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Enhancing multilevel tea leaf
recognition based on
improved YOLOv8n
Xinchen Tang1, Li Tang2*, Junmin Li1 and Xiaofei Guo2

1School of Mechanical Engineering, Xihua University, Chengdu, China, 2School of Automobile and
Transportation, Xihua University, Chengdu, China
In the tea industry, automated tea picking plays a vital role in improving efficiency

and ensuring quality. Tea leaf recognition significantly impacts the precision and

success of automated operations. In recent years, deep learning has achieved

notable advancements in tea detection, yet research on multilevel composite

features remains insufficient. To meet the diverse demands of automated tea

picking, this study aims to enhance the recognition of different tea leaf

categories. A novel method for generating overlapping-labeled tea category

datasets is proposed. Additionally, the Tea-You Only Look Once v8n (T-

YOLOv8n) model is introduced for multilevel composite tea leaf detection. By

incorporating the Convolutional Block Attention Module (CBAM) and the

Bidirectional Feature Pyramid Network (BiFPN) for multi-scale feature fusion,

the improved T-YOLOv8n model demonstrates superior performance in

detecting small and overlapping targets. Moreover, integrating the CIOU and

Focal Loss functions further optimizes the accuracy and stability of bounding box

predictions. Experimental results highlight that the proposed T-YOLOv8n

surpasses YOLOv8, YOLOv5, and YOLOv9 in mAP50, achieving a notable

precision increase from 70.5% to 74.4% and recall from 73.3% to 75.4%.

Additionally, computational costs are reduced by up to 19.3%, confirming its

robustness and suitability for complex tea garden environment. The proposed

model demonstrates improved detection accuracy while maintaining

computationally efficient operations, facilitating practical deployment in

resource-constrained edge computing environments. By integrating advanced

feature fusion and data augmentation techniques, the model demonstrates

enhanced adaptability to diverse lighting conditions and background variations,

improving its robustness in practical scenarios. Moreover, this study contributes

to the development of smart agricultural technologies, including intelligent tea

leaf classification, automated picking, and real-time tea garden monitoring,

providing new opportunities to enhance the efficiency and sustainability of

tea production.
KEYWORDS
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1 Introduction

The rapid development of modern agriculture is driving

advancements in automation and intelligence, where smart

equipment significantly enhances production efficiency. As the

world’s largest producer and consumer of tea, China holds a

significant economic position in the global tea industry. In 2023, tea

production in China has reached 3.55 million tons, yielding a market

value of 351.18 billion yuan, which is projected to grow to 530.96

billion yuan by 2028. Additionally, the aggregated agricultural output

associated with tea has been valued at 329.7 billion yuan (Zhang W.

et al., 2024; Liu et al., 2018; Zhao Y. et al., 2022; Huang, 2018).

In recent years, China has established amodern tea industry system

encompassing tea culture, scientific innovation, and ecological

sustainability. The emerging of agricultural technology has positioned

automated tea picking as a key focus for industry innovation. By

employing advanced machine vision and sensing technologies,

automated tea picking equipment enables precise identification of tea

leaves and selective harvesting based on preset standards. This facilitates

operational efficiency while preserving the quality of harvested leaves.

Compared to traditional manual picking, automated systems offer

continuous operation, substantially lower labor costs, and minimize

potential damage to tea leaves, making them particularly valuable for

producing high-quality tea.

Although current tea leaf recognition technologies achieve

satisfactory performance in controlled scenarios, significant

challenges still remain when applying these technologies to the

intricate environments of tea plantations. For example, variations in

lighting, dense foliage, and morphological similarities between tea buds

and leaves frequently lead to false detections or missed targets in

detection systems (Jie et al., 2023;; Li et al., 2024a; Wu et al., 2024).

Furthermore, traditional image processing techniques struggle to

handle overlapping tea buds and leaves, and their limitations in

categorizing tea grades renders them inadequate for the precision

required in practical picking processes.

To overcome these challenges, developing robust detection

algorithms capable of handling complex scenes is crucial. Modern

target detection models can be broadly categorized into two types:

single-stage and two-stage approaches (Kang, 2022). Single-stage

method, such as You Only Look Once (YOLO) (Sun et al., 2022)

and Single ShotMultiBox Detector (SSD) (Lenatti et al., 2023), perform

detection in a single forward pass, resulting in high computational

efficiency. In contrast, two-stage algorithms, exemplified by Faster R-

CNN (Wang et al., 2023), initially generate region proposals and

subsequently classify and refine bounding boxes. While two-stage

methods excel in detecting small targets and operating in complex

environments, they often suffer from reduced computational efficiency

due to their two-stage processing pipeline.

In recent years, the YOLO series models have been widely adopted

in target detection, promoting the development of smart agriculture

(Liu and Wang, 2020; Yu et al., 2024; Lawal et al., 2024). To overcome

the challenges of leaf shading and limited computational resources in

weed detection, Ren et al. (2024) proposed an enhanced YOLOv8-

based algorithm that incorporates large kernel convolution and multi-

scale expansion convolution into an expansion feature integration
Frontiers in Plant Science 02
block, significantly improving feature extraction capabilities. For

intelligent wheat monitoring, Zhao F. et al. (2022) introduced a

YOLOv4-based method that integrates spatial pyramid pooling (SPP)

blocks, addressing data acquisition difficulties and enhancing detection

accuracy. In crop disease detection, Zhao et al. (2023) developed an

improved YOLOv5s model by optimizing the feature fusion structure

and introducing a CAMmechanism, thereby boosting both robustness

and precision in detecting small and densely packed targets. Similarly,

Peng and Wang (2022) designed an innovative image retrieval system

integrated with YOLOv5 to improve small target recognition, enabling

automatic disease identification in open environments. In the domain

of yield estimation, Zhang M. et al. 2024; Peng and Wang, 2022)

presented a depth-aware detection model based on YOLOv8, which

employs SPD-Conv and a small target detection head to significantly

improve detection performance, providing reliable solutions for high-

precision cotton monitoring and yield estimation. These studies

highlight the versatility and effectiveness of YOLO-based models in

addressing diverse challenges in smart agriculture, ranging from

improving disease detection to enabling efficient yield assessment.

