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The timely and accurate detection of apple flowers is crucial for assessing the

growth status of fruit trees, predicting peak blooming dates, and early estimating

apple yields. However, challenges such as variable lighting conditions, complex

growth environments, occlusion of apple flowers, clustered flowers and

significant morphological variations, impede precise detection. To overcome

these challenges, an improved YO-AFD method based on YOLOv8 for apple

flower detection was proposed. First, to enable adaptive focus on features across

different scales, a new attention module, ISAT, which integrated the Inverted

Residual Mobile Block (IRMB) with the Spatial and Channel Synergistic Attention

(SCSA) module was designed. This module was then incorporated into the C2f

module within the network’s neck, forming the C2f-IS module, to enhance the

model’s ability to extract critical features and fuse features across scales.

Additionally, to balance attention between simple and challenging targets, a

regression loss function based on Focaler Intersection over Union (FIoU) was

used for loss function calculation. Experimental results showed that the YO-AFD

model accurately detected both simple and challenging apple flowers, including

small, occluded, and morphologically diverse flowers. The YO-AFD model

achieved an F1 score of 88.6%, mAP50 of 94.1%, and mAP50-95 of 55.3%, with

a model size of 6.5 MB and an average detection speed of 5.3 ms per image. The

proposed YO-AFD method outperforms five comparative models,

demonstrating its effectiveness and accuracy in real-time apple flower

detection. With its lightweight design and high accuracy, this method offers a

promising solution for developing portable apple flower detection systems.
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1 Introduction

The apple flowering stage is pivotal for apple tree growth.

Precisely detecting and counting apple flowers during this phase

aids growers in closely monitoring tree development. This allows

for tailored formulation of fertilization, irrigation, and pest control

strategies, thus enhancing orchard management efficiency and fruit

quality. Furthermore, accurate flower detection is vital for

forecasting peak flowering periods and early estimating yields.

However, apple trees grow in intricate natural environments.

Apple flowers, typically measuring 3-5 cm in diameter, are small

and bloom at varying times, resulting in notable differences in

individual flower phenotype. During blooming, apple flowers

cluster together, with petals of different flowers overlapping each

other, causing significant occlusion between them. Additionally,

branches, leaves, insects, and other objects may occlude flowers,

making precise detection using machine vision technology

exceptionally challenging (Bhattarai et al., 2020; Sun et al., 2021;

Mu et al., 2023; Zhou et al., 2024).

Researchers have explored fruit flower detection using

computer vision technology (Zhou et al., 2017; Dias et al., 2018a;

Zhao et al., 2020; Lim et al., 2020; Palacios et al., 2020; Estrada et al.,

2024; Tan et al., 2024), achieving success in detecting flowers of

various fruits such as citrus, peach, and apple (Dorj and Lee, 2012;

Hočevar et al., 2014; Horton et al., 2017; Lin et al., 2020; Shang

et al., 2024). Initially, studies relied on color features and threshold

segmentation for detection. However, in uncontrolled orchard

environments, adjusting threshold parameters became necessary

due to changes in illumination conditions, backgrounds, and image

acquisition angles. This dependence on parameter adjustments

significantly affected detection accuracy, resulting in low

reliability, poor stability, susceptibility to noise, and limited

adaptability. Recently, with advancements in deep learning

theory, researchers have turned to deep learning-based

approaches for fruit flower detection. These approaches construct

models with multiple hidden layers and leverage extensive datasets

to automatically learn more useful features for flower detection. In

contrast to traditional methods, deep learning-based approaches

avoid the need for complex image pre-processing and tedious

feature extraction, and effectively enhance detection accuracy and

robustness. Dias et al. (2018b) employed a Convolutional Neural

Network (CNN) for apple flower detection. Their approach

involved utilizing the Clarifai CNN to extract features from apple

flowers segmented by the simple linear iterative clustering (SLIC)

superpixel algorithm, and applying a support vector machine

(SVM) to ascertain the presence of apple flowers within the

image. Experimental results demonstrated that the proposed

CNN-based model facilitated precise flower detection, achieving

optimal recall and precision rates approaching 80%. Remarkably,

even when dealing with datasets dissimilar from the training data,

the model maintained robust performance. Zhou et al. (2018)

introduced a method for detecting the main organs of tomatoes

utilizing a channel-wise group convolutional network. They chose a

basic network structure and then augmented it by incorporating a

channel-oriented grouped convolutional module with a Dropout
Frontiers in Plant Science 02
layer and a full convolutional layer for organ detection. The method

achieved an average precision of 96.5% and a recall of 77.4% in

detecting tomato flowers. Deng et al. (2020) utilized Mask R-CNN

(He et al., 2020), which based on ResNext-50 (Xie et al., 2017) and

Feature Pyramid Network (FPN) (Lin et al., 2017), for the detection

of citrus flowers in natural scenes. The average precision of the

method in detecting citrus flowers was 36.3%, and the error in

flower quantity calculation was 11.9%. The method served as a

foundation for decision-making regarding flower quantity control.

