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Introduction: The nutrient threshold of collapse and recovery of submerged

macrophytes have been widely reported for shallow lakes. However, understanding

the threshold variation for lakes with water depth (Z) gradients remains limited.

Methods: In this study, based on a field investigation of 9 lakes with varying water

depths and nutrient levels in the Yunnan Plateau, southwest of China, we

integrated water depth to predict the nutrient threshold of collapse and

recovery of submerged macrophytes in lakes.

Results: Our results showed that: 1) Canopy-forming submerged macrophytes, i.e.

Potamogeton pectinatus andMyriophyllum spicatum, had a higher resistance to high

nutrients and turbidity; 2) Submergedmacrophyte species richness had a significantly

negative response to water depth, while biomass did not; 3) A multiplication of

turbidity (Turb) with water depth provided the best explanation for the collapse and

recovery of submerged macrophytes for lakes with large depth gradients compared

to the single variables; 4) The thresholds of ZSD/Z were 0.06 for the collapse of

submerged macrophytes and 0.53 for the recovery of submerged macrophytes; the

corresponding thresholds were 81.6 and 9.92 NTU m for Turb*Z, respectively.

Discussion:Our findings on the thresholds of macrophyte collapse and recovery

are expected to provide quantitative guidance for lake restoration of diverse

water depths.
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1 Introduction

The extinction of submerged macrophytes in lakes has become

a global ecological problem (Dakos et al., 2019; Carpenter et al.,

2022), and the explored triggering factors varied from nutrient

loading (Ibelings et al., 2007; Shang et al., 2023), fish introduction

(Zambrano et al., 2001; Hobbs et al., 2016), changes in hydrological

regime (Søndergaard et al., 1992; Wu et al., 2013), to climate

changes (Scheffer et al., 2001b; Moss et al., 2011; Zhang et al.,

2021). The disappearance of submerged macrophytes is often

unpredictable, catastrophic, and irreversible (Scheffer et al., 2001a;

Dakos et al., 2015; Janssen et al., 2021), posing a great threat to

water quality and the survival of other aquatic organisms for a long

time (Carpenter and Lodge, 1986; Jeppesen et al., 1998; Scheffer and

Carpenter, 2003).

The growth of submerged macrophytes is often affected by multiple

factors (Middelboe andMarkager, 1997; Azzella et al., 2014; Zhang et al.,

2017; Ren et al., 2022). Light has been most frequently reported as the

main limiting factor affecting submerged macrophyte growth (Madsen

et al., 2001). Generally, submerged macrophytes can only survive at

depths where light intensity reaches at least 1% of that on the water

surface (Sculthorpe, 1967). In many eutrophic lakes, the lack of light at

the lake bottom and competition for light in the water column by

phytoplankton resulted in the disappearance of submergedmacrophytes

(Blindow et al., 2006). Water depth affected the distribution of

submerged macrophytes (May and Carvalho, 2010). Many studies

have shown that deep water can attenuate underwater light intensity

and inhibit the growth and spread of submerged macrophytes

(Søndergaard et al., 2013). The abundance and maximum distribution

depth of submerged macrophytes in deeper lakes were strongly related

to light conditions (Chambers and Kalff, 1985; Sand-Jensen and

Madsen, 1991). Besides, submerged macrophytes with different

morphologies and physiologies are distributed in different water depth

ranges (Fu et al., 2014;Wen et al., 2022). Excessive nutrient input caused

the overgrowth of phytoplankton. The latter reduced the underwater

light through the shading effect, thus impeding the survival of

submerged macrophytes (Madsen et al., 2001; Sayer et al., 2010; Yu

et al., 2015; van Wijk et al., 2023).