Meanwhile, in tea leaf recognition, researchers have proposed

various methods to address challenges posed by the complex

background of tea buds. Xie and Sun (2023) introduced Tea-

YOLOv8s, a model that enhances detection accuracy through data

augmentation and the integration of deformable convolution and

attention mechanisms, achieving an average accuracy of 88.27% in

tea bud detection. To resolve resource constraints on edge devices,

Zhang S. et al. (2023) developed ShuffleNetv2-YOLOv5-Lite-E, which

applies channel pruning and model lightweight optimization to

significantly improve detection speed while maintaining accuracy,

achieving a detection rate of 8.6 fps on edge devices. Zhu et al.

(2023) proposed an enhanced version of YOLOv5-Lite-E tailored for

unstructured tea gardens, integrating ECANet and BiFPN modules to

boost detection precision. Furthermore, by incorporating the DBSCAN

algorithm and principal component analysis, their method enables 3D

localization of tea buds, achieving a detection accuracy of 94.4% with

an average localization error of 3–7 mm, thus meetings the

requirements of tea-picking robots. However, existing studies

primarily focus on single-type or graded recognition of tea leaves

(Xia et al., 2024). In automated tea-picking processes, current methods

often suffer from low efficiency and missed picks. In order to meet

diverse picking requirements, it is crucial to develop multi-level

composite recognition systems capable of accurately identifying tea

leaves, classifying them into detailed grades, and flexibly selecting

grades for picking based on demand.

In summary, to tackle the challenges of accurately recognizing tea

grades and enabling the flexible selection of picking grades, this paper

proposes an improved YOLOv8-based target detection algorithm. It

contributes the literature in threefold: (1) During the dataset

construction, overlapping labeling of “bud”, “sprout” and “bud leave

2” at the top of the tea plant is employed in building the dataset, so as to

achieve the recognition of “one bud and two leaves” and other grades

simultaneously on a single tea leaf. (2) The CBAMmodule is added to

the Neck section to enhance feature expression and model robustness,

while the Concat section is replaced with the BiFPN module to enable

efficient multi-scale feature fusion, thereby improving detection
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performance for small and overlapping targets. (3) The loss function is

modified to a combination of CIOU and Focal Loss, enhancing the

model’s ability to handle complex scenes and class imbalances,

significantly improving both detection accuracy and robustness.

The remainder of the paper is structured as follows. Section 2

describes the process of dataset collection and the subsequent

preprocessing procedures, along with the application of data

enhancement techniques. Section 3 presents the specific

improvements applied to the YOLO model. Section 4 presents the

experimental results and analyzes the results through comparative

and ablation studies. Section 5 summarizes the conclusions of

this study.
2 Tea data set collection
and processing

2.1 Tea dataset production

The tea dataset utilized in this study was collected from the

Daoyuanxianweng Organic Tea Base in Chengdu City, Sichuan

Province, China. A total of 3,102 images were captured, covering a

wide range of periods and viewing angles. Although all images were

taken during the day, the dataset leverages the natural variation in

lighting conditions at different times of day—morning, noon, and

afternoon—capturing the differences in light intensity caused by

changes in the solar angle. Furthermore, to enhance the diversity of

the dataset, a multi-angle shooting strategy was employed during

image collection, including horizontal, top-down, and tilted

perspectives, thus covering various observation directions and

field-of-view ranges.

To compensate for the limitations of real-world conditions,

online data augmentation techniques were incorporated during

model training to simulate environmental changes that may affect

the detection task. For instance, adjustments to brightness, contrast,

and saturation were made to simulate fluctuations in lighting

conditions; Gaussian noise and blur were added to mimic sensor

noise and the blurring effects in the imaging process; random

rotations, translations, and scaling were applied to simulate the

impact of camera movement or angle changes on the targets; and

weather effects such as rain, fog, and snow were introduced to

simulate potential environmental influences. These measures

enhanced the dataset’s visual diversity and improved the model’s

generalization ability in complex real-world scenarios.

The dataset was divided into training, validation, and test sets at a

ratio of 7:2:1, with the images labeled using the LabelImg tool. The

labeling categories included “one bud and one leaf” (bud leaf), “bud”

(sprout), and “one bud and two leaves” (bud leaf2), with the

annotations were saved in YOLO’s text format. During the labeling

process, overlapping annotations were applied to each tea plant,

allowing both the buds and leaves of the same plant to be labeled

simultaneously. This overlapping annotation method not only
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enhances the model’s ability to automatically identify the top part

of the tea leaves, but also supports more precise harvesting strategies.

In contrast to traditional detection methods, which typically

focus on identifying a single category per image or region, the

proposed approach introduces an innovative overlapping

annotation framework that allows simultaneous detection of

multiple categories (bud, one bud and one leaf, one bud and two

leaves) within the same tea shoot. This capability enables a more

comprehensive characterization of tea leaf structures, offering

significant advantages in precision agriculture and tea production.

For instance, in growth monitoring, this method provides a

detailed distribution of different developmental stages in a single

detection pass, facilitating the accurate assessment of tea plant

health and growth dynamics. Traditional methods often require

repetitive annotation and detection, leading to higher costs

and inconsistencies.