Wu et al. (2020) proposed a method centered on channel pruned

YOLOv4 for detecting apple flowers. This method adeptly

streamlined the model while preserving detection accuracy. The

mean Average Precision (mAP) for detecting apple flowers reached

97.3%, with a detection speed of 72.3 Frames Per Second (FPS) and

a model size of 12.5 MB. Tian et al. (2020) introduced a MASU R-

CNN model, an advancement from the Mask Scoring R-CNN

(Huang et al., 2019), tailored for the detection and segmentation

of apple flowers. The authors innovatively fused the U-Net

(Ronneberger et al., 2015) backbone with the MaskIoU head of

Mask Scoring R-CNN to form a new MaskIoU head. This

integration effectively enhanced the efficiency of feature utilization

and facilitated the reuse of features by concatenating feature maps

during the encoding and decoding processes. The experimental

results revealed that the method achieved an F1 score of 95.9% and

mAP of 59.4% on their dataset. Farjon et al. (2020) and Rahim and

Mineno (2020) employed Faster R-CNN (Ren et al., 2017) for the

detection of apple flowers and tomato flowers, respectively. Their

researches demonstrated the efficiency of Faster R-CNN in fruit

flower detection. Li et al. (2022) utilized YOLOv3 and YOLOv4 for

detecting kiwifruit flowers and buds. Their comparative analysis

revealed that YOLOv4 outperformed YOLOv3 in terms of detection

performance. Wang et al. (2022) introduced an enhanced version of

the YOLOv4 model termed YOLO-PEFL for precise detection of

pear flowers in natural settings. The YOLO-PEFL model employed

ShuffleNetv2 integrated with the Squeeze-and-Excitation Networks

module as the backbone, replacing the original backbone network of

YOLOv4. The experimental results showcased the effectiveness of

the YOLO-PEFL model, achieving an average precision of 96.7%

with an average detection speed of 27 ms. Notably, the model size of

YOLO-PEFL was reduced by approximately 80% compared to

YOLOv4, demonstrating significant efficiency improvements.

You Only Look Once (YOLO) tackles target detection by

framing it as a regression problem, providing outputs that include

the location and category of the detected target (Redmon and

Farhadi, 2018; Bochkovskiy et al., 2020). As a one-stage detector,

YOLO boasts rapid detection speeds and high accuracy, rendering it

widely applicable in detecting various targets (Wang and He, 2021;

Qi et al., 2022; Li et al., 2023, 2024). Compared with the previous

versions of YOLO, YOLOv8 enhances the previous versions by

further improving accuracy and flexibility, solidifying its position as

the primary choice for tasks like object detection and image

segmentation. Yang et al. (2023) proposed a novel LS-YOLOv8s

model, which was based on the YOLOv8s deep learning algorithm

and incorporated the LW-Swin Transformer module, for detecting

and grading the ripeness of strawberries. Their innovation has led to
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improvements in both the accuracy and efficiency of detection.

Wang et al. (2024) designed a normalization-based attention

module named C2f-N, which was specifically crafted for residual

feature learning, to replace the C2f block in the baseline YOLOv8

model. Their method achieved precise detection and segmentation

of tomato targets.

The attention mechanism plays a pivotal role in deep learning

by enabling models to prioritize essential information while

disregarding irrelevant details. This mechanism effectively boosts

the feature extraction capabilities of the model and enhances its

ability to capture intricate feature information. Currently, attention

mechanisms have been widely used in various object detection (Min

et al., 2023; Zhu et al., 2024).

Based on the successful experience of previous researches, to

address the challenge of detecting apple flowers under complex

orchard, an improved YOLOv8 network, named YO-AFD, that

fusing attention mechanism and YOLOv8 was proposed. The

specific objectives are as follows: (1) A new attention module,

ISAT, which integrated the Inverted Residual Mobile Block

(IRMB) with the Spatial and Channel Synergistic Attention

(SCSA) module was designed to enable adaptive attention to

features across different scales. (2) A C2f-IS module, which

incorporated ISAT into the C2f module within the network’s

neck was developed to enhance the model’s ability to perceive

targets of various sizes and morphologies. (3) Focaler Intersection

over Union (FIoU) was used for loss calculation to analyze the

impact of the sample distribution with various degrees of difficulty

in bounding box regression, to further improve the performance in

detection task. The paper is structured as follows: Section 2 presents

the acquired dataset, and the methodology pipeline, including a

detailed description of the deep neural network used for apple

flower detection; Section 3 evaluates the performance of the

proposed method, and Section 4 conducts the ablation

experiment and discusses the results; Finally, Section 5 presents

the conclusions and suggestions for future research.
2 Materials and methods

2.1 Dataset preparation

The images used in this research were taken within a commercial

apple orchard located in Wuquan, Xianyang, Shaanxi, China. The

variety of apple was Granny Smith. The specific image acquisition

times were 9:00-11:30 a.m. and 2:30-5:00 p.m. on March 28 (sunny)

and March 29 (cloudy) in 2021. To ensure the diversity of the image

samples, images were captured under natural daylight conditions,

encompassingbothbacklight anddirect sunlight scenarios.The images

were captured using an iPhone 11 Pro Max with a resolution of 3024

pixels×4032 pixels and saved in JPEG format.

