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Deep learning-based target
spraying control of weeds in
wheat fields at tillering stage
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Yuxiang Chen1, Guangrui Hu2 and Yuxuan Ma1

1College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, China,
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In this study, a target spraying decision and hysteresis algorithm is designed in

conjunction with deep learning, which is deployed on a testbed for validation. The

overall scheme of the target spraying control system is first proposed. Then

YOLOv5s is lightweighted and improved. Based on this, a target spraying decision

and hysteresis algorithm is designed, so that the target spraying system can precisely

control the solenoid valve and differentiate spraying according to the distribution of

weeds in different areas, and at the same time, successfully solve the operation

hysteresis problem between the hardware. Finally, the algorithm was deployed on a

testbed and simulated weeds and simulated tillering wheat were selected for bench

experiments. Experiments on a dataset of realistic scenarios show that the improved

model reduces the GFLOPs (computational complexity) and size by 52.2% and

42.4%, respectively, with mAP and F1 of 91.4% and 85.3%, which is an improvement

of 0.2% and 0.8%, respectively, compared to the original model. The results of bench

experiments showed that the spraying rate under the speed intervals of 0.3-0.4m/s,

0.4-0.5m/s and 0.5-0.6m/s reached 99.8%, 98.2% and 95.7%, respectively.

Therefore, the algorithm can provide excellent spraying accuracy performance for

the target spraying system, thus laying a theoretical foundation for the practical

application of target spraying.
KEYWORDS

weed identification, weed distribution determination, hysteresis property, target
spraying, deep learning
1 Introduction

Wheat stands as a globally cultivated cereal crop, encompassing over 22.067 billion hectares

planted annually across a spectrum of climatic conditions and diverse geographic locales

(Shiferaw et al., 2013), surpassing all other cultivated food crops in scale (Khan et al., 2024).

Despite its vast reach, the menace of weeds looms large, imperiling optimal crop yields by vying

with crops for vital resources like water, nutrients, and sunlight (Horvath et al., 2023), leading to

yield reductions in wheat grains of up to 24% (Jabran et al., 2017). Herbicides have emerged as

pivotal agents fostering crop yield proliferation since the latter half of the 20th century (Cassman,

1999).Amidst the efficiency of herbicides in directly combating weeds, farmers frequently resort
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to substantial herbicide applications to safeguard against yield decline

and compromised agricultural product quality. Nonetheless, the

extensive use of agrochemicals exacts a toll on environmental

integrity, biodiversity, and human well-being (Sharma et al., 2019). In

a departure from indiscriminate broadcast spraying, targeted spraying

techniques leverage the discernment of target size and location within

fields to regulate the activation of corresponding nozzles, offering a

potent solution to challenges like herbicide excess and fluid wastage (Yu

et al., 2019).

In recent years, the application of machine vision technology in

agricultural production has been widely studied in all aspects of

agricultural production (Lv et al., 2024). Traditional machine vision

methods usually use manually designed feature extraction methods,

which are difficult to capture the complex features of weeds and lack

flexibility and generalization. Deep learning (DL) techniques are an

emerging artificial intelligence approach that allows for accurate and

fast object detection by automatically learning and understanding low-

level to high-level image features based on a conceptual hierarchy

(LeCun et al., 2015). Recent developments in deep learning have been

shown to be effective in a variety of crop management operations

(Brown et al., 2008). Modi et al. (2023) used a deep learning model to

identify weeds in sugarcane fields and found that the DarkNet53 model

outperformed the other models by showing high accuracy and F1

scores in identifying weeds in sugarcane crops. Yuan et al. (2023)

constructed a WeedyRice5 target detection model based on the

YOLOv5s method for detecting weeds in rice. Shao et al. (2023)

proposed an improved deep learning model, GTCBS-YOLOv5s,

utilizing Ghost, C3Trans, and CBAM modules that improved weed

feature extraction level. Zhu H. et al. (2024) connected a lightweight

attention module to the deep network of YOLOX-Darknet, which

weakened the channel noise effect of residual computation and made

the detectionmodel more efficient. Deng et al. (2024) INet-basedmodel

improved the accuracy of YOLOX and YOLOv8 compared to the

original model by respectively 1.4% and 3.3%, respectively. Rai et al.

(2024) optimized and reconstructed the YOLO-Spot model constructed

based on YOLOv7-tiny to identify weeds in crop plants, and the

optimized model could use a smaller number of training parameters

to identify weeds. Alrowais et al. (2022) combined the HLBODL-

WDSA model combined with YOLOv5 for weed detection, where the

HLBO algorithm was used as a hyper-parameter optimizer to efficiently

classify weeds using a Kernel Extreme Learning Machine (KELM)

model. Rahman et al. (2023) used YOLOv5, RetinaNet, EfficientDet,

Fast RCNN, and Faster RCNN, to 13 weed detection models were

constructed by transferring pre-trained target detection models to the

weed dataset, and the data were enhanced by geometric and color

transformations. Although the YOLO algorithm has excellent

recognition results, it is difficult to be directly deployed on in-vehicle

devices with limited computational power due to its high requirements

on device arithmetic. Improvements that reduce the computational

complexity of the model and increase its accuracy are particularly

important given the need for high accuracy in weed detection.