In practical applications, this overlapping annotation strategy

empowers intelligent harvesting systems to implement customized

picking strategies. By leveraging real-time multi-category

information, the system can prioritize specific tea parts based on

production goals: for instance, focusing on buds for premium tea

production or selecting “one bud and one leaf” for mass-market tea.

Such flexibility, enabled by simultaneous multi-category detection,

optimizes the harvesting process, reduces waste, and ensures

product quality. Beyond harvesting, this approach can enhance

sorting and classification during processing, where different tea

parts necessitate distinct handling techniques. Moreover, in market

applications, the method supports automated quality grading and

traceability by analyzing the proportions of tea leaf categories,

improving efficiency and fairness in tea trade.

This overlapping annotation framework addresses a key

limitation of traditional detection methods: their inability to

manage the complex diversity within a single target. By providing

rich, multi-dimensional data in a single detection pass, the proposed

method eliminates the need for multiple rounds of processing and

post-detection integration, making it more suitable for real-time

intelligent systems. This not only enhances the efficiency of tea

production but also offers a scalable solution for integrating

artificial intelligence into precision agriculture.

We believe that by implementing the T-YOLOv8n system, tea

farmers could see several key benefits. First, it could substantially

reduce labor costs. Traditional manual grading is not only labor-

intensive but also prone to subjective errors, so automating this

process would ease the need for manual labor. This, in turn, would

lower costs. Second, the system’s high-precision detection improves

the accuracy and consistency of tea grading, helping to ensure more

standardized results and minimizing human error. Lastly, with

faster and more accurate grading, tea farmers would be able to

harvest and process tea more efficiently, ultimately boosting

overall production.

However, in the actual deployment of the system, there may be

challenges such as initial equipment and deployment costs, as well

as the tea farmers’ acceptance of new technologies. These factors
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https://doi.org/10.3389/fpls.2025.1540670
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Tang et al. 10.3389/fpls.2025.1540670
require further economic analysis and research in practical

applications to evaluate the cost-effectiveness of the system.
2.2 Data enhancement methods

In target detection tasks, data augmentation plays a crucial role in

enhancing the generalization ability of the model. YOLOv8 supports

several data augmentation techniques, which significantly boost

model performance in complex scenarios. These methods can be

broadly categorized as offline data augmentation, Mosaic

augmentation, and online data augmentation.
2.2.1 Offline data enhancement
Offline data augmentation involves applying transformations

such as flipping, rotation, scaling, and adding noise to images prior

to training. This increases the dataset size and sample diversity,

thereby improving the model’s robustness and reducing overfitting.

Figure 1 shows the schematic diagram of offline data enhancement.
2.2.2 Mosaic enhancement
Mosaic enhancement generates diverse training samples by

randomly cropping and stitching together four images, followed

by scaling and further cropping. This increases background

complexity and target variation without significantly enlarging the

dataset size. This method enhances the model’s ability to detect

small targets and recognize complex backgrounds, which is

particularly beneficial for tea leaf recognition tasks.
Frontiers in Plant Science 04
2.2.3 Online data enhancement
Online data enhancement generates augmented images in real-

time during each training cycle. Unlike offline enhancement, its

inherent randomness ensures that the model is exposed to a variety

of modified data, helping to prevent overfitting. In tea leaf detection

tasks, online data enhancement significantly improves the model’s

ability to detect small and overlapping targets. Furthermore, dynamic

adjustment of the enhancement strategy ensures better adaptability to

the diverse shapes of tea leaves and varying background

environments, making it particularly suitable for small target

detection in complex backgrounds. This paper utilizes the YOLOv8

framework combined with the Albumentations library to implement

the online enhancement strategy, which offers a rich set of efficient

image augmentation operations. These operations not only improve

the model’s generalization but also boost detection accuracy.

As shown in Figure 2, offline data enhancement’s static

characteristics do not fully meet the dynamic training needs.

Additionally, it may consume excessive storage and processing

resources as the dataset expands. The Mosaic enhancement

technique, while improving sample diversity, may introduce edge

deformations that affect bounding box prediction accuracy.

Furthermore, incorporating complex backgrounds may cause the

model to overly rely on these backgrounds, reducing detection

accuracy. To overcome these challenges, this paper combines online

data enhancement with Mosaic enhancement strategies. This

integrated approach processes the data to enhance the model’s

generalization ability and, in turn, improves training accuracy,

especially for small target recognition and overlapping bounding

boxes in tea leaf recognition.
FIGURE 1

Offline data enhancement schematic.
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2.3 This article online data
enhancement strategies

In this paper, the main categories of online data enhancement

strategies are as follows:

Base category: Includes operations such as Blur, MedianBlur,

and GaussianBlur. These operations adjust the blur strength

through parameters like the kernel size, primarily affecting image

clarity and enhancing the model’s noise immunity through

moderate blurring.

Spatial: These operations, such as RandomResizedCrop,

HorizontalFlip/VerticalFlip, Rotate, and Perspective, modify the

spatial structure of the image. For example, the RandomResizedCrop

operation allows the model to better adapt to targets at different scales

and angles by controlling the size and proportion of the cropped area.

Pixel Class: Includes operations like ImageCompression and

ToGray, which simulate varying image qualities or color modes to

improve the model’s robustness. Image compression, for instance,

enables the model to adapt to varying image qualities.

Weather effects: Operations such as RandomFog, RandomRain,

and RandomSnow simulate environmental changes, ensuring the

model performs reliably under various weather conditions.

Additional Enhancements: Techniques like Cutout and

CoarseDropout simulate missing or occluded data by masking

part of the image, enhancing the model’s ability to handle

incomplete or occluded features.