In this study, a total of 2115 images of apple flowers were

captured. To balance detail retention and algorithmic efficiency, the

images were resized to 605 pixels × 807 pixels for the subsequent

experiments. These images then underwent manual labeling using

LabelImg. During the annotation process for apple flowers, the
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following cases should be taken into account (as shown

in Figure 1a):
(1) Since apple flowers do not bloom simultaneously, there are

notable differences in the individual morphology of each

flower. Both buds and fully bloomed flowers coexist

simultaneously, and the number of petals in fully

bloomed flowers varies.

(2) Apple flowers tend to cluster together, resulting in the

overlapping of petals from different flowers, which

complicates the identification of individual flowers.

Additionally, there is substantial overlap and occlusion

between the flowers, further exacerbating the difficulties

in distinguishing them.

(3) In an unstructured open environment, flowers are often

occluded by branches, leaves, bees, and other objects, and

the natural lighting conditions and lighting angles change

over the time. Furthermore, both backlight and direct

sunlight conditions are prevalent, leading to the

formation of shadows cast by surrounding objects onto

the surface of the flowers.
To ensure the accuracy of the subsequent established network

model, stamen were annotated as the open flower. For apple flowers

with invisible stamens, the entire flower was annotated. For

unopened buds, the entire flower buds were annotated (as shown

in Figure 1b).

A total of 43, 031 targets, including flowers and buds were

labeled. After image annotation, the dataset was split into a training

set (1, 270 images), a validation set (425 images) and a test set (420

images) with a ratio of approximately 6:2:2, for subsequent network

training and parameter optimization. The detailed information of

the image dataset used in this study is shown in Table 1.
2.2 Model construction

2.2.1 Description of YO-AFD apple flower
detection method

The YOLO series, a one-stage deep learning model for object

detection, has been widely adopted in the agricultural domain.

YOLOv8, developed by Ultralytics in 2023, introduces significant

advancements and optimizations over its predecessors, positioning

it as the preferred solution for tasks such as object detection and

image segmentation. Compared to other algorithms in the YOLO

series, YOLOv8 achieves a balance between accuracy and processing

speed, making it well-suited for applications that require fast

detection while maintaining relatively high accuracy. This study

aims to rapidly and accurately detect apple flowers in images

captured from a natural orchard environment. Leveraging the

strengths of YOLOv8, an enhanced method, termed YO-AFD,

was specifically designed for apple flower detection. The

architecture of YO-AFD is illustrated in Figure 2.

YO-AFD retains the same structural framework as the baseline

YOLOv8n network, consisting of three primary components:
frontiersin.org

https://doi.org/10.3389/fpls.2025.1541266
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2025.1541266
Backbone, Neck, and Head. The backbone was used for feature

extraction. To address the challenges posed by small and complex

targets in natural orchards, the YO-AFD network incorporates

several key improvements over the baseline YOLOv8n. Notably,

an attention-based fusion feature learning module, C2f-IS,

grounded in ISAT, was developed to enhance the model’s ability

to extract and integrate apple flower features in the complex

orchard environment. Additionally, the FIoU loss function, which

replaced the CIoU loss function of the baseline YOLOv8n, was

combined with the Distribution Focal Loss (DFL) as the regression
Frontiers in Plant Science 04
function. These enhancements are intended to improve detection

accuracy and robustness, especially in challenging orchard

conditions. The details of the YO-AFD model will be further

elaborated in the following subsections.

2.2.2 C2f-IS attention fusion feature
learning module

In this study, a novel attention fusion feature learning module

based on the ISAT attention mechanism, termed C2f-IS, was

proposed. The C2f-IS module, depicted in Figure 3, is integrated

into the neck of the YO-AFD network, as shown in Figure 2. The

ISAT module is a lightweight and efficient attention mechanism

designed by integrating the Inverted Residual Mobile Block (IRMB)

(Zhang et al., 2023) with the Spatial and Channel Synergistic

Attention (SCSA) module (Si et al., 2024).