In the area of targeted spraying, Upadhyay et al. (2024) designed

and developed a machine vision-based spraying system specifically

designed to identify weeds and enable precision spraying. The spraying

platform employs a deep-learning YOLOv4 model to accurately
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recognize a wide range of weeds, thereby facilitating targeted spraying

applications. The system is equipped with a FLIR RGB camera for real-

time image acquisition, while an Nvidia Jetson AGX Orin is used as an

edge device to deploy the deep learning model for weed detection. The

Nvidia Jetson pin is used to activate a relay for precise on/off control of a

solenoid valve for spot spraying. In the indoor experiment, the spray

system achieved an average effective spray rate of 93.33% with 100%

accuracy, while the recall rate was 92.8%. In contrast, the field

experiment had a slightly lower average effective spray rate of 90.6%,

but still maintained an accuracy rate of 95.5% and a recall rate of

89.47%. Sunil et al. (2024) developed a weed spraying robotic platform

using the NVIDIA Jetson embedded device as the control and

processing unit and tested it under laboratory and field conditions.

Fan et al. (2023) developed a deep-learning-based seedling weed

detection and on-target spraying robotic system for cotton fields,

which is capable of field weed detection and herbicide spraying,

laying the foundation for targeted spraying in weed control. However,

target spraying robots are expensive and cannot be popularized in large-

scale field crops due to their high R&D costs and low operational

efficiency. Compared to target spraying robots, target spraying systems

mounted on sprayers are less expensive, and target spraying systems can

be deployed on existing sprayers relatively easily without major

modification or redesign of existing sprayers., the spraying volume of

the sprayer equipped with the on-target spraying system was reduced

by 40% and the ground deposition was reduced by 41%, and the sprayer

of this experiment was operated at a constant speed. Li et al. (2022a)

designed a grid decision algorithm for the switching of solenoid valves

group to convert the single weed position information in the image into

the opening and closing control information of solenoid valves. The

current target spraying system mainly focuses on the identification and

localization of single plants, while effective treatment solutions in the

case of complex plant distribution still need further research.

Meanwhile, the hysteresis between target spraying hardware remains

a major challenge in target spraying.

The research content and contributions of this paper include: first,

the overall scheme of the target spraying control system is proposed.

Then, Yolov5s is lightened and improved to make the model balanced

in terms of weed recognition accuracy and computational complexity.

Based on this, a target spraying decision-making and hysteresis

algorithm was designed to control the solenoid valve to differentiate

spraying for weeds with different distributions after completing the

weed identification, and effectively solved the hysteresis problem

existing between spraying hardware. A target spraying control system

test bed was developed, and the integrated algorithm was deployed on

the test bed for target spraying experiments. The experiment shows that

the algorithm has high accuracy in spraying weeds with different

distribution and can effectively reduce the waste of herbicides.
2 Materials and methods

2.1 Overall program design

In order to achieve precise weed control in wheat fields at tillering

stage, this study developed a pair-target control system that can detect
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and spray multiple weeds randomly distributed in wheat fields in real

time and on-target, so that the utilization rate of herbicides is

improved. A single target spraying control system includes an image

acquisition and real-time speed measurement module, a signal

conversion module, a spray execution module, and a herbicide

supply module. The system control principle is shown in Figure 1.

The image acquisition and real-time speed measurement module

consists of an RGB camera, a GNSS antenna and a computer. The RGB

camera is responsible for capturing images of weeds in the wheat field.

The sprayer operation can use dual GNSS antennas for differential

speed measurement, and the frequency of the feedback speed is

10Hz.The computer is responsible for processing the image

information from the RGB camera and the speed data from the

GNSS antenna, and sends target spraying commands to the

Arduino. The RGB camera is a W200 model from Jierui

Microcomputer Technology Co., Ltd (Shenzhen, China), with a

2.9MM distortion-free 130-degree wide-angle and 200W pixels. The

frame rate is 60 frames per second, the power is 2W, the working

voltage is 5V, and the working current is 120mA~220mA.

The signal conversion module consists of an Arduino, a 12V

battery and ten MOS electronic switch control boards. The ten pins of

the Arduino are connected to the signal terminals of the ten MOS

electronic switch control boards. The Arduino is responsible for

converting the target spraying commands sent by the computer into

the high and low levels of the pins. Since the high level of the Arduino
Frontiers in Plant Science 03
pins is 5V, it cannot directly drive the 12V solenoid valve to work.

Therefore, by connecting a 12V battery to the input of the MOS

electronic switch control board, when the level of the signal terminal is

high, the output of theMOS electronic switch control board will output

12V current to drive the solenoid valve to open; when the signal

terminal is low, the solenoid valve is closed.

The spray actuator module consists of 10 solenoid valves and 10

spray nozzles. The positive and negative poles of each solenoid valve

are connected to the output of the respective MOS tube electronic

switch control board. The solenoid valve model is HL22-02 of

Honglian Control Flow Technology Development Co., Ltd (Ningbo,

China), with a pressure of 8MPa, G1/4 (2 points) interface, and a

voltage of DC12V. A stainless steel fan nozzle, model 3004, with a spray

angle of 30 degrees and an aperture of 1.3mm, from Geo Industrial

Spray Equipment Co. The flow rate of the nozzle was 1.2 L/min at an

operating pressure of 0.8 MPa. The maximum diameter of weeds in a

wheat field at the tillering stage is usually no more than 10 cm, and

because multiple weeds are often clustered in a wheat field, the

diameter of the patches formed can be 20 cm or even larger.