The combination of these online enhancement strategies, as

detailed in Table 1, ensures comprehensive multi-dimensional

enhancement for tea leaf detection, thereby improving model

generalization and small target recognition:
3 Design of improved YOLO algorithm

3.1 The yolov8 algorithm and ideas
for improvement

YOLOv8 (Yukang et al., 2024; Wang et al., 2024; Solimani et al.,

2024), a more advanced version of the YOLO series released in

January 2023, introduces several optimizations while preserving its
Frontiers in Plant Science 05
efficient detection capabilities. Firstly, YOLOv8 incorporates a

deeper network architecture, allowing the model to extract richer

features and thus improving detection accuracy. Additionally,

YOLOv8 integrates advanced techniques, including adaptive

anchor frame generation, hybrid data augmentation, and

enhanced loss functions, which further strengthen the model’s

robustness and generalization ability. Moreover, YOLOv8

optimizes inference speed, enabling more efficient target detection

with reduced computational resource consumption, making it more

suitable for practical applications.

Figure 3 shows the underlying framework structure of YOLOv8:

Compared to two-stage detection algorithms like Faster R-CNN,

YOLOv8 offers a significant advantage in detection speed, making it

more suitable for real-time applications such as autonomous driving,

video surveillance, and UAV image analysis. Additionally, YOLOv8

outperforms other single-stage detectors, like SSD, in small target

detection and complex background handling.

While YOLO models generally perform well in crop detection,

challenges still remain in tea target detection, such as fine-grained

feature extraction for tea buds, balancing detection accuracy and

speed, and dealing with limited computational resources. YOLOv8

addresses some of these issues with a more lightweight design,

making it better suited for edge device deployment, while improving

in both detection speed and accuracy.

This paper builds upon YOLOv8 to improve both tea grading

and bud detection accuracy and efficiency. The main improvements

are as follows: First, the BIFPN-concat2 and BIFPN-concat3 (Zhang

H. et al., 2023; Mo and Wei, 2024; Li et al., 2024b) modules replace

the standard Concat module in the YOLOv8 backbone, enhancing

the model’s performance in processing low-resolution images and

detecting small targets. Second, the CBAM (Wang et al., 2024; Liu

et al., 2024; Li et al., 2023) module is incorporated to enhance the

model’s ability to extract crucial information in complex scenes,

thereby improving accuracy in tea grading detection. Finally, the

loss function is optimized by replacing the base IoU with CIOU

+FOCAL (Gao et al., 2021; Xue et al., 2022; Chen and Qin, 2022; Gu

et al., 2024), which enhances bounding box regression and

accelerate model convergence.

As shown in Figure 4, the CBAM and BIFPN modules are

introduced into the neck part of YOLOv8 to enhance the model’s
FIGURE 2

Data enhancement schematic.
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capabilities. The CBAM is placed after the last two C2f layers of the

neck, and the initial Concat is replaced with BIFPN-Concat2 and

BIFPN-Concat3. The improved network structure is illustrated in the

figure, with the red box highlighting the added CBAM module, while

the Concat is replaced by BIFPN-Concat2 and BIFPN-Concat3.

CBAM enhances the model’s ability to recognize small targets

and objects in complex backgrounds by focusing on more relevant

feature regions and channels. This is achieved this through channel

and spatial attention mechanisms, which guide the network’s

attention towards the most informative parts of the input. In

contrast, BiFPN replaces the Concat operation to enable more

efficient multi-scale feature fusion. By adaptively adjusting the

contribution of feature maps at different resolutions through

learnable weights, BiFPN further improves the model’s ability to

detect small targets and handle complex environments.
3.2 Adding the BIFPN module

BiFPN (Bidirectional Feature Pyramid Network) significantly

improves the efficiency of multi-scale feature fusion by enhancing
Frontiers in Plant Science 06
the traditional FPN (Feature Pyramid Network). Its key innovations

are as follows:

1) Bidirectional feature fusion: Unlike traditional FPNs, which fuse

feature maps from high to low resolution in a top-down manner,

BiFPN introduces bottom-up paths for feature fusion. This bi-

directional mechanism facilitates more comprehensive multi-scale

feature sharing. The higher-level features carry richer information,

while the lower-level features retain stronger semantic understanding,

enhancing both feature maps. 2) Simplified topology: BiFPN reduces

unnecessary edge connections found in FPN, retaining only essential

fusion paths. This simplification optimizes, optimizing information

transfer and reduces computational costs. 3) Learnable fusion weights:

By incorporating learnable weights in the fusion process, BiFPN allows

the network to adaptively adjust the contribution of feature maps from

different scales based on the specific task. This dynamic adjustment

ensures the more effective utilization of multi-scale features during

fusion. 4) Efficient multi-scale feature fusion: BiFPN performs multiple

up-sampling and down-sampling operations, merging features from

various resolutions using weighted fusion. This ensures that the final

feature map captures essential information across all scales, improving

small target detection and accommodating variations in target sizes.
TABLE 1 Online enhancement strategy sheet.

Strategy Categories(probability) Names Parameters Probability

Base

Category 1(0.2)

Blur 3,7 0.1

MedianBlur 3,7 0.1

GaussianBlur 3,7 0.1

Category 2(0.4)

RandomBrightnessContrast 0.3,0.3 0.3

HueSaturationValue 20,30 0.3

ColorJitter \ 0.3

Category 3
CLAHE

RandomGama
\ 0.1

Spatial

Category 1(0.6)

RandomResizedCrop 640,640 0.4

RandomCrop 640,640 0.4

Resize 640,640 0.4

Category 2

HorizontalFlip \ 0.5

VerticalFlip \ 0.2

Rotate \ 0.4

ShiftScaleRotate 0.1,0.2,20 0.4

Perspective \ 0.3

Pixel Category 1
ImageCompression 50,100 0.3

ToGray \ 0.1

Weather Category 1(0.2)

RandomFog \ 0.1

RandomRain \ 0.1

RandomSnow \ 0.1

Additional
Enhancement

Category 1
Cutout 8,64,64 0.1

CoarseDropout 8,64,64 0.1
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Due to these improvements, BiFPN enhances the ability of

target detection networks’ to detect small and multi-scale targets

with minimal computational cost. This structure, which is a core

component of the EfficientDet model, has been widely adopted in

various detection tasks.