The nutrient thresholds of collapse and recovery of submerged

macrophytes were originally proposed and widely studied for shallow

lakes. Studies included multi-lake comparison (Jeppesen et al., 1990;

Kosten et al., 2009; Wang et al., 2014), long-term monitoring

(Jeppesen et al., 1999; Ibelings et al., 2007), and paleolimnological

studies (Yang et al., 2006). A long-term observation of Lake Veluwe

in the Netherlands showed that the coverage of aquatic plants

decreased gradually when the total phosphorus (TP) increased to

0.15 mg L-1, and disappeared completely at a TP concentration higher

than 0.20 mg L-1 (Ibelings et al., 2007). Data on water parameters and

biotic factors from the 1950s to 2009 in Lake Dianchi identified that

the TN and TP concentration thresholds at which the collapse of

submerged macrophytes occurred were 1.2 mg L-1 and 0.13 mg L-1,

respectively (Wang et al., 2018). A multi-lake analysis including

empirical data from subtropical lakes on the Yangtze floodplain

found that the TP thresholds of collapse and recovery of

submerged macrophytes were 0.08-0.12 mg L-1 and 0.04-0.06 mg

L-1, respectively (Wang et al., 2014). Besides, other factors, such as
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transparency and water depth, also had limited impact on submerged

macrophytes. An empirical model between submerged macrophytes

and the ratio of Secchi depth (ZSD) to mean depth (ZM) in Yangtze

lakes found that when the ZSD/ZM threshold was less than 0.45, the

disappearance of submerged macrophytes may occur (Wang et al.,

2005). Although most of these thresholds were widely based on

shallow lakes, understanding of nutrient thresholds for lakes with

large depth gradients is still very limited.

Studies based on simulation models suggested that thresholds of

nutrients and critical turbidity for the thresholds of collapse and

recovery of submerged macrophytes generally decreased with water

depth (Genkai-Kato and Carpenter, 2005; Scheffer and van Nes,

2007; Janse et al., 2008). An empirical study based on multi-lake

comparison and long-term monitoring for the Yangtze shallow

lakes revealed that TP thresholds vary little at moderate depths,

with an assumed notable decrease when depth exceeds a level of

probably 3-4 m (Wang et al., 2014). The distribution and growth of

submerged macrophytes are closely linked to water depth, it

normally acted together with underwater light conditions and

nutrients to influence the growth of submerged macrophytes

(Middelboe and Markager, 1997; Baastrup-Spohr et al., 2016;

Chou et al., 2022; Zhang et al., 2022a). At specific eutrophication

status, deeper distribution means stronger stress of light limitation

on submerged macrophytes (Chen et al., 2023). Therefore,

compared to the single variables of nutrient or light conditions,

an integration with water depth may provide a better explanation

on changes in the collapse and recovery of submerged macrophytes

for lakes with large depth gradients.

To explore the thresholds of the collapse and recovery of

submerged macrophytes for lakes under large depth gradients, nine

lakes with a wide range of water depth and nutrient status in Yunnan

Plateau, southwestern China, were investigated. Our purposes were

fourfold: 1) To compare the responses of submerged macrophyte

biomass and species richness to single variables of nutrients (or

turbidity) or transparency and their integration with water depth; 2)

To compare the single variable of nutrients (or turbidity) or

transparency, a multiplication of nutrients (or turbidity) with water

depth and a division of transparency by water depth on the

explanation of changes in submerged macrophytes species richness

and biomass for lakes with large depth gradients; 3) To explore the

thresholds of collapse and recovery of submerged macrophytes for

lakes with large depth gradients. The findings of this study can

provide threshold conditions for lake managers to restore submerged

macrophytes for lakes with large depth gradients.
2 Materials and methods

2.1 Study area

The Yunnan Plateau is located in the southwest of China,

dominated by a subtropical highland monsoon climate with an

average annual temperature of 15-18 °C and an annual precipitation

of 1,000-1,200 mm. Nine plateau lakes (Lake Luguhu, Lake

Chenghai, Lake Yangzonghai, Lake Erhai, Lake Dianchi, Lake

Fuxianhu, Lake Xingyunhu, Lake Qiluhu, and Lake Yilonghu)
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(Figure 1) were investigated from October to November (a season

with high biomass), 2021. The total water area of these nine plateau

lakes is approximately 1,021 km2, and the total drainage area is

8,110 km2. The lake area and mean water depth rangefrom 31.7 to

297.9 km2 and 2.2 to 38.6 m, respectively. The area of Lake Dianchi,

Lake Fuxianhu, and Lake Erhai are larger than 200 km2, and the

remaining 6 lakes are smaller than 80 km2. Besides Lake Luguhu

and Lake Chenghai, all the other lakes have inflowing and

outflowing rivers (Yang et al., 2023; Fan et al., 2023).
2.2 Field sampling and analysis

The field survey included 226 sampling sites, ranging from 17 to

50 for each lake according to their surface area. Water temperature

(WT), dissolved oxygen (DO), conductivity (Cond), and pH were

measured in situ using a YSI Pro Plus (Yellow Spring Inc, USA).