Therefore, at a height of 42cm, the spray coverage length using a 30°

nozzle is 23cm, with a 1.5cm spray overlap area on each side of the

nozzle to ensure that leakage is prevented. The nozzles are fan-shaped

and are connected to a solenoid valve.

The herbicide supply module consists of a water tank, a pump, a

check valve and a safety valve. The pressure of the safety valve is set to
FIGURE 1

Control principle diagram of single pair target spraying system.
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0.8Mpa. When the pressure of the pipeline exceeds 0.8Mpa, the safety

valve will automatically release the pressure and discharge the excess

liquid into the water tank to protect the pipeline. The one-way valve is

used to prevent the liquid from flowing back. When expanding

multiple pairs of target spraying control systems, it is possible to

realize that multiple spraying execution modules share one herbicide

supply module according to the working parameters of the pump.

Multiple pairs of target spray control systems can be assembled on

the spraying machine, as shown in Figure 2a. The structure of a single

counter-target spray system test bed is shown in Figure 2b, including an

RGB camera mounted at a height of 1.5 m from the upper surface of

the conveyor belt, with a shooting area width of 2 m. The camera is

mounted at a height of 1.5 m from the upper surface of the conveyor

belt. Ten solenoid valves were mounted on the spray bar below the

camera, and the height of the spray nozzles from the upper surface of

the conveyor belt was 42 cm, and the spray coverage of each nozzle was

about 24 cm. Simulated weeds and simulated wheat were placed on the

conveyor belt, and the motor drove the simulated weeds and simulated

wheat on the conveyor belt to move in the direction v in Figure 2 to

simulate the operation of the sprayer in the field.
2.2 Weed data set collection
and processing

Within Shaanxi Province, weeds in wheat fields are mainly

dominated by Cruciferae and Gramineae, and some of the more
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damaging weeds include Silene conoidea, Malcolmia africana,

Descurainia sophia, and Capsella bursa-pastoris. In this study,

crop and weed growth in wheat field fields at the tillering stage

was collected in Yangling District and Heyang County, Shaanxi

Province, and the data were collected at the tillering stage of wheat

(when the leaves grew to four to six). Part of the dataset is shown

in Figure 3.

In order to ensure the diversity of the produced dataset, 1012

images in the environments of complex, dense, uneven light and

shade backgrounds were selected as the raw data, respectively. And

Matlab software was used to add pretzel noise and Gaussian noise to

some of the datasets for image processing, which helps to improve

the robustness of the algorithm by introducing noise to reduce the

clarity of the image. The dataset images are expanded to 1600

images by image enhancement. The dataset types are shown

in Table 1.
2.3 Improved weed detection model based
on Yolov5s

In terms of lightweight deep learning models for identifying

weeds, there are mainly single-stage networks and two-stage

networks, and the average accuracy mAP of single-stage networks

such as SSD, RetinaNet, EfficientDet, CenterNe, etc., in identifying

weeds needs to be further improved (Saleem et al., 2022), and the

RFCN and Faster RCNN as represented by RFCN, Faster RCNN
FIGURE 2

Structural schematic diagram: (a) a schematic diagram of the structure of a sprayer equipped with a plurality of pairs of target spray control systems,
and (b) a schematic diagram of the structure of a single target spray control system test bed.
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need to be further optimized in terms of computational complexity

and inference time (Fan et al., 2023). And Yolo series is an

algorithm for fast object recognition using neural networks. The

Yolo series algorithms are a fast object recognition method based on

neural networks, and their versions are Yolov9, Yolov8, Yolov7,

Yolov5, Yolov4, and Yolov3 according to the time of their release.

However, the newer is not always the better when choosing the

version of a model. Among the models in the same class, Yolov9s
Frontiers in Plant Science 05
(26.7 GFLOPs) and Yolov8s (28.6 GFLOPs) excel in recognition

accuracy, but their GFLOPs (computational complexity) are much

higher than those of Yolov5s (15.8 GFLOPs). Therefore, when

choosing a version of the Yolo algorithm, it is necessary to make

a judgment based on a specific recognition scenario.Yolov5 contains

five different versions: Yolov5n, Yolov5s, Yolov5m, Yolov5l, and

Yolov5x.The main differences between these versions are the depth

and width of the model, which is also known as its complexity and

performance. The smaller the model, the lower the computational

complexity and the faster it runs, but the detection accuracy

decreases. For weed target recognition in the field, the model

should have the characteristics of high accuracy, low

computational complexity and fast recognition.Yolov5s has the

advantages of fast speed and high accuracy and shows good

processing ability in the case of overlapping targets (Zhu A. et al.,

2024), but Yolov5s is not sufficiently accurate in recognizing some

of the small weeds. To further reduce the computational complexity

of Yolov5s, which can be deployed on vehicle-mounted devices with

limited computational power, this study improves Yolov5s by

lightweighting and enhancing its accuracy.
FIGURE 3

Example of weeds in wheat field at tillering stage (A) Silene conoidea (B) Malcomia africana (C) Descurainia sophia (D) Capsella bursa-pastoris.
TABLE 1 Types of data sets.

Data types Number of data

Complex environmental context 236

Dense distribution 212

Uneven lighting 296

Occlusion 268

Pepper noise image enhancement 283

Gaussian noise image enhancement 305
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2.3.1 Lightweight backbone network construction
Yolov5s uses C3 and Conv as the backbone feature extraction

network, while an image after neural network feature extraction

generates many feature maps, some of these feature maps are very

similar, increasing the number of parameters and making it slower.

While Ghost Module (Han et al., 2020) can perform a simple

operation on one of the feature maps to generate more similar

feature maps. In order to be able to ensure efficient operation and

reduce repeated calculations, therefore, this study uses the lightweight

model Ghost Module to construct the backbone network.

2.3.2 Neck network construction
In Yolov5s, the neck is the part that connects the backbone to

the detection and is responsible for feature fusion and processing. In

the scenario of real-time weed detection, traditional large-scale

models are difficult to meet the requirements of real-time

detection, while lightweight models constructed from a large

number of depth-separable convolutional layers are also unable to

achieve sufficient accuracy while ensuring real-time performance.

Therefore, this study uses a special lightweight convolution

technique GSConv (Li et al., 2022b). GSConv first downsamples

the input, then uses DWConv deep convolution on the

downsampled result, and splices the downsampled result with the

deep convolution, and finally performs a shuffle operation and

outputs it, which reduces the parameters while as much as possible

The connection between the neck and the backbone is preserved, so

that the feature map no longer needs to be transformed when it is

transmitted to the neck, and there are fewer redundant repetitions.

The cross-level network module VoVGSCSP is designed based on

GSConv using the one-time aggregation method, and combined

with GSConv to form the Slim-Neck architecture.

2.3.3 Self-attention mechanism
Most of the existing attention mechanisms use additional sub-

networks to generate the attention weights, which increases the

number of parameters of the neural network, so this study uses a

self-attention mechanism SimAM (Yang et al., 2021), which does

not need to add parameters to the original network. Its input data

size is c×h×w, the 3D weights of the feature maps are inferred by the

energy function, and the weights normalized by the Sigmoid

function are multiplied with the original feature maps to get the

output feature maps of the boosted features, so that the model

focuses more on the important parts and improves the performance

of detecting the target.

2.3.4 Improved model
In this study, we propose a lightweight Yolov5-SGS model.

First, we replace C3 and Conv in Yolov5s feature extraction

backbone network with the lightweight C3Ghost and GhostConv.

Then, C3 and Conv in the original neck network are replaced with

the more lightweight and efficient GSConv and VoVGSCSP,

respectively, to speed up the feature fusion and processing.

Finally, the SimAM self-attention module is added to each of the

three outputs connected to the feature extraction backbone network
Frontiers in Plant Science 06
and the neck network to process the outputs of the forward transfer

layer, increase the distinction between weeds and complex

backgrounds, and improve the weed feature salience. The

improved model network structure is shown in Figure 4.
2.4 Target spraying decision and
hysteresis algorithms

In the target spraying system, the key to controlling the spray

nozzle for target spraying lies in controlling the opening and closing

moments of the solenoid valves and their durations. Li He et al.

(2022) designed a grid decision algorithm for the switching of

solenoid valves, which converts the position information of a single

weed in the image into the opening and closing control information

of the solenoid valves. For a single weed, the solenoid valve can be

opened and closed normally in the response frequency to complete

the target spraying. However, the distribution of weeds in the wheat

field is random, for the distance is very close to the multi-plant

weeds, the solenoid valve can not respond very quickly, which will

lead to the liquid can not spray the neighboring weeds. Therefore,

the opening and closing frequency of the solenoid valve determines

the minimum distance between multiple weeds that can be sprayed,

and the length of the weeds determines the duration of the solenoid

valve opening. In the butt-target spraying control system, there is a

hardware system delay problem from the completion of the butt-

target spraying decision to the control of the solenoid valve

spraying, as well as an unavoidable hysteresis distance between

the area where the camera recognizes the weeds and the spray

nozzle. We have investigated the above problems and designed a

target spraying decision and hysteresis algorithm.

2.4.1 Algorithm for decision making on
target spraying

After the Yolov5-SGS completed the weed identification, the

target spraying decision-making algorithm was used to differentiate

the weeds with different distributions. The target spraying decision

algorithm is shown in Figure 5.

Here the numbers 1 to 10 represent the serial numbers of the

corresponding nozzles and the arrays [X] are the parameters in the

hysteresis model.

½X� =
Aa Bb

Mm Oo

Cc Dd

Pp Qq

Ee Ff

Rr Ss

Gg Hh

Uu Ww

Ii Jj

Yy Zz

" #

First, the image captured by the camera was divided into ten

regions, as shown by the grid divided by the black double dashed

lines in the figure, with the length of each grid corresponding to the

spraying range of its nozzle. When the sprayer works, the image

moves from top to bottom and Yolov5-SGS generates a real-time

red solid line prediction box for weeds.

Secondly, for the case of a single weed, when the red solid line

prediction box touches the grid, the corresponding area of the grid

will change from 0 to 1. At the same time, as long as there is a red

solid line prediction box in the grid, the judgment value will remain
frontiersin.org
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at 1 until all the red solid line prediction boxes have left the grid, and

then the judgment value will change from 1 to 0.

In addition, for the distribution of multiple weeds, there are four

scenarios: weeds too close together vertically, weeds too close

together horizontally, multiple weeds too close together, and

weeds overlapping. The blue dashed box is the minimum range of

multi-weed spacing that the solenoid valve can respond to spraying.

When the blue dotted line box of multiple weeds intersects, the

intersection will become the yellow area shown in the figure, and

will automatically generate a red dotted line box on the yellow area

according to the minimum distance between multiple weeds that

the solenoid valve can respond to spraying. At this time, the system

will be generated according to the red solid line box and the red

dashed line box for determination, when the red solid line box

touches the grid, the corresponding grid will change from 0 to 1, the

middle of the red dashed line box will make the grid to keep the

determination of the results of 1, until all the red solid line box away

from the grid determination will change from 1 to 0. That is to say,

there are neighboring multi-weed grid, the algorithm will be for the

phenomenon so that the solenoid valve to remain on continuously.
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2.4.2 Algorithm for target spraying hysteresis
There is a distance L1 between the position of the judgment grid

for the target decision and the spray nozzle, which requires the

sprayer to travel this distance before controlling the solenoid valve

for spraying. And in the process of sending the spraying command,

there is a delay in the hardware system, and there is a delay time for

the liquid to float down to the weeds. The schematic diagram is

shown in Figure 6.

Referring to Figures 5 and 6, taking nozzle No. 1 as an example, v

is the traveling speed of the sprayer. The delay time tc includes the

equipment processing time t1, the solenoid valve response time t2,

and the liquid droplet settling time t3. When the grid determination

value changes, the positionAa of the spray nozzle opening and closing

includes: the distance between the determination grid position and

the spray nozzle L1. The spray machine traveling distance L2 at the

delay time tc. In order to ensure the target hit rate and spraying rate,

as well as to reduce the error caused by the speed measurement

hardware, the distance L3 is compensated at the above distance.

tc = t1 + t2 + t3
FIGURE 4

(A–D) Yolov5-SGS model network structure.
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L2 = vtc

Aa = L1 + L2 + L3

The GNSS antenna and the motor speed measuring device

feedback the speed at a frequency of 10 Hz, these speed data are

discrete, so it is not accurate to calculate them by multiplying the

speed by the time and then adding them up, here they are calculated

by numerical integration. Numerical integration methods include

the Simpson method and the trapezoidal method. In general, the
Frontiers in Plant Science 08
Simpson method is more accurate than the trapezoidal method

because it uses a more sophisticated curve approximation method

that takes into account the quadratic polynomial relationship

between the velocity data points. As a result, the Simpson method

typically provides a more accurate estimate of the integral. The

trapezoidal method is actually a special case of the Simpson method,

which assumes that the relationship between the velocity data

points is linear. In order to make the value of distance Mm more

accurate, the composite product formula method is used, which

consists of the composite Simpson formula and the composite

trapezoidal formula. In the case where the speed is essentially
FIGURE 6

Schematic diagram of weed hysteresis to target spraying.
FIGURE 5

Schematic diagram of decision making for target spraying.
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uniform and is measured with a feedback of 0.1 s, the difference

between the two methods of integration may not be very significant,

and the spray vehicle is essentially moving at a uniform speed

during spraying, with a relatively small change in speed, which

makes the error between the two methods relatively small. The error

of the two methods is relatively small. However, the composite

Simpson method requires that the data sub-interval must be even,

in the process of the actual working condition of the sprayer, the

entire sprayer travel time according to the 0.1 seconds divided by

the parity of the interval is uncertain, so the composite trapezoidal

method is used for calculation.

h =
t
n
= 0:1

tk = kh = 0:1k(k = 0, 1, 2,…, n)

Mm =
Z t

0
v(t)dt ≈

h
2

v(0) + v(tk) + 2o
n−1

k=1

v(tk)

" #

= 0:05 v(0) + v(tk) + 2o
n−1

k=1

v(tk)

" #

Here h is the step size. n is the number of times the velocity is

recorded, with an initial value of 0. The distance traveled by the sprayer

after a change in the grid determination value (when 0 becomes 1 or 1

becomes 0) isMm. The time is t. The initial values are all 0. tk is the kth

time value, which is a multiple of 0.1. v(0) is the value of the velocity of

the sprayer at the time of a change in the grid determination value. v(tk)

is the kth GNSS antenna feedback velocity value.

Here after initialization of the system a=m=1, the controller reads

the forward speed of the sprayer in real time, and when the value of the

grid determination becomes 1, the controller calculates the positions Aa

andMm where the spraying starts and updates A1 andM1 in the array

[X]. WhenM1≥A1, the corresponding nozzle starts spraying, shifts the

subscripts of Aa andMm back by one bit, a=a+1,m=m+1, and resets tc,

tk, k, A2 and M2 to 0. When the value of the grid determination

becomes 0, the controller calculates the position Aa andMm of the end

of the spraying, updating them in the array [X], and whenM2≥A2, the

nozzles end spraying, a=a+1, z=z+1, and reset tc, tk, k, A3 andM3 to 0.

In array [X], other groups of printhead parameters are updated in

the same way as the first group. Simply put, the hysteresis model

controls the corresponding printheads to turn on or off by determining

whether the downstream parameters in the array [X] are greater than

or equal to the upstream parameters of the corresponding position.

Combined with the target decision-making algorithm, the entire

algorithm workflow is shown in Figure 7.
3 Experiments

3.1 Experimental environment for
model manipulation

As shown in Table 2, the computer selected for this study is

Y9000X manufactured by Lenovo (Beijing, China), based on Intel(R)
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Core(TM) i7-12700H CPU, 16GB, NVIDIA GeForce RTX 3050Ti

Laptop GPU hardware environment for weed model training and

testing experiments, running on Python 3.8. The deep learning model

is Pytorch 1.11.0+ Torchvision 0.12.0, and the running system is

Windows 11.0. During the training process, the initial learning rate

is set to 0.001, the ratio between the final learning rate and the initial

learning rate is set to 0.2, the momentum of the SGD optimizer is set to

0.937, the number of rounds of the learning rate preheating is set to 3,

the momentum at preheating is set to 0.8, and the biased learning at

preheating is set to 0.1. rate was set to 0.1, and a cosine annealing

learning rate tuning strategy was used. The model was trained for a

total of 300 epochs.
3.2 Model detection effectiveness analysis

The improved weed detection results of Yolov5-SGS and

Yolov5s are shown in Figure 8, in which the left side is the

detection result of Yolov5-SGS and the right side is the detection

result of Yolov5s. Through the comparison in the figure, Yolov5-

SGS is more accurate in weed target detection, which can effectively

solve the problems of small target unrecognizable, low precision of

multi-target coexistence detection and inaccurate multi-target cross

detection. Due to the wide shooting range, some weeds are smaller

in the image and Yolov5s didn’t recognize these small weeds, while

the improved Yolov5-SGS can detect these small weeds and the
FIGURE 7

Algorithm workflow diagram.
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detection effect of multi-weed coexistence rises. Moreover, Yolov5-

SGS has a small detection leakage and improves the accuracy of

detection when cross-detecting multiple weeds. This is due to the

addition of the SimAM attention mechanism expanding the

distinction between weeds and background.
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3.3 Ablation experiments

To evaluate the performance of each module, ablation and

comparison experiments were conducted. Training and testing were

performed on the same dataset and training parameters and the

results are shown in Table 3.

From the experimental results, it can be seen that: firstly, after

optimizing the backbone feature extraction network using Ghost

Module, the GFLOPs (computational complexity) and the model size

decreased significantly, by 32.7% and 26.6%, respectively. Secondly,

after using Slim -Neck to change the neck fusion network, at this time,

F1 and mAP are improved by 1.5% and 0.3% compared with Yolov5s

+Ghost Module, while the GFLOPs are decreased by 3.1, which

indicates that the improved neck network improves the speed of the

model in feature fusion and processing. Finally, introducing SimAM to

adjust the attention distribution, F1 and mAP were improved by 0.4%

and 0.9% compared to Yolov5s+Ghost Module+Slim-Neck, while
FIGURE 8

Comparison of detection results: the left side is the identification result of Yolov5-SGS, and the right side is the identification result of Yolov5s.
TABLE 2 Training platform configuration details.

Enterprise Configuration Details

CPU 12th Gen Intel(R) Core(TM) i7-12700H@2.3GHZ

GPU NVIDIA GeForce RTX 3050 Ti Laptop GPU

Development
environment

Python 3.8

Deep learning Module Pytorch1.11.0+Torchvision 0.12.0

Operating system Windows 11.0
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GFLOPs remained unchanged, indicating that the self-attention

mechanism improves the detection performance of small targets,

widens the distinction between weeds and background, and does not

complicate the model. The improved Yolov5-SGS model reduces the

computational complexity and model size by half compared to the

original model, and the accuracy of recognizing weeds rises.
3.4 Comparison of different target
recognition models

The improved Yolov5-SGS network model is subjected to

comparative experiments with many other Yolo series lightweight

detection models to validate the performance of the proposed

model. The experimental results are shown in Table 4.

The comparison shows that the improved model Yolov5-SGS has

the smallest GFLOPs (computational complexity) and model size and

has the highest mAP and F1 inside all themodels compared to Yolov5s,

Yolov7tiny, and Yolov8s. Although the GFLOPs and model size of

Yolov5-SGS are not as small as Yolov4 tiny, the mAP and F1 of

Yolov5-SGS are much higher than that of Yolov4 tiny, which indicates

that YOLOv5-SGS has the advantages of low computational

complexity and the ability to maintain a very high level of accuracy

with a very small model, which are not found in other lightweight

YOLO models. accuracy when the model is very small.
4 Experimental results and analysis

4.1 Experimental site

To verify the accuracy of the target spraying decision and

hysteresis algorithms and to evaluate the performance of the
Frontiers in Plant Science 11
target spraying control system, a single target spraying control

system test bed was built for testing. The test bed is shown in

Figure 9. Here, the motor speed of the conveyor belt is sent to the

computer in real time and converted into velocity values to replace

the GNSS antenna for velocity measurements.

Simulated weeds and simulated wheat similar to those in the

field were used in the experiment instead of real plants, and 600

images were taken as a dataset. The modified Yolov5-SGS network

model was used in the same operating environment as before for

300 epochs of training. The trained model performed as follows in

terms of accuracy metrics: 96.6% for P, 97.7% for R, and 99.1%

for mAP.
4.2 System-to-target spraying effects

The camera and spray nozzle were fixed to the frame. At the

beginning of the test, the simulated plants on the conveyor belt

moved towards the back of the camera at randomly varying speeds v

within the set speed intervals to simulate the actual situation of the

sprayer traveling in the field. The speed intervals were set at 0.3-0.4

m/s, 0.4-0.5 m/s and 0.5-0.6 m/s. In each test, a water-sensitive

paper was placed next to the simulated weed in order to provide an

objective assessment of the spraying effect. This water-sensitive

paper would quickly turn red upon contact with water, so that the

actual effect of spraying could be clearly observed. In order to ensure

the reliability and accuracy of the results, up to 50 trials were

conducted by constantly changing the position and type of the

simulated weeds on the conveyor belt. The number of weeds used in

each test was 20, so that the total number of weeds tested in the 50

tests amounted to 1,000.

Recognition rate, spraying rate and hit rate were calculated

based on the reddening of the water sensitive paper color,

respectively. Recognition rate is the ratio of the number of weeds

detected by the system to the number of all weeds. Spraying rate is

the ratio of the number of weeds whose water-sensitive paper turns

red to the number of detected weeds. The hit rate is the product of

the recognition rate and the spraying rate. Specific test results are

shown in Table 5.

The extent of weed coverage by the system spray is recorded by

the length of the water-sensitive paper that turns red. Coverage was

the ratio of the length of the weed to the length of the water-

sensitive paper discoloration. The targeting error is the error

between the center position of the weed and the center position

of the water-sensitive paper discoloration, and the mean absolute
TABLE 4 Comparison of models.

Models GFLOPs Model
size (kB)

mAP (%) F1 (%)

Yolov5-SGS 7.6 8084 91.4 85.3

Yolov4 tiny 5.7 6063 70.2 57.2

Yolov5s 15.9 14059 91.2 84.5

Yolov7 tiny 13.6 11984 91.3 85.2

Yolov8s 28.6 21977 90.0 83.7
TABLE 3 Results of ablation experiments with different optimization modules.

Modules Yolov5s Ghost
Module

Slim-Neck SimAM GFLOPs Model
size (kB)

mAP (%) F1 (%)

1 ✓ 15.9 14059 91.2 84.5

2 ✓ ✓ 10.7 10324 90.2 83.4

3 ✓ ✓ ✓ 7.6 8083 90.5 84.9

4 ✓ ✓ ✓ ✓ 7.6 8084 91.4 85.3
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error and root mean square error were calculated. The results are

shown in Table 6.

According to the experimental results, in the velocity interval of

0.3~0.4m/s and 0.4~0.5m/s, the spray system has a very good

performance in the rate of target spraying and the coverage of

spraying on weeds, especially in the realization of target spraying on

multiple weeds in close proximity to each other, both of them can

ensure that the mist adheres to the mist, and the spraying rate of the

whole experiment reaches 99.8% and 98.2%, respectively, which

indicates that the target spraying decision and the hysteresis

algorithm is effective. However, there was a substantial decrease

in the precision of the target spraying at 0.5 to 0.6 m/s, which was

due to the inability of the velocimetry device to feed back the speed

at a higher frequency, leading to errors in the calculation of the

weed position by the target spraying decision and hysteresis

algorithms. Therefore, at faster speeds, a velocimetry hardware

device with a higher feedback frequency is needed to ensure the

accuracy of the algorithm.
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4.3 Analyses and discussions

Current weed detection and smart spraying systems still face

many bottlenecks, and the processing power of computers and the

costs associated with system hardware limit the development of

target spraying systems (Vijayakumar et al., 2023). Fan et al. (2023)

developed a weed detection and target spraying robotic system for

seedling stage in a cotton field based on deep learning, which

utilized three detection cameras to to acquire cotton and weed

images of row plants in real time, each camera controls one spray

nozzle each, and the three nozzles are responsible for spraying

weeds in the corresponding area.Liu et al. (2021), on the other hand,

deployed the DCNNmodel on a computer and used three webcams

to perform weed identification with solenoid valves below each

camera with a response time of less than 60 ms.Balabantaray et al.

(2024) developed a weeding robot based on YOLOv7. The

computer mainframe used by the robot for weed recognition was

a Dell Precision 7,670 mobile workstation (12th Gen Intel Core i9-

12950HX, 32GB RAM, NVidia RTX A4500 16 GB)), and the

spraying system was equipped with a a single spray nozzle to

target spray a single row area. These studies set a precedent for

deep learning-based weed target spraying and also provide a solid

foundation for target weed control in terms of system design. The

focus of this research is to achieve higher spraying accuracy on less

costly hardware and to allow for a wider coverage of the target

spraying work area. Therefore, we lightened YOLOv5s and ensured

that the accuracy of the model rose, where the GFOLPs

(computational complexity) and model size were reduced by
TABLE 5 Spraying results of different speed intervals for the target
spraying system.

Speed
range (m/s)

Recognition
rate (%)

Spraying
rate (%)

Hit rate (%)

0.3~0.4 98.5 99.8 98.3

0.4~0.5 98.1 98.2 96.3

0.5~0.6 97.4 95.7 93.2
FIGURE 9

Field test of target spraying system.
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52.2% and 42.4%, respectively, while the mAP and F1 values were

increased by 0.2% and 0.8%, respectively, so that the weed

identification model could be deployed on computers with limited

processing power. In addition, the choice of a wide-angle distortion-

free RGB camera to cover more area reduces the need for multiple

cameras, and a rational structural arrangement allows identification

of field areas up to 2m in width, thus further reducing the associated

costs. In terms of target localization, Li He et al. (2022) combined

deep learning algorithms with spraying technology to design a

machine vision accurate real-time targeted spraying system for

field scenarios, and proposed a solenoid group switching grid

decision algorithm for single weeds.Zhao et al. (2022) developed a

machine learning-based targeted spraying system equipped with an

algorithm can differentiate between cabbages and weeds and

accurately spray herbicides on single cabbages to resist the threat

of pests and diseases.The algorithm designed in this study is very

effective in localizing individual plants with large spacing and

canopy and proposes a solution for the hysteresis problem in the

operation process. Upadhyay et al. (2024) designed a spraying

system based on machine vision by placing cameras in the three

sets of grids in the vertical direction of the recognized area, which

effectively improved the problems of single weed plant localization

and missed detection. The above study provides an excellent

reference solution for plant localization, which has a significant

impact on the key operational aspects of target spraying. In this

study, considering the low response frequency of most solenoid

valves on the market, an algorithm for target spraying decision and

hysteresis control is designed based on deep learning, which is

capable of distinguishing the different distributions of single-plant

and multi-plant weeds. After completing weed identification, the

system accurately sprays weeds with different distributions by

controlling the solenoid valves, thus avoiding the problem that

the solenoid valves cannot respond in time when multiple weeds are

too close together. This approach eliminates the need for farmers to

purchase expensive high-frequency response solenoid valves, thus

controlling the cost while performing precise weed control by

carrying this weed localization and recognition algorithm. To

address the problem of hysteresis characteristics on the hardware

side, this study innovatively proposes to utilize the numerical

integration method to calculate the speed in order to cope with

the challenge that the data fed back from the speed measuring

device is discrete, which effectively solves the hysteresis problem

between the spraying hardware.

It is important to note that the targeted spraying system

developed in this study is still in the bench stage. The motor-

controlled weed movement speed is easier to control on the
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experimental bench compared to the complex field environment.

At the same time, the experimental bench can more easily evaluate

the recognition effect of the algorithm and the spray response

performance compared to the influence of multiple factors in the

field. Therefore, the spraying data we collected on the experimental

bench will provide important support for the integration of targeted

spraying systems in sprayers. Although there are some limitations

in the experimental bench test, its modular design allows multiple

targeted spraying systems to be carried in the spraying machine,

and based on the shared speed measurement module and herbicide

supply module, the image acquisition module and spray execution

module are added to meet the actual spraying requirements. In real

scenario experiments, problems such as inaccurate weed

identification, fog liquid offset and sprayer speed measurement

need to be considered. In the future, we plan to integrate dual

GNSS antennas for RTK differential speed measurement in the

sprayer’s target spraying system, and equip it with a high-frame-rate

anti-shake RGB camera and a high-performance on-board

computer. These high-performance hardware will significantly

reduce the weed recognition time and system latency, and reduce

the image jitter due to uneven road surface, thus improving the

weed recognition rate.
5 Conclusion

In this paper, a deep learning-based weed detection and target

spraying control method for wheat field at tillering stage is designed

and deployed on the target spraying control system testbed. The

study draws the following conclusions: firstly, a target spraying

control system is proposed, including an image acquisition and real-

time speed measurement module, a signal conversion module, a

spray execution module, and a herbicide supply module. Second, in

order to reduce the computational complexity and model size while

guaranteeing the recognition accuracy, the backbone and neck

networks of Yolov5s are lightweighted and improved, and a self-

attention mechanism is introduced. These improvements resulted

in a reduction of 52.2% and 42.4% in the model’s GFOLPs

(computational complexity) and model size, respectively, and an

increase of 0.2% in the mAP value and and 0.8% in the F1 value,

which provided the best performance in comparison with other

YOLO series lightweight models. Finally, to address the problem of

inaccurate spraying due to the close proximity of different weeds

and the hysteresis characteristics of the target spraying hardware,

we designed an target spraying decision and hysteresis algorithm

and deployed the integrated algorithm on a test bed for

experimental validation. The experimental results show that the

spraying rate reaches 99.8% and 98.2% in the velocity intervals of

0.3~0.4 m/s and 0.4~0.5 m/s, and the coverage rate is 94.3% and

93.7%, respectively. This indicates that the target spraying system

differentiated the spraying of weeds with different distributions and

the problem of hysteresis between the hardware was effectively

solved. However, at faster speed intervals of 0.4 to 0.5 m/s, the

spraying and coverage rates decreased to 95.7% and 87.8%,

respectively, and thus a velocimetry device with higher feedback
TABLE 6 Results of spray coverage.

Speed
range (m/s)

Coverage
rate (%)

Mean
absolute
error (cm)

Root mean
square

error (cm)

0.3~0.4 94.3 1.5 2.6

0.4~0.5 93.7 2.1 3.6

0.5~0.6 87.8 3.8 6.6
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frequency is required to ensure the accuracy of the algorithm at

faster speeds.
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