The comparative diagram of BIFPN structure is shown

in Figure 5.
3.3 Add lightweight CBAM module

CBAM (Convolutional Block Attention Module) is designed to

mitigate the limitations of traditional convolutional neural

networks when processing information across different scales,

shapes, and orientations. To achieve this, CBAM incorporates two
Frontiers in Plant Science 07
attention mechanisms: channel attention and spatial attention.

Channel attention enhances the feature representation of different

channels, while spatial attention focuses on extracting important

information from different spatial locations within the image.

CBAM comprises two main components: the Channel

Attention Module (C-channel) and the Spatial Attention Module

(S-channel). These two modules can be separately integrated into

various layers of the CNN to improve feature representation.

The structure of the Channel Attention Module is shown

in Figure 6.

This diagram, presented in the CBAM paper, illustrates the

Channel Attention Module, with feature map dimensions added for

clarity. The process begins with global maximum pooling and global

average pooling to downsample the input feature map F. The

original feature map F, with dimensions H×W×C, is transformed
FIGURE 3

Yolov8 structure diagram.
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into two 1×1×C feature maps. These two feature maps are then

passed through two fully connected layers (MLPs), each producing

a 1×1×C output. After obtaining these two 1×1×C feature maps,

they are summed and passed through a sigmoid activation

function to constrain their values between 0 and 1. The result is

the final Channel Attention map, with dimensions of 1×1×C as

shown in the figure above. This process can be represented by the

following Equation 1:

Mc(F) = s (MLP(AvgPool(F)) +MLP(MaxPool(F))) (1)

The structure of the Spatial Attention Module is shown

in Figure 7.

Similarly, the paper presents the structure of the spatial

attention module, as shown in the figure. After obtaining the

feature map of size H×W×C, the spatial attention module
Frontiers in Plant Science 08
performs two types of pooling operations: global maximum

pooling and global average pooling, both applied across the

channel dimension. Specifically, global maximum pooling

generates a feature map of size H×W×1 (orange), and global

average pooling produces a feature map of size H×W×1 (yellow).

These two feature maps are then concatenated along the channel

dimension, resulting in a combined feature map of size H×W×2.

Subsequently, a convolution operation is applied to reduce the

combined feature map from H×W×2 to H×W×1. Finally, a sigmoid

activation function is applied to scale the feature map values to the

range of 0 to 1, resulting in the final output with a size of H×W×1.

This process is represented by the following Equation 2:

Ms(F) = s(f7�7(½AvgPool(F);MaxPool(F)�)) (2)

The above equation indicates that the convolution operation

uses a 7×7 convolution kernel.
FIGURE 4

Improved structure diagram.
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The structure of the Convolutional Block Attention Module is

shown in Figure 8.

CBAM involves element-wise multiplication of the output

features from both the Channel and Spatial Attention Modules to

generate the final attention-enhanced feature. This enhanced

feature is then passed to subsequent layers of the network,

helping to suppress noise and irrelevant information while

preserving important features. The original experiments integrate

channel attention first, followed by spatial attention.
3.4 Improvement of the loss function

Default loss function for YOLOv8:

YOLOv8’s default loss function leverages an IOU-based

approach to optimize the target detection model by maximizing

the overlap between the predicted and true bounding boxes. This

loss function consists of three primary components: localization

loss, objectness loss, and classification loss. These terms collectively

guide the model to refine its predictions in terms of bounding box
Frontiers in Plant Science 09
accuracy, the presence or absence of targets, and correct

class identification.

The positional loss in YOLOv8 is based on the Intersection over

Union (IOU), a metric that measures the overlap between the

predicted and actual bounding boxes. Specifically, IOU is defined

as the ratio of the area of overlap between the predicted and true

boxes to the area of their union.

The IOU formula is as follows Equation 3:

IoU =
AreaofOverlap
AreaofUnion

=
jBp ∩ Bgt j
jBp ∪ Bgt j

(3)

Where Bp denotes the predicted frame and Bgt denotes the

ground truth frame. The IOU value ranges from 0 to 1, with larger

values indicating better overlap between the predicted and true

bounding boxes. YOLOv8 optimizes the bounding box prediction

by minimizing 1−IOU, driving the predicted box closer to the true

box. However, IOU only accounts for the overlapping area of the

bounding boxes, ignoring factors such as center distance and shape

differences. This limitation can lead to inaccurate bounding box
FIGURE 5

Feature network structure diagram-(a) FPN introduces top-down paths to fuse multi-scale features from level 3 to level 7 (P3 - P7); (b) PANet adds a
bottom-up path to the FPN structure; (c) NAS-FPN uses neural architecture search to optimize feature network topology, applying the same blocks
repeatedly; (d) BiFPN improves on the previous designs with bi-directional cross-scale connectivity and weighted feature fusion, offering better
accuracy and efficiency trade-offs.
FIGURE 6

Channel attention module.
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positioning in certain scenarios, where small changes in center or

shape may not be reflected in the IOU score.