IRMB is a hybrid network block that combines the lightweight

characteristics of convolutional neural networks with the dynamic

processing capabilities of Transformer models, thus enhancing the

ability to process long-range information. This design retains

efficiency of model while effectively utilizing computational

resources and achieving high accuracy. The paradigm of IRMB is
TABLE 1 Detailed information of image set.

Number Images Flowers Buds Total Labeled

Training Set 1270 9394 20574 29968

Validation Set 425 2778 4075 6853

Test Set 420 2208 4002 6210

Total 2115 14380 28651 43031
FIGURE 1

Example of apple flower image and annotations. (a) Example of apple flower image. (b) Example of apple flower image annotations.
FIGURE 2

Structure of improved YO-AFD apple flower detection method.
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shown in Figure 4. IRMB integrates Depth-Wise Convolution

(DW-Conv) and Multi-Head Self Attention mechanisms. The 1×1

convolution within the structure is employed to compress and

expand channel dimensions, thus enhancing computational

efficiency. The 3×3 DW-Conv is used to capture spatial features,

and attention mechanism is utilized to capture global dependencies

among features. This configuration enables IRMB to consider the

entire input space during feature extraction, thereby enhancing its

ability to comprehend complex data patterns.

SCSA is a dual-component attention module consisting of two

key parts: Shareable Multi-Semantic Spatial Attention (SMSA) and

Progressive Channel-wise Self-Attention (PCSA). The structure of

SCSA is shown in Figure 5. SMSA extracts rich semantic features

and multi-level spatial information from multi-scale spatial inputs,

providing multi semantic spatial priors for PCSA’s channel-wise

self-attention. This enhances the representation of different

semantic information. The robust feature interactions facilitated

by the self-attention mechanism in PCSA help to mitigate the

disparities in multi-semantic information across different sub-
Frontiers in Plant Science 05
features within SMSA. Overall, SCSA demonstrates strong

performance and good generalization ability in object detection

tasks (Si et al., 2024).

The IRMB improves feature processing by utilizing an inverted

residual block, which allows for the effective capture and utilization

of long-range dependencies while preserving the model’s

lightweight nature, an essential factor for object detection tasks.

The SCSA module efficiently combines the strengths of both

channel and spatial attention, maximizing the use of multi-

semantic information to enhance performance in visual tasks.

Building on the strengths of both modules, ISAT, which

integrates them efficiently, suppresses less important features in

both the channel and spatial dimensions. This enables ISAT to fully

leverage semantic and long-range features, dynamically adjust

attention to features at various scales, and adaptively optimize

detection performance for various targets, thereby enhancing its

ability to detect objects of various scales and morphologies in

complex environments. The architecture of ISAT is illustrated

in Figure 6.

The C2f-IS module consists of three bottleneck blocks and two

ConV blocks, as shown in Figure 3. Within the bottlenecks, the

lightweight ISAT attention modules are incorporated to enhance

the feature of important regions while suppressing background

noise. This significantly strengthens the network’s ability to extract

essential features. The C2f-IS module performs feature extraction

across multiple levels of the network, enabling the model to capture

information at different scales and effectively fuse features from

feature maps with various resolutions. This enhances the model’s

ability to perceive objects of diverse sizes, particularly small objects.

By integrating multi-level feature extraction and scale-adaptive

mechanisms, the C2f-IS module enhances the model’s robustness

and accuracy when processing targets with substantial scale

variations. This is particularly advantageous for apple flower

detection in this study, given the significant scale difference

between apple flowers and buds. The design of this module plays

a key role in improving the accuracy of flower detection.
2.2.3 Loss function of YO-AFD
The loss function of YO-AFD involves two branches, the

classification branch and the regression branch. In the
FIGURE 3

Structure of C2f-IS.
FIGURE 4

Paradigm of iRMB.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1541266
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2025.1541266
classification branch, Binary Cross-Entropy (BCE) loss was

employed to calculate the classification loss. In regression branch,

Distribution Focal Loss (DFL) and Focaler IoU (FIoU) (Zhang and

Zhang, 2024) were used to calculate the regression loss. Both BCE

loss and DFL loss in YO-AFD remained consistent with those of the

baseline YOLOv8. To further improve the performance of the

network, the CIoU was replaced with FIoU in the baseline YOLOv8.

FIoU reconstructs the IoU loss utilizing a linear interval

mapping approach, which enables it to focus on different

regression samples effectively. FIoU analyses the effect of the

distribution of difficult and simple samples in bounding box

regression on the regression results, further improving the
Frontiers in Plant Science 06
detection performance in detection tasks. The definition of FIoU

is shown in Formula 1.

FIoU =

0,      IoU < d

IoU−d
u−d      d ≤ IoU ≤ u

1      IoU > u

8>><
>>:

(1)

Where, IoU is the original IoU value, and [d, u]∈[0,1]. By
adjusting the value of d and u, FIoU can focus on different

regression samples. FIoU loss can be defined as Formula 1.