Turbidity (Turb) was measured using a turbidimeter (2100 Q,

HACH, Loveland, CO, USA). Water depth (Z) was measured

using a depth sounder (Speedtech, SM-5A, USA). Transparency

was measured with a Secchi Disc. Depth-integrated water samples

were taken from three layers (surface, middle, and bottom water

depth) within each site using a 5 L polymethyl methacrylate water

sampler and then pooled into a bucket. One liter of well-mixed

water was taken back to the laboratory and stored at 0°C for analysis

of TN, TP, and phytoplankton Chlorophyll a (Chl a). TN was
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determined by using an alkaline potassium persulfate digestion-UV

spectrophotometric method, and TP was determined through an

ammonium molybdate-UV spectrophotometric method (PERSEE,

TU-1810, Beijing, China) (Huang et al., 1999). Chl a was extracted

in 90% acetone at 4°C for 24 h after filtering the water sample

through GF/C filters (Whatman, GE Healthcare UK Limited,

Buckinghamshire, UK) (Huang et al., 1999). The absorbance

values of the acetone extract were then measured at 665 nm and

750 nm by employing a spectrophotometer, both before and after

acidification with 10% HCl. Main limnological characteristics

(mean ± SD) of the sampling sites with and without macrophytes

were showed in Supplementary Table A1.

Submerged macrophytes were randomly collected (2-4 replicates)

with a grab-type sampler (0.2 m2 in sampling area). Samples were rinsed

to remove extraneous material such as sticks, macroinvertebrates, and

substrates, and the macrophytes were identified to species and counted,

to obtain the species richness (SR). The water on surface was wiped off,

and the wet weight was measured. All the samples were immediately

brought back to the lab for further analysis.
2.3 Data processing and analysis

The biomass of submerged macrophytes (BMac) was expressed by

the dry biomass of leaves and stems for vascular plants (known as

above-ground biomass). To prevent invalid values when taking
FIGURE 1

Locations of the studied lakes.
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logarithms, 0.1 was added to the biomass and species richness of

submerged macrophytes (Bachmann et al., 2002). The ‘diffslope’

function of the ‘Simba’ package in R was used to calculate the

differences in slope and intercept between the two linear

regressions of sites with and without macrophytes (Nekola and

White, 1999). Mantel tests were used to explore the potential link

between the submerged macrophyte biomass and species richness

and nutrients or light conditions and their multiplication with water

depth. Spearman’s correlation analysis identified the relevance

between nutrients, light conditions, and their multiplications with

water depth. Analysis of these processes was completed through the

‘linkET’ package in R. Redundancy discriminant analysis (RDA) and

Monte Carlo permutation tests (permutations = 999) were used to

analyze the effects of environmental factors on submerged

macrophyte biomass and species richness using the ‘vegan’ package

(Oksanen et al., 2016). All data analyses were conducted in R 4.1.3 (R

Core Team, 2021).
3 Results

3.1 Environmental variables and
submerged macrophytes

The nutrient concentrations of the studied lakes formed a clear

gradient (Table 1). The water depth of the sampling sites ranged

from 1.8 m to 24.2 m. Submerged macrophytes occurred in 74 of the

226 sampling sites. In total 17 species of submerged macrophytes

were identified (Figure 2), with 8 species having a frequency higher

than 20 and 4 lakes with ≥ 10 species, Charophyta the highest (33)

while Utricularia aurea the lowest (1) according to their occurrence

frequency of sampling sites. The occurrence frequencies of canopy-

forming submerged macrophytes were higher than others. Species

richness of submerged macrophytes in deep lakes was higher than

that in shallow lakes. According to the numbers of distributed lakes,

Potamogeton pectinatus and Myriophyllum spicatum were most

widely distributed in 8 lakes (Figure 2).
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3.2 The environment ranges of eight
frequent submerged macrophytes