CIOU (Complete Intersection over Union):

CIOU was introduced to address the limitations of IOU. It

improves bounding box prediction accuracy by incorporating

additional geometric constraints. The CIOU loss function

combines IOU with two important factors: the Euclidean distance

between the centroids of the predicted and true bounding boxes,

and the aspect ratio difference between them. This makes CIOU a

more comprehensive loss function for bounding box regression.

The CIOU loss formula is as follows Equation 4:

LCIOU = 1 − IoU +
p2(b, bgt)

c2
+ av (4)

Where IOU represents the intersection-over-union ratio, which

quantifies the overlap between the predicted and ground-truth

bounding boxes. p(b, bgt) refers to the Euclidean distance between

their centroids, while c is the diagonal length of the smallest

enclosing box that contains both the predicted and ground-truth

bounding boxes. v represents the difference in aspect ratios between

the two boxes, and a is a balancing factor that adjusts the trade-off

between IOU loss and aspect ratio loss.

CIOU enhances bounding box prediction through two

key components:
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Distance Loss: Represented by
p2(b,bgt )

c2 this term evaluates the

ratio of the Euclidean distance between the centroids of the

predicted and ground-truth boxes to the diagonal length of their

smallest enclosing box. By penalizing predictions far from the true

center, it reduces deviations even in cases with high IOU, making

CIOU more robust for detecting complex shapes or distant targets.

Aspect ratio loss: Represented by av, this term measures the

difference in aspect ratios between the predicted and ground-truth

boxes. By adjusting the weight a , the balance between IOU loss and

aspect ratio loss can be fine-tuned, ensuring a closer match between

the predicted and actual object dimensions.

The structure of CIOU is shown in Figure 9.

In tea leaf detection, the challenges of category imbalance and

small target detection are particularly pronounced. For instance,

some tea varieties dominate the dataset, while finer targets, such as

buds and leaves, constitute only a small fraction of the image. These

issues exacerbate detection difficulty, as traditional cross-entropy

loss struggles to address category imbalance and fails to emphasize

hard-to-classify samples.

To tackle these challenges, Focal Loss is introduced alongside

CIOU. Focal Loss down-weights easy samples, directing the model’s

focus towards difficult ones. This approach significantly improves

detection accuracy for small targets and minority classes. In the

context of tea leaf recognition, Focal Loss enhances the model’s
FIGURE 7

Spatial attention module.
FIGURE 8

Convolutional block attention module.
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robustness across various planting environments, picking methods,

and shooting conditions.

In the next section, the principles of Focal Loss will

be discussed.

Focal Loss enhances the standard cross-entropy loss by

introducing a moderating factor (1 − pt)
g to adjust the loss

contribution of easily categorized samples. Here, pt denotes the

added moderating factor formula, designed to reduce the influence

of well-classified samples on the loss. pt represents the prediction

probability for the correct category, serving as a key input to the

moderating factor. g is a focal parameter, controlling the extent to

which the loss contribution from easily categorized samples is

down-weighted. By appropriately setting, g Focal Loss enables the
model to focus more on hard-to-classify samples, which

significantly improves its sensitivity to challenging cases and

enhances the overall performance of the model. The formula for

Focal Loss is as follows Equation 5.
Frontiers in Plant Science 11
LFocal = −at(1 − pt)
g log (pt) (5)

where:

at is the weight coefficient for positive and negative samples; pt
is the model’s probability of predicting the correct category; and g is
the focal parameter that regulates the loss weights for easily

categorized samples;

By incorporating CIOU and Focal Loss, YOLOv8 achieves

simultaneous optimization in both regression and classification:

1). Regression optimization: CIOU enhances bounding box

localization by introducing centroid distance and aspect ratio loss.

This is particularly effective for detecting complex-shaped targets,

improving the precision of bounding box regression.

2). Classification optimization: Focal Loss adjusts the loss

weights of easy-to-classify samples, increasing the model’s focus

on small targets and minority categories. This significantly boosts

overall detection accuracy, particularly in imbalanced datasets.

This synergy between CIOU and Focal Loss demonstrates

superior performance in experiments, effectively addressing the

challenges of small target detection, overlapping frames, and

category imbalance. In the tea leaf recognition task, where small

buds and leaves are common and class distributions are imbalanced,

this combination enhances YOLOv8’s robustness under varying

planting environments, picking methods, and shooting conditions,

ultimately achieving higher detection accuracy.
4 Experimentation and analysis

4.1 Comparison of model computation
and robustness

The platform configuration for this model training experiment

is: Windows 11, CPU: R9-7845HX running at silent frequency,

GPU: RTX4060Laptop, RAM: 16G, hard disk: Samsung 1TB,

Python-3.12.4 Pytorch-2.3.1+Cuda version 12.1.
FIGURE 10

Confusion matrix.
FIGURE 9

CIOU structure diagram.
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From the comparison of the confusion matrices in Figure 10,

the improved model significantly reduces the misidentification rate

for the “background” category. Specifically, the number of

background instances misclassified as “bud leaf” decreased from

391 to 261, while misclassifications into the “bud leaf2” and

“sprout” categories dropped from 328 and 369 to 294 and 249,

respectively. Additionally, correct classifications in the “bud leaf2”

category increased from 454 to 458.

Overall, the improved model achieved a 26% reduction in the total

false recognition rate, with notable improvements in distinguishing

background noise from key categories. This reduction in background

noise interference enhanced the model’s ability to recognize detailed

features, leading to better overall performance and more accurate

classifications in complex scenarios.
4.2 Ablation experiment

Table 2 summarizes the comparison between the base model

and the improved model in terms of the number of parameters and

recognition accuracy. Despite the introduction of new loss

functions, CBAM, and BiFPN modules, the model size only

increases by 5%. However, the inference speed shows significant

improvement, particularly in multi-target dense scenarios. The

accuracy of the improved model reaches 80.5%, while the

computational load is reduced by up to 19.3%. This enhancement

in speed is attributed to the efficient fusion of multi-scale features

and the attention mechanism, which filters redundant information

and reduces computational costs.

The results also highlight the critical role of CBAM and BiFPN

in improving the model’s feature representation and fine-grained

target detection accuracy. Removing any of these modules leads to a

noticeable performance degradation, particularly when handling

overlapping targets and complex backgrounds, where the accuracy

drops more significantly. Specifically, CBAM enhances the attention

mechanism, allowing the model to focus on important features,

while BiFPN improves the detection of multi-scale targets through

efficient feature fusion. These improvements contribute to a more

robust and efficient detection system.
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Overall, the results from the ablation experiments further

validate the positive impact of the proposed improvements on

model performance. The detailed experimental data provided in

the paper demonstrate the effectiveness of CBAM and BiFPN in

optimizing both accuracy and computational efficiency, reinforcing

the credibility and practicality of our approach.
4.3 Comparison of tea
recognition accuracy

To evaluate the performance improvement of the modified

YOLOv8 model, the target detection accuracy before and after

modification are compared. Figure 10 illustrates the difference in

detection effectiveness between the two models, emphasizing the

enhanced performance of the modified model, especially in

challenging scenarios such as dense target areas and small objects.

Figure 11 compares the performance of the pre- and post-

improvement models, revealing significant accuracy gains with the

modified model. For instance, in the first group of images, the accuracy

of the “sprout” class increases from 0.3 to 0.6, and “bud leaf” accuracy

rises from 0.8 to 0.9. Similar improvements are observed in the other

two groups, further demonstrating the model’s enhanced precision.

Table 3 presents a comparison of several target detection

models based on performance metrics including precision (P),

recall (R), and computational complexity (GFLOPs). The

modified T-YOLOv8n model is compared with YOLOv8n (Qiu

et al., 2022; Liu et al., 2022; Jiang et al., 2024), YOLOv9-t (Li J. et al.,

2024; Huang et al., 2024; Ye et al., 2024), and YOLOv5s (Ju et al.,

2024; Zeng et al., 2023; Yar et al., 2023), which are representative

models commonly used in target detection tasks. The results

provide a clear visualization of the performance differences

between T-YOLOv8n and other leading models.

Table 3 compares several target detection models, including the

improved T-YOLOv8n, YOLOv9-t, and YOLOv5s, in terms of

performance and resource efficiency. The T-YOLOv8n model

significantly outperforms the base YOLOv8n, with an mAP@50

of 80.4%, a 4.7% increase compared to the original 75.7%. Precision

improves from 70.5% to 74.4%, and recall increases from 73.3% to
TABLE 2 Table of ablation experiments.

Algorithm CIOU FOCAL CBAM BIFPN P(%) R(%) mAp50(%) GFLOPs Model Size

1 × × × × 70.5% 73.3% 75.7% 8.1 6.1

2 × × ✓ × 72.7% 74.5% 76.9% 8.2 6.1

3 × × × ✓ 73.5% 75.1% 77.2% 8.3 6.14

4 × ✓ × × 75.6% 70.0% 75.9% 8.1 6.10

4 ✓ × × × 76.2% 71.9% 76.6% 8.1 6.11

5 ✓ ✓ × × 75.3% 74.4% 78.9% 8.1 6.12

6 ✓ ✓ ✓ × 72.6% 75% 79.3% 8.3 6.11

7 ✓ ✓ ✓ ✓ 74.4% 75.4% 80.5% 6.7 6.39
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75.4%, demonstrating a substantial boost in detection performance.

In contrast, YOLOv9-t achieves a slightly higher precision of 75.5%,

but its mAP@50 of 77.5% remains lower than that of T-YOLOv8n,

and its computational cost (GFLOPs) is higher at 10.7, compared to

T-YOLOv8n’s 6.7, making the latter more efficient in terms of

computational resources.

Meanwhile, we consider the performance comparison with two

traditional target detection models to further validate the

effectiveness of the proposed method. the experiments revealed

that both Faster R-CNN and SSD performed worse than the

YOLOv8 series models on the dataset used in this study. This is

mainly because our dataset contains overlapping annotations of

multiple categories on the same tea leaves, and both Faster R-CNN

and SSD exhibit significant limitations in handling such scenarios.

Specifically, Faster R-CNN, as a two-stage detection model, relies on

a proposal generation process for object localization, which, when

faced with significant overlap between objects, often leads to

category confusion or missed detections. SSD, on the other hand,

has a relatively simple feature fusion mechanism, making it difficult

to accurately localize and classify fine-grained objects in complex

backgrounds. As a result, the performance of these two traditional

models on this dataset did not reach the desired level.

The experimental results show that Faster R-CNN achieved an

mAP of 72.3% and SSD an mAP of 70.8%, both of which are lower
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than the 75.7% mAP of YOLOv8n. In contrast, the improved T-

YOLOv8n, with the introduction of CBAM BiFP and optimization

of the loss function, further increased the mAP to 80.4%, effectively

demonstrating the validity of the proposed method.

As shown in Table 4, compared to traditional object detection

models, T-YOLOv8n achieves a significant improvement in

accuracy. This result indicates that T-YOLOv8n is better suited to

handle the multi-object overlapping annotation scenarios in the

dataset used in this study and demonstrates higher practicality in

complex detection tasks.

The data in the above table shows that, YOLOv5s, with a model

size of 14.1 MB and GFLOPs of 15.8, demonstrates the weakest

performance with an mAP@50 of only 71.6%. Its larger model size

and higher computational complexity result in significantly worse

performance compared to YOLOv8. This shows that YOLOv5s is

less efficient and unsuitable for deployment in resource-constrained

environments. In contrast, the T-YOLOv8n model strikes an

optimal balance between performance and efficiency, achieving

significant improvements in mAP@50 and accuracy, while

reducing both model size and computational complexity. For

traditional target detection models, the Faster-RCNN model, a

two-stage detection model, achieves an mAP of 72.3%, while the

SSD model, another one-stage model, delivers a slightly lower mAP

of 70.8%. YOLOv8n, a more advanced one-stage model, performs
TABLE 3 Comparison table of the performance of different models.

Model P(%) R(%) mAP50(%) GFLOPs
Model
Size

T-Yolov8n 74.4% 75.4% 80.4% 6.7 6.39

Yolov8n 70.5% 73.3% 75.7% 8.1 6.1

Yolov9-t 75.5% 73% 77.5% 10.7 5.98

Yolov5s 72.5% 73.3% 71.6% 15.8 14.1
FIGURE 11

Accuracy comparison chart.
TABLE 4 Comparison table of the performance of different
stage models.

Model Type mAP(%)

Faster-rcnn-pytorch Two-stage Model 72.3

SSD.Pytoch-master One-stage Model 70.8

YOLOv8n One-stage Model 75.7

T-YOLOv8n One-stage Model 80.5
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better with an mAP of 75.7%. In contrast, the T-YOLOv8n model

achieves the highest performance, with an mAP of 80.5%,

demonstrating its superior accuracy and efficiency compared to

traditional models. The performance differences between these

models are clearly shown in Figure 12, which visually compares

mAP@50.

As shown in Figure 12, the mAP@50 of the different models

changes as the training epochs increase. The improved T-YOLOv8n

model (light blue curve) demonstrates the best performance growth

throughout the training process. It converges faster in the early

stages, stabilizing around 150 epochs and eventually achieving an

mAP@50 close to 0.8. In contrast, YOLOv8n (yellow curve) and

YOLOv9-t (purple curve), although starting with similar

performances, both exhibit lower mAP@50 values than T-

YOLOv8n in the later stages, remaining around 0.75 and 0.77,

respectively. YOLOv5s (green curve) performs the worst in the

YOLO’s family, with its mAP@50 stabilizing around 0.7 and

showing slower convergence. The SSD model (orange curve)

follows closely beneath YOLOv5s, with slightly lower mAP@50

values throughout the training process. Meanwhile, the RCNN

model (blue curve), although initially performing better than SSD

and YOLOv5s, shows a relatively slower improvement, eventually

stabilizing just above YOLOv5s at around 0.73.The figure clearly

highlights T-YOLOv8n’s superior performance in training, not only

reaching a higher mAP@50 earlier but also maintaining better

accuracy at the end of training. This demonstrates the improved

model’s robustness, faster convergence, and greater efficiency.
5 Conclusions

In this paper, a tea category detection method based on the

improved YOLOv8 model is proposed, which significantly improves

the model’s detection precision and robustness by integrating
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modules such as CBAM, BiFPN, CIOU, and Focal Loss.

Experimental results show that the improved YOLOv8 model

excels in tea small target detection and handling overlapping

targets, achieving precision (P), recall (R), and mAP@50 scores of

74.4%, 75.4%, and 80.4%, respectively. These results represent a

notable performance improvement compared to the original

model. Moreover, the combination of online data enhancement

and Mosaic enhancement strategies further boosts the model’s

generalization ability, especially under complex background and

lighting conditions.

When compared to other mainstream detection algorithms

(e.g., YOLOv5 and YOLOv9), the improved algorithm

demonstrates clear advantages in detection accuracy, particularly

in handling fine and overlapping tea leaves. At the same time, it

maintains low computational complexity, making it well-suited for

practical applications such as tea garden detection. Despite the

slight increase in parameters and computation, the model remains

lightweight, ensuring smooth deployment on small devices. In

practical field applications, although the model’s performance is

satisfactory, there are still some challenges. For example, complex

natural environments (such as strong sunlight, shadows, wind-

blown leaves, etc.) may affect detection accuracy. Additionally, the

deployment efficiency of the model on resource-constrained devices

still requires further optimization to ensure real-time detection on

embedded devices or mobile platforms.

In the future, we believe that improvements can be made in the

following three areas. First, expanding the dataset’s diversity to

cover tea garden images from different seasons and climate

conditions, which will enhance the model’s robustness in complex

environments. Second, while the current model primarily uses static

images, we plan to explore real-time data processing on larger tea

plantations in future work. This will include testing the model on

more powerful hardware configurations to improve scalability and

performance under dynamic conditions such as wind and changing
FIGURE 12

Comparison of different models on mAP@50 performance.
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light. Third, although we have simulated dynamic changes through

data augmentation (e.g., brightness, contrast, saturation

adjustments, and random geometric transformations), we plan to

conduct further research on real-time video stream analysis to

optimize the model’s performance in dynamic environments.

Additionally, the deployment of the model on resource-

constrained devices will require further research into optimizing

hardware configurations. Though the current study does not focus

on this aspect, future research will explore efficient hardware

deployment to enhance the real-time application of the model.

Last, integrating multi-task collaboration, such as disease detection

and drone inspections, to further improve the efficiency and

accuracy of intelligent tea garden management. In the meantime,

we plan to expand the dataset in future work to include images of

tea gardens from different regions and under different climatic

conditions, thereby improving the adaptability and stability of the

model in a wider range of environments.

Through these efforts, the findings of this study are expected to

be widely applied in real-world production, providing important

technical support for the intelligent and precise management of

tea gardens.
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