LFIoU = 1 − FIoU (2)

LFIoU adjusts the loss value according to the value of IoU.

Formulas 2, 3 reveal that LFIoU is 1 when IoU below the threshold d,

and LFIoU is 0 when IoU exceeds the threshold u. For IoU value

falling between thresholds d and u, the loss function adopts a linear

decreasing trend, rendering it responsive to IoU within a specific

range. This allows the loss function to prioritize samples with

moderate overlap between predicted and true bounding boxes.

Such an approach encourages the model to extract features from

samples of moderate difficulty rather than exclusively focusing on

the easiest or most challenging ones. In this study, apple flowers

present complexities like severe occlusion and high density. These

challenges can impede the performance of the original CIoU Loss.

Compared to CIoU, FIoU proves more suitable for apple flower

detection tasks, offering improved adaptability to address challenges

such as severe occlusion and high density.
2.3 Network training

The experiments were conducted on a hardware platform

featuring an Intel Core i9-11900H @ 2.5GHz CPU, 32GB of
FIGURE 6

Paradigm of ISAT.
FIGURE 5

Structure of SCSA.
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memory, and an NVIDIA GeForce RTX 3080 GPU with 16GB of

memory. The framework for deep learning was PyTorch 2.2.2 and

Compute Unified DeviceArchitecture (CUDA) 11.8. The networks

were trained on Windows 10 operating system, and Python 3.8 was

used to train and test the apple flower detection network. The

hyperparameters used for the proposed network are shown in

Table 2. For these hyperparameters, the batch size was set

according to the memory capacity of hardware platform, while

the remaining hyperparameters were set to the default values of the

YOLO model, as they have been extensively validated and

optimized by the original authors for a wide range of object

detection tasks.
2.4 Evaluation criteria

For apple flower detection conducted in this study, it is essential

to comprehensively evaluate detection performance. Therefore,

parameters including precision, recall, F1 score, and mAP50 were

utilized to evaluate the performance. The four parameters can be

calculated by Equations 3-6. Higher values of these parameters

indicate better detection results.

precision = TP=(TP + FP)� 100% (3)

recall = TP=(TP + FN)� 100% (4)

F1score = 2� precision� recall=(precision + recall) (5)

mAP =
1
no

n

k=1

APk (6)

Where TP, FP, FN represent true positive, false positive, and

false negative, respectively. AP is the average precision of k-th class.

To evaluate the impact of class imbalance in the dataset on our

method, we further assessed our approach using AUC-ROC (Area

Under the Receiver Operating Characteristic Curve). The

calculation of AUC-ROC involves dividing the area under the

ROC curve into multiple trapezoids, calculating the area of each

trapezoid, and then summing them. The formula for this

calculation is presented in Equation 7.
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AUC − ROC = o
n−1

i=1

TPRi + TPRi+1

2
(FPRi+1 − FPRi) (7)

Where, n is the number of points on the ROC curve. TPRi and

FPRi are the True Positive Rate (TPR) and False Positive Rate (FPR)

at the i-th point, respectively.
3 Results

3.1 Apple flowers detection results

To evaluate the performance of the proposed YO-AFD apple

flower detection method, a test set containing 420 apple flower

images was used to conduct the experiment. The dataset contained a

total of 6,210 apple flowers, including 2,208 apple flowers and 4,002

flower buds. The overall detection precision, recall, F1, mAP50 and

mAP50-95 were 89.4%, 87.9%, 88.6%, 94.1% and 55.3%,

respectively. Examples of the detection results are shown in

Figure 7, and the detailed detection metrics are summarized in

Tables 3, 4.

The results presented in Tables 3, 4 and Figure 7 clearly

demonstrate the ability of the proposed method to process images

captured under a variety of conditions. The method performs well for

images taken in bright, sunny conditions with strong illumination

(Figure 7a) as well as those with uneven lighting (Figure 7c).

Furthermore, it shows effective detection results under both direct

sunlight (Figure 7a) and backlight conditions (Figure 7b). Specifically,

the method achieved precision, recall, F1 score, mAP50, and mAP50-

95 of 91.8%, 90.5%, 91.1%, 95.5%, and 51.9%, respectively, for

detecting apple flowers across these diverse conditions. For apple

flower buds, these metrics were 87.0%, 85.2%, 86.1%, 92.7%, and

58.7%, respectively. To further evaluate the effectiveness of our

method, we analyzed the detection results of the YO-AFD method

under different illumination conditions, as shown in Table 4. For

images with direct sunlight and strong illumination, the F1 score,

mAP50, and mAP50-95 were 88.3%, 93.8%, and 54.0%, respectively.