The distribution of submerged macrophytes is wide across

environmental gradients. The maximum growing depth of

Charophyte was the deepest (12.5 m) and the distribution was the

widest (0.48-12.5 m), there were no significant differences for other

species (Figure 3A). Besides, the maximum transparency of the

distribution of Charophyte was the largest and the distribution

range was also the widest. However, when integrated with water

depth, the maximum ZSD/Z of the distribution of Potamogeton

wrightii was the largest among the eight frequent submerged

macrophytes and the distribution range of P. pectinatus along the

gradients of ZSD/Z was the widest range (Figures 3B, C). In general,

the distributions of the canopy-forming submerged macrophytes,

i.e. Potamogeton pectinatus and Myriophyllum spicatum had larger

and wider range of Turb, TN, and TP, which were the lowest for

Charophyte. When integrated with water depth, the distribution

range of the eight frequently submerged macrophytes along the

gradients of environmental factors changed greatly. For example,

When ZSD was combined with water depth, the distribution range

of Potamogeton maackianus along the ZSD/Z gradients expanded

notably. Conversely, when Turb, TN, and TP were integrated with

water depth, this range contracted significantly. Vallisneria natans

had no greater changes when ZSD integrated with water depth, but

increased a lot when Turb, TN, and TP integrated with water

depth (Figure 3).
3.3 Relationships of Turb, ZSD, and Chl a
with nutrients for sampling sites with and
without macrophytes

The ecosystem states, i.e. Turb, ZSD, and Chl a, all showed

significantly positive relationships with TN and TP for sampling

sites with and without macrophytes (p < 0.001). Besides, Turb and

ZSD also showed significantly positive relationships with Chl a (p <
TABLE 1 Main limnological characteristics (mean ± SD) of the sampling sites in nine studied lakes.

Studied
lakes

Area
(km2)

ZMax

(m)
ZMin

(m)
ZM

(m)
TN

(mg/L)
TP

(mg/L)
Chl a
(µg/L)

Turb
(NTU)

L. Fuxianhu 216.6 14.3 1.9 9.1 ± 4.5 0.13 ± 0.04 0.004 ± 0.002 1.93 ± 0.46 0.6 ± 0.2

L. Luguhu 48.5 69.4 1.3 24.2 ± 22.0 0.11 ± 0.02 0.006 ± 0.002 0.76 ± 0.18 0.7 ± 0.2

L. Chenghai 77.2 26.8 4.7 19.7 ± 7.2 0.56 ± 0.12 0.03 ± 0.01 8.54 ± 5.55 2.0 ± 0.8

L. Yangzonghai 31.7 27.5 0.5 14.4 ± 9.8 0.77 ± 0.06 0.03 ± 0.006 6.58 ± 3.96 2.1 ± 0.7

L. Erhai 249.0 20.0 0.8 7.2 ± 4.9 0.99 ± 0.85 0.05 ± 0.06 32.54 ± 31.54 3.5 ± 3.1

L. Dianchi 297.9 6.7 0.4 4.5 ± 1.7 2.00 ± 0.43 0.06 ± 0.04 44.07 ± 25.81 27.4 ± 7.2

L. Xingyunhu 34.7 10.3 1.3 5.9 ± 3.0 1.81 ± 0.40 0.08 ± 0.03 51.91 ± 46.86 18.6 ± 14.8

L. Yilonghu 38.0 4.5 0.7 1.8 ± 0.9 3.22 ± 0.21 0.10 ± 0.01 84.00 ± 10.72 48.6 ± 11.1

L. Qiluhu 36.9 6.0 1.4 3.5 ± 4.6 4.00 ± 0.87 0.14 ± 0.01 83.06 ± 14.60 21.5 ± 13.0
Area, the area of the studied lakes; ZM, the mean water depth; ZMax, the maximum water depth; ZMin, the minimum water depth; TN, total nitrogen; TP, total phosphorus; Chl a, phytoplankton
chlorophyll a; Turb, turbidity.
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0.001). But there were no notable differences in the relationships

between sampling sites with and without macrophytes, only found

significant difference in the relationship of Turb with TN between

sampling sites with and without macrophytes. The scatterplots for

sