’’, which encapsulates the representation of the

wheat rust image. The Convolutional Block Attention Mechanism

operates through the following Equations 1, 2:

W 0 = Mc(W)⊗W (1)

W ” = Ms(W
0 )⊗W 0 (2)

The CBAM module’s channel attention mechanism utilizes

pooling operations to compress the feature map W, focusing

solely on essential symptom regions within the image while

disregarding extraneous information or features. Conversely, the

spatial attention mechanism identifies significant feature locations

post-CAM processing. This process involves spatial dimension
Frontiers in Plant Science 07
compression of the feature maps W’ and the generation of the

spatial attention feature Ms utilizing the sigmoid activation

function. It highlights critical features within specific image area,

enhancing intermediate features.
2.5 Proposed severity estimation
framework

The proposed methodology employs transfer learning, where a

novel model aimed at disease severity stage identification is trained

utilizing a pre-trained model, EfficientNet B0, as the foundation for

learning. While retaining the initial layers of the EfficientNet B0

model, the final layer is replaced with new layers. These newly

introduced layers are subsequently fine-tuned to classify infected

leaves into ten distinct classes using, ‘WheatSev’ dataset developed

by us, as per the methodology given by Too et al. (2019). Thus, the

WheatSevNet model is designed to accurately classify the severity

stages of wheat rust infections by enhancing feature extraction and
FIGURE 6

Overall proposed model framework for Wheat disease severity estimation.
FIGURE 5

Overall architecture of CBAM module.
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representation. It builds upon EfficientNet-B0, a widely used deep

learning architecture known for its computational efficiency and

high performance. However, EfficientNet-B0’s Squeeze-and-

Excitation (SE) module, while effective for channel-wise

recalibration, lacks spatial feature extraction capabilities. To

overcome this limitation, WheatSevNet integrates the

Convolutional Block Attention Module (CBAM) in place of the

SE module within each MBConv block of EfficientNet-B0 as

depicted in Figure 6. The CBAM module consists of two

components: the Channel Attention Module (CAM), which

selectively enhances significant channels using global average

pooling, max pooling, a multi-layer perceptron (MLP), and a

sigmoid activation function, and the Spatial Attention Module

(SAM), which refines feature extraction by applying average and

max pooling across the channel axis, followed by a convolutional

layer and a sigmoid activation function. In WheatSevNet, each

MBConv block of EfficientNet-B0 is modified by replacing the SE

module with CBAM, ensuring both spatial and channel-wise

attention are effectively incorporated. Additionally, a final CBAM

layer is introduced after the last convolutional layer to further refine

feature maps before classification. The model leverages transfer

learning and fine-tuning, utilizing pre-trained EfficientNet-B0

weights with the initial layers frozen while optimizing the later

layers for severity classification. Further modification involves the

addition of a normalization layers, fully connected (FC) layer, a

dropout, and a convolutional layer, as depicted in Figure 6 for

detecting and classifying different severity stages of wheat rust. By

integrating CBAM at multiple levels, WheatSevNet achieves

enhanced feature extraction, capturing both disease-specific

spatial structures and critical channel-wise characteristics, thereby

improving classification performance over traditional EfficientNet-

based approaches.

Additionally, Table 2 presents the hyperparameters employed

for the disease severity estimation models. Owing to low stopping,

the number of epochs ranged from 27 to 50, with a fixed learning

rate of 0.001. To mitigate this risk, the authors have incorporated

several measures to prevent overfitting. These include data

augmentation, which helps in artificially increasing the dataset size

and providing more diverse training examples. The augmentation

process involved applying random transformations such as rotation,

flipping, scaling, and color adjustments to create new variations of

the existing images. This technique aimed to simulate real-world

variations in the data, which helps prevent the model from

overfitting to the specifics of the training set. Furthermore, class

balancing was ensured by augmenting each class of severity stage

images to contain a total of 1000 images per class, ensuring that all

classes were equally represented in the dataset. This balanced

representation prevents the model from being biased towards any

particular class, enhancing its ability to generalize across different
Frontiers in Plant Science 08
categories. Further, a dropout rate of 0.20 was implemented during

the training process. Dropout works by randomly disabling 20% of

the neurons in each layer during training, which helps prevent the

model from becoming overly reliant on specific features and

encourages it to learn more generalized patterns. Additionally, L2

regularization has been applied to control the complexity of the

model and prevent it from overfitting to the training data. In

addition to these measures, early stopping with patience as 3 was

incorporated as an extra safeguard against overfitting. This

technique monitors the validation loss during training, and if no

improvement is seen for a specified number of epochs (the patience

parameter), the training process is halted early. This prevents the

model from continuing to learn noise and overfitting to the training

data. The patience parameter was set to allow the model to train for

several epochs without improvement before stopping, ensuring that

it had enough time to converge but also preventing unnecessary

overfitting. All these hyperparameters for the severity estimation

models are reported in Table 2. Categorical cross-entropy served as

the loss function during model training, while the batch size for

experimentation was fixed at 32. The subsequent subsection will

address the third objective of the research study, focusing on

elucidating the validation of the developed models and their

integration into mobile applications.
2.6 Evaluating model performance and
efficacy

During the experiment, various pre-trained classical deep-

learning models were compared to the proposed model. These

models included VGGNet (Simonyan and Zisserman, 2014),

ResNet152 (He et al., 2016), InceptionV3 (Szegedy et al., 2016),

MobileNetV2 (Sandler et al., 2018), and DenseNet121 (Huang et al.,

2017). These models underwent parameter resetting before training,

followed by modifications to the bottom layers of the pre-trained

networks. The bottom layer was substituted with a new SoftMax

and output layers containing ten severity stage classes from

the datasets.
2.7 Experimental implementation

The experimentation was conducted on a robust DGX server

featuring GPU capabilities, with computations executed using the

Keras and TensorFlow frameworks. The system has Ubuntu as the

operating system, supported by an Intel® Xeon® CPU. All

computationally intensive tasks were handled by the NVIDIA

Tesla V100-SXM2 GPU, boasting ample memory resources of

528 GB (refer to Table 3).
TABLE 2 Hyperparameters set for wheat disease severity model.

Epochs Batch size Optimizer Learning rate Momentum Loss function Dropout

27-50 32 Adamax 0.001 0.99 Categorical cross-entropy 0.20
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2.8 Evaluation metrics

The accuracy of classification predictions in machine learning

experiments is assessed through confusion matrices. It is used to

analyze the correspondence between the predicted and actual

prediction scores for individual classes of a classification model.

Other metrics such as precision, accuracy, F1 score, and recall are

also used to assess the performance of our model. Precision

describes the ratio of true positives to all positive predictions,

while accuracy refers to the proportion of correctly identified

predictions relative to the total number of the predictions. On the

other hand, Recall measures the ratio of true positive cases to all

positive predictions (Hossin and Sulaiman, 2015). The F1 score is

further calculated using the harmonic mean of precision and recall,

providing a balanced evaluation of the model performance

(Equations 3–6).

Precision =  
TP

TP + FP
(3)

Accuracy =  
TP + TN

TP + TN + FP + FN
(4)

Recall =  
TP

TP + FN
(5)

F1 =  
2TP

2TP + FP + FN
(6)

The “true positive” (TP) represents the count of images

accurately detected within each severity stage class. Conversely,

“true negative” (TN) represents the overall number of images

correctly identified across all severity stages, excluding the specific

severity stage to which they belong. “False negative” refers to the
Frontiers in Plant Science 09
count of images wrongly classified within each relevant severity

class, while “false positive” (FP) indicates the number of images

incorrectly classified as belonging to different severity stage

classifications. Finally, the predictive performance of the proposed

model is summarized by the F1 score.
3 Results and discussion

The experiment aimed to estimate the severity stages for all

three wheat rusts utilizing the image dataset. The wheat disease

severity estimation model was crafted using the EfficientNet

architecture as the foundational model, augmented with the

Convolutional Block Attention Mechanism (CBAM) integrated at

the network’s base. Performance evaluation of the disease severity

estimation model was conducted, posing it against state-of-the-art

CNN models and a simple fine-tuned EfficientNet B0 model, as

outlined in Table 4. Results demonstrate that the proposed severity

model achieved the highest test accuracy, reaching 93.88% and

96.68% on both the non-augmented and augmented datasets,

respectively. Upon comparing the experimental results of

EfficientNet B0 and EfficientNet B0-CBAM, as presented in

Table 4, a notable enhancement in disease severity identification

was observed upon the integration of an attention mechanism into

the model.

In the absence of an attention mechanism in EfficientNetB0, the

overall testing accuracy on the WheatSev dataset was recorded at

92.19%. However, upon integrating the CBAM module into

EfficientNetB0, the overall testing accuracy markedly increased to

96.68%, as illustrated in Figure 7. Analysis of the disease severity

stage classification results revealed that the performance

enhancement observed in EfficientNetB0, when augmented with

the attention mechanism, could be attributed to the spatial attention
TABLE 4 Performance comparison of State-of-the-art CNN models with proposed severity estimation model.

Model parameters Accuracies on non- augmented dataset (%) Accuracies on augmented dataset (%)

Model Image size Ep Training Validation Testing Training Validation Testing

VGGNet19 224*224 50 85.14 84.78 83.27 86.73 85.09 85.12

ResNet152 224*224 50 87.72 86.03 86.91 88.14 87.65 87.08

MobileNetV2 224*224 50 86.90 85.87 84.78 87.05 86.31 84.93

DenseNet169 224*224 50 90.13 90.15 89.97 91.44 90.7 90.56

InceptionV3 299*299 50 91.82 90.50 90.22 94.62 92.05 91.84

EfficientNet B0 224*224 25 96.33 92.68 91.56 98.54 93.43 92.19

Proposed model 224*224 27 98.67 94.83 93.88 99.51 95.97 96.68
TABLE 3 Experimental setup.

Operating system GPU Memory Frameworks Programming language System

Ubuntu NVIDIA Tesla V100-SXM2 528 GB Keras and TensorFlow Python Intel® Xeon®
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module of the CBAM module, which adeptly locates key

information with greater accuracy. Furthermore, the channel

attention module of CBAM exhibits the ability to amplify

important features while suppressing irrelevant ones, thereby

yielding a more refined feature representation. Consequently, it

can be inferred that the incorporation of the CBAMmodule into the

base model effectively contributes to improving the model’s

performance in identifying the severity level of wheat rust diseases.
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3.1 Confusion matrix and various
performance metrics

Figure 8 illustrates the confusion matrix of the severity

estimation model, depicting ten classes based on actual and

predicted labels from augmented datasets. The numbers along the

diagonal signify accurately identified images, while those outside the

diagonal indicate instances of misclassification (Ting, 2017).
FIGURE 8

Confusion matrix for proposed disease severity estimation model.
FIGURE 7

Comparison of proposed model testing accuracies with various CNN models.
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TABLE 5 Performance metrics for severity estimation model on both datasets.

Classes
Augmented dataset Non-augmented dataset

Precision Recall F1 Precision Recall F1

Healthy 0.98 0.99 0.99 0.96 0.99 0.97

BR_Low 0.97 0.96 0.96 0.9 0.84 0.87

BR_Medium 0.95 0.98 0.97 0.8 0.75 0.82

BR_High 0.99 0.98 0.98 0.88 0.95 0.91

SR_Low 0.95 0.99 0.97 0.95 0.94 0.94

SR_Medium 0.97 0.95 0.96 0.9 0.91 0.91

SR_High 0.99 0.97 0.98 0.93 0.94 0.93

YR_Low 0.91 0.96 0.94 0.8 0.81 0.8

YR_Medium 0.95 0.91 0.93 0.78 0.75 0.77

YR_High 1 0.97 0.98 0.95 0.92 0.93
Shades of red color for higher, yellow for moderate, and green for lower values of performance parameters.
FIGURE 9

Training and validation curves for severity estimation model on (a) non-augmented dataset (b) augmented dataset.
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Specifically, among the four low severity images of brown Rust, two

were erroneously identified as medium-stage severity, and one as

healthy (Figure 8). Similarly, misclassifications occur in other

severity stages of brown Rust, with images of high and medium

levels misclassified as medium and low, respectively. Furthermore,

low-severity images of brown Rust were mistakenly classified as

medium severity and healthy. Additionally, misclassifications were

observed in stem rust and yellow rust severity stages.

Upon analyzing the confusion matrix of EfficientNetB0

embedded with CBAM, it was noted that Rust spread on the

upper surface of the leaf leads to significant confusion between

the low and medium severity stages of the disease. Referencing

Table 5, the classification report derived from the confusion

matrices includes F1, precision, and recall metrics for the

proposed disease severity estimation model. A model is deemed

appropriate if its F1 score approaches one. After evaluating these

performance metrics, the following findings emerge: On the

augmented dataset, the average precision, recall, and F1 score for

identifying severity stages in brown rust and stem rust is 97%,

whereas, for yellow Rust, the average score for precision, recall, and

F1 measure is 95%.
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Table 5 shows that augmented datasets yield superior results

compared to non-augmented datasets across all diseases and their

categories. However, for stem rust disease, all performance

parameters in non-augmented datasets surpass 90% across all

stages, possibly due to easily identifiable features of stem rusts.

Conversely, for brown and yellow Rust, the performance of non-

augmented datasets is notably inferior to augmented datasets.

Another noteworthy finding pertains to the higher classification

accuracy of healthy leaves, which can be attributed to (i) the more

significant number of images (1252) and (ii) the absence of any

classes for healthy leaves. Although the accuracy improves as the

disease stage matures, even in low stages, precision exceeds 90% for

all types of rusts. For the augmented dataset, precision reaches 97%

for brown Rust and 91% for yellow Rust.
3.2 Model accuracy and loss curves

Figure 9 depicts the training and validation curves for the wheat

severity estimation model, offering insights into the learning

process. Notably, the accuracy curves indicate that our proposed
FIGURE 10

GradCAM visualization of the (a) Yellow rust (b) Brown rust (c) Stem rust diseases at low severity level.
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severity model serves as a commendable and efficient fit model

(Hossin and Sulaiman, 2015). The findings of the disease severity

model underscore its efficacy in automatically identifying wheat

severity stages based on images.

In conclusion, the proposed models prove useful for identifying

diseases at a low severity level, as evidenced by the accurate

identification of most images in the low stages of Rust. This early

severity assessment holds promise for crop preservation and can

significantly minimize crop loss.
3.3 Visualization of disease symptoms
model interpretability

The interpretability of the proposed model is carried out using

the GradCAM (Selvaraju et al., 2020). Figure 10 illustrates that the

proposed severity estimation model focuses explicitly on the

features and the symptoms that play an important role in

identifying the severity level of the type of the wheat rusts. The

activation maps shown in the figure facilitate specific regions in

the input test images necessary for estimating the severity of the

disease. Thus, we aimed to illustrate how the model is directing its

attention towards the areas where the symptoms are most

noticeable in order to identify the disease at a low stage of

severity. The attention mechanism has been found to improve the

model’s ability to identify the appropriate symptoms in the correct

location accurately.
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3.4 Development of an Android based
mobile application for wheat disease
severity estimation

In this study, we also developed an Android-based mobile

application as a practical tool for the automatic identification of

wheat diseases and their corresponding severity stages in

agricultural fields. The proposed model was integrated into the

application’s backend to facilitate this functionality. The mobile

application allows users to capture real-time images from

agricultural fields or select images stored in their mobile device

gallery. These images are subsequently uploaded to a server for

analysis. The analytical process begins with the application

determining whether the uploaded image depicts a healthy or

diseased wheat plant. For images identified as healthy, the result

is directly displayed as “healthy”. Conversely, if the image is

diagnosed as diseased, the application proceeds to identify the

specific type of disease. Following disease identification, the

application further evaluates the image to estimate the severity

stage of the detected disease. Figure 11 provides a detailed

illustration of the application’s process flow, from image

acquisition to disease identification and severity stage estimation.

The developed mobile application for wheat disease severity

estimation follows a streamlined workflow Figure 12. Upon

launching, a splash screen introduces the app, followed by an

interface that allows users to capture or upload a wheat leaf

image. Once an image is uploaded, the “Identify” button
FIGURE 11

Overall flow of disease severity estimation through mobile application.
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determines if the leaf is healthy or diseased. For healthy images,

the app displays a message indicating no further action is

required. If a disease is detected, the application identifies the

disease type and provides an option to predict its severity stage.

The final screen presents the identified disease along with its

severity stage, providing a complete diagnostic result for the

uploaded image.
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3.5 Comparison with existing studies in the
literature

The Table 6 offers a comprehensive overview and comparative

assessment of various models utilized for disease classification across

different crops, alongside their respective training or testing

accuracies. Our proposed model, specifically for diagnosing three
FIGURE 12

Screenshots of the developed mobile application for severity estimation.
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major rusts in wheat crops, achieved a commendable testing accuracy

of 96.68%. When compared with existing literature, our model

emerges as a strong contender, demonstrating competitive

performance. Notably, existing models developed for crops such as

apple, tomato, coffee, cucumber, and grape achieved accuracies

ranging from 90.4% to 97.75%, albeit focusing on single disease

classes. Importantly, prior attempts at wheat severity estimation

encompassing three diseases and their severity levels were scarce.

Despite this, our model’s accuracy not only matches but also exceeds

the reported accuracies in the literature, underscoring its efficacy in

wheat rust severity estimation.

In this study, our primary contributions are twofold: Firstly, we

curated a robust dataset for wheat disease classification,

encompassing the estimation of severity categories. The non-

augmented dataset comprises 5438 images, while the augmented

dataset boasts a total of 10252 images. This dataset lays a strong

foundation for future research in this domain. Secondly, we

introduced WheatSevNet, an algorithm capable of identifying

various wheat disease categories and assessing their severity levels.

Despite the challenges posed by multi-disease classes and multi-

severity levels, our enhanced model achieved an impressive

accuracy rate of over 96%. This performance is comparable even

to other algorithms designed for single disease identification. We

could not compare with wheat severity estimation models for three

diseases as no such published attempt is available to the best of our

knowledge. The success of our approach not only addresses an

immediate need in agricultural research and opens up promising

avenues for future investigations in this field. We hope our study

will inspire further exploration and innovation in automated plant

disease diagnosis and severity estimation.
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4 Conclusion

The major fungal diseases in a wheat crop significantly impact

crop quality and quantity, leading to substantial agricultural yield

losses. In our study, we aim to diagnose major wheat fungal diseases

and its corresponding severity level, utilizing a model based on

EfficientNet architecture and enhanced with a Convolutional Block

Attention Mechanism. The proposed model demonstrates

exceptional effectiveness, boasting a training accuracy of 99.51%

and a testing accuracy of 96.68%. In comparative analyses, our

model surpasses state-of-the-art CNN models and a fine-tuned

EfficientNet B0 model, highlighting its superior performance in

severity estimation. To ensure the robustness of our approach

across various disease categories, we conducted experiments using

images from real-life field conditions, encompassing three major

types of wheat rusts: yellow, brown, and black. Notably, our model’s

ability to classify severity stages into medium and high stages

provides precise information, facilitating timely intervention. The

integration of the CBAMmodule significantly enhances the model’s

performance, boosting the testing accuracy from 93.21% to an

impressive 96.68% on the WheatSev dataset. This improvement is

largely attributed to the attention module within CBAM, which

adeptly identifies critical information and enhances the

representation of features. Furthermore, the channel attention

module demonstrates its effectiveness in amplifying features while

suppressing ones, thereby contributing to a more precise and

accurate identification of the severity level of wheat rust disease.

The results validate that the inclusion of the CBAM module

substantially improves the efficiency of the model in detecting

and assessing the severity of wheat rust disease.
TABLE 6 Summarization of the previous studies for image-based disease severity estimation.

References Crops/diseases/classes No. of
diseases

Algorithm/
Architecture

Training/Testing
accuracy (%)

Dataset with number
of images

Wang et al. (2017) Apple (Leaf black rot) 1 VGG16 model 90.4 PlantVillage (1986)

Liang et al. (2019) Multiple fruit crops
(healthy, general, serious)

– ResNet & ShuffleNet 91 PlantVillage

Prabhakar et al. (2020) Tomato (early blight)
(mild, moderate, severe)

1 ResNet101 94.6 PlantVillage

Verma et al. (2020) Tomato (Late blight) 1 AlexNet 93.4 PlantVillage

Esgario et al. (2020) Coffee (Leaf biotic stress) 1 ResNet50 95.24 Own (2293)

Wang et al. (2021) Cucumber (downy and
powdery mildew)

2 DeepLabV3 92.85 Own (1000)

Zhao et al. (2021) Tomato (fungal diseases) – SENet & CBAM 95.37 PlantVillage

Liu et al. (2022) Apple (Alternaria leaf blotch) 1 DeepLabV3, UNet 96.41 Own (5382)

Ji and Wu et al. (2022) Grape (black measles) 1 ResNet & Fuzzy logic 97.75 PlantVillage

Li et al. (2023) Wheat (yellow Rust) 1 GhostNetV2 95.44 Public

Hu et al. (2023) Tea (leaf blight) 1 GBM – Own (300)

WheatSevNet (Proposed) Wheat (three major rusts) 3 EfficientNet & CBAM 96.68 Own (10000)
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