For images with backlight illumination, these metrics were 89.0%,

94.4%, and 57.2%, respectively. For images with uneven illumination,

the metrics were 88.5%, 94.1%, and 55.4%, respectively. The flower

detection results were slightly poorer for images with strong

illumination due to the formation of shadows on the flower surface

under intense lighting, which compromised detection accuracy. In

contrast, flower detection performed best in images with even

backlight illumination, as fewer complex factors influenced the

detection process.

As shown in Table 2, the ratio of flowers to buds in the dataset

was approximately 1:2. This suggests a degree of class imbalance,

though it is not considered highly imbalanced overall. To evaluate

the impact of class imbalance in the dataset on our method, we

further assessed our approach using AUC-ROC. AUC-ROC

provide a comprehensive evaluation of the model’s performance

across different decision thresholds, making it particularly robust in

scenarios where class distributions are not perfectly balanced. Our

method achieved an AUC-ROC of 0.89 on the test set,
TABLE 2 Hyperparameters during training.

Hyperparameters value

learning rate 0.01

batch size 16

momentum 0.937

weight decay 0.0005

workers 8

iterations 200 epochs
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demonstrating strong performance in effectively distinguishing

between flowers, buds, and the background, thereby enabling

accurate detection.
3.2 Comparison with other
detection methods

To conduct a comprehensive performance analysis, the

proposed method was compared with several state-of-the-art

models, including Faster R-CNN, Dynamic R-CNN (Zhang et al.,
Frontiers in Plant Science 08
2020), YOLOv5n, YOLOv8n, and YOLOv11n, the latest version of

the YOLO series. The same training set, validation set and test set

were used to train and evaluate the six networks. Additionally,

identical hyperparameters (shown in Table 2) were applied when

training the YOLO series models. The comparison results for all six

methods are presented in Table 5.

From the results shown in Table 5, it is evident that the YO-

AFD method proposed in this study outperformed other methods

in terms of accuracy across key evaluation metrics, including

precision, recall, F1 score, and mAP. Specifically, the precision of

YO-AFD (89.4%) surpassed that of the other methods by 11.6%,
TABLE 3 Detection results of apple flowers.

Class Images Instances Precision /% Recall /% F1 /% mAP50 /% mAP50-95 /%

all 420 6210 89.4 87.9 88.6 94.1 55.3

apple flower 420 2208 91.8 90.5 91.1 95.5 51.9

flower bud 420 4002 87.0 85.2 86.1 92.7 58.7
FIGURE 7

Detection of apple flowers. (a) Detection results of images captured under strong lighting and direct sunlight conditions; (b) Detection results of
images captured under backlight conditions; (c) Detection results of images captured under uneven illumination conditions.
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14.4%, 1.8%, 1.2%, and 2.0% compared to Faster R-CNN, Dynamic

R-CNN, YOLOv5n, YOLOv8n, and YOLOv11n, respectively. Its

recall of 87.9% outperformed the other methods by 37.1%, 37.9%,

3.2%, 2.7%, and 2.0%, respectively. The F1 score of 88.6% for YO-

AFD demonstrated significant improvements over Faster R-CNN,

Dynamic R-CNN, YOLOv5n, YOLOv8n, and YOLOv11n, with

improvements of 27.1%, 28.5%, 2.5%, 1.9%, and 2.0%,

respectively. Additionally, the mAP50 (94.1%) and mAP50-95

(55.3%) of YO-AFD showed substantial improvements over all

other methods. The detection results in Table 5 highlight the

superior performance of the proposed YO-AFD method in

accurately detecting apple flowers. Within the YOLO series,

YOLOv8n exhibited higher F1, mAP50, and mAP50-95 values

compared to YOLOv5n and YOLOv11n. Building on its superior

performance, we conducted our experiments using YOLOv8n as the

foundation and subsequently proposed the YO-AFD method for

more accurate apple flower detection.

Although the detection speed of YO-AFD (5.3 ms per image)

was slightly slower than that of YOLOv5n, YOLOv8n, and

YOLOv11n, it maintained good real-time performance when

compared to Faster R-CNN and Dynamic R-CNN. Moreover,

with a model size of 6.5 MB, YO-AFD remained relatively

lightweight compared to Faster R-CNN and Dynamic R-CNN,

despite its slightly larger size compared to YOLOv5n, YOLOv8n,

and YOLOv11n. In summary, the YO-AFD method significantly

enhanced apple flower detection accuracy while maintaining a

lightweight model and real-time performance.
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As shown in Table 5, Faster R-CNN and Dynamic R-CNN

exhibit recall rates of 50.8% and 50.2%, respectively, which were

significantly lower than those of the other methods. This discrepancy

can be attributed to the substantial variation in scale among the apple

flowers and buds within the images, which poses challenges for

methods that rely on region proposal networks (RPNs), such as

Faster R-CNN and Dynamic R-CNN, to accurately detect objects. In

contrast, the proposed YO-AFD model integrated the enhanced

attention module ISAT into the C2f, allowing the network to better

capture the features of apple flowers and effectively focus on targets of

various scales andmorphologies. This adaptive improvement enabled

the YO-AFD model to process the diverse scale distribution present

in the images, resulting in enhanced precision and recall, and

ultimately, superior detection performance.
4 Discussion

4.1 Ablation experiments

As discussed earlier, the YO-AFD apple flower detection

method proposed in this study is enhanced by incorporating the

ISAT module into the C2f of the network’s neck and employing

FIoU for loss calculation. To validate the effectiveness of each

enhancement, ablation experiments were conducted. All methods

were trained and evaluated using the same dataset, and the

experimental results are summarized in Table 6.
TABLE 5 Comparison of six methods.

Networks Precision /% Recall /% F1/% mAP50 /%
mAP50-
95 /%

Detection
Speed /ms

Model
Size /MB

Training
Time /h

Faster R-CNN
(ResNet-50)

77.8 50.8 61.5 60.5 37.4 35.9 321.0 2.84

Dynamic R-CNN
(ResNet-50)

75.0 50.2 60.1 57.7 35.9 35.5 319.0 4.33

YOLOv5n 87.6 84.7 86.1 91.3 51.1 3.7 3.9 0.59

YOLOv8n 88.2 85.2 86.7 92.1 53.0 4.9 6.2 0.58

YOLOv11n 87.4 85.9 86.6 92.0 52.9 3.7 5.5 0.32

YO-AFD 89.4 87.9 88.6 94.1 55.3 5.3 6.5 0.50
Bold text denotes the optimal results.
TABLE 4 Detection results of apple flowers under different illumination conditions.

Illumination
conditions

Images Instances Precision /% Recall /% F1 /% mAP50 /% mAP50-95 /%

Direct sunlight 231 3608 88.2 88.4 88.3 93.8 54.0

Backlight 189 2586 91.1 87.0 89.0 94.4 57.2

Uneven
illumination

235 3681 89.1 88.0 88.5 94.1 55.4
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Table 6 shows that among all the methods, the proposed YO-

AFD achieved the highest F1 score and mAP. Compared to the

baseline YOLOv8n, the F1 score improvements for YOLOv8n-IS,

YOLOv8n-F, and YO-AFD were 0.5%, 0.9%, and 1.9%, respectively.

Similarly, the mAP50 improvements for these methods were 1.5%,

1.2%, and 2.0%, respectively. To provide a more rigorous

evaluation, the mAP50-95 metric was also used to evaluate the

methods. The mAP50-95 values for YOLOv8n-IS, YOLOv8n-F, and

YO-AFD increased by 2.1%, 2.1%, and 4.3%, respectively, compared

to the baseline YOLOv8n model. Notably, each enhancement led to

improvements in detection accuracy without causing a significant

increase in parameters, computational complexity, model size, or a

reduction in detection speed.

The mAP of YOLOv8n-IS, achieved by incorporating the C2f-IS

module into the neck of the baseline YOLOv8n, showed significant

improvements. For YOLOv8n-F, which employed FIoU to calculate

IoU loss, the mAP50-95 also exhibited a notable enhancement.

Given these results, fusing both modules into YOLOv8n was

expected to further boost model performance. As shown in

Table 6, integrating these two modules into YOLOv8n led to

further improvements in both the F1 score and mAP. The

proposed YO-AFD method outperformed all other methods,

achieving the highest F1 score and mAP, thereby demonstrating

superior detection performance.

The analysis above demonstrates that, although integrating

YOLOv8n with the two modules resulted in an increase in model

size and a decrease in detection speed, both the F1 score and mAP

showed notable improvements. This indicated that the integration

of the C2f-IS module and the use of FIoU for IoU loss calculation

contributed positively to enhancing the performance of the

network model.
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4.2 Effect of fusion of attention modules

To evaluate the effectiveness of the proposed ISAT attention

modules, the YO-AFD method was compared with two variants of

YOLOv8n: YOLOv8n integrating the IRMB and FIoU modules

(YOLOv8n-IRMB) and YOLOv8n integrating the SCSA and FIoU

modules (YOLOv8n-SCSA). The comparison results are summarized

in Table 7. The results indicate that the proposed YO-AFD method

achieved the highest F1 score and mAP, demonstrating superior

accuracy in detecting apple flowers. Although the mAP50-95 of the

YOLOv8n-IRMB model was high, its computational complexity was

substantial. In comparison, YOLOv8n-SCSA detected apple flowers

with higher accuracy, fewer parameters, lower computational

complexity, and a smaller model size. The fusion of the two

modules into the new attention mechanism further improved both

the F1 score and mAP, while maintaining a similar model size and

parameter count. Notably, despite an increase in network layers, the

computational complexity was significantly reduced compared to

YOLOv8n-IRMB. Although detection speed was slightly slower than

that of YOLOv8n-IRMB and YOLOv8n-SCSA, the detection

accuracy showed significant improvement.
4.3 Effect of integrating attention modules
at different addition positions

To evaluate the effectiveness of the proposed ISAT attention

module, the SCSA module was integrated into two different

positions of the IRMB, as depicted in Figure 8, for attention

mechanism fusion. The performance of the models was then

compared, with the results presented in Table 8. The comparison
TABLE 7 Comparison of different attention modules.

Model
F1
/%

mAP50
/%

mAP50-
95/%

layers
Parameters

/×106 GFlOPs
Detection
speed /ms

Model
size /MB

YOLOv8n-
IRMB

88.0 93.6 54.0 330 3.1 11.3 4.1 6.5

YOLOv8n-
SCSA

88.3 93.7 54.6 290 3.0 8.2 4.3 6.3

YO-AFD 88.6 94.1 55.3 394 3.1 8.4 5.3 6.5
Bold text denotes the optimal results.
TABLE 6 Ablation experiment.

Model
C2f-
IS

FIoU
F1
/%

mAP50
/%

mAP50-
95/%

Parameters
/×106 GFlOPs

Detection
speed /ms

Model
size /MB

Training
Time /h

YOLOv8n × × 86.7 92.1 52.9 3.0 8.2 4.9 6.2 0.58

YOLOv8n-
IS

✓ × 87.2 93.6 54.0 3.1 8.4 5.0 6.5 0.57

YOLOv8n-
F

× ✓ 87.6 93.3 54.2 3.0 8.2 4.2 6.2 0.45

YO-AFD ✓ ✓ 88.6 94.1 55.3 3.1 8.4 5.3 6.5 0.50
GFLOPs (Giga Floating Point Operations Per Second) refers to the amount of floating-point operations performed during a forward propagation of a model. It is a commonly used metric to
measure the computational complexity of a model.
Bold text denotes the optimal results.
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revealed a notable variation in performance depending on the

position of the integration. In Figure 8a, the SCSA module was

used to replace the original attention matrix calculation block

within the IRMB to generate the attention matrix. However, the

performance of this configuration was suboptimal. In contrast,

Figure 8b illustrates another integration of the SCSA module

within the IRMB, which generated the ISAT attention module.

The ISAT module preserved the inverted residual structure while

effectively combining both channel and spatial attention

mechanisms. This design allowed ISAT to leverage multi-semantic

features, enhancing the ability to extract long-range dependencies.

Furthermore, ISAT was inserted into the C2f module of the network’s

neck, where it improved the model’s ability to focus on multi-scale

complex features, thereby enhancing overall detection accuracy.
5 Conclusions

In order to achieve the accurate and rapid intelligent detection of

apple flowers in complex natural environments, an apple flower

detection method, YO-AFD, based on YOLOv8 and attention
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mechanism, was proposed in this study. To fully leverage semantic

and long-range features while dynamically adjusting attention across

various scales, an ISAT attention module that integrated IRMB and

SCSA was designed. The designed attention module was then

incorporated into the C2f module of the network’s neck to form a

C2f-IS module, enhancing the model’s feature extraction capability and

multi-scale feature fusion ability. Finally, a regression loss functionbased

on FIoU was employed to calculate the loss of the model, effectively

balancing themodel’s attention between simple and challenging targets.

The test results showed that the YO-AFDmodel achieved an F1 score of

88.6%, mAP50 of 94.1% and mAP50-95 of 55.3%, respectively. The

model size of the YO-AFDwas 6.5MB and the overall processing speed

was 5.3msper image, satisfying both its lightweight design and real-time

detection requirements. Futureworkwill focuson furtheroptimizing the

model’s inference speed, as real-time detection is crucial for deployment

in agricultural applications. This can be achieved through model

pruning, quantization, and knowledge distillation. Additionally, the

detection capabilities can be expanded to other fruit flower detection

tasks, as well as the identification of flower diseases and pests. These

improvements would enhance the versatility of the model and its

practical applications in precision agriculture.
TABLE 8 Comparison of different attention fusion methods.

Model
F1
/%

mAP50
/%

mAP50-
95/%

layers
Parameters

/×106 GFlOPs
Detection
speed /ms

Model
size /MB

YOLOv8n-ISAT* 87.9 93.2 53.4 350 3.0 8.3 4.3 6.4

YOLOv8n-ISAT
(YO-AFD)

88.6 94.1 55.3 394 3.1 8.4 5.3 6.5
Bold text denotes the optimal results.
FIGURE 8

Attention modules with different fusion strategies. (a) Fusion method of ISAT*; (b) Fusion method of ISAT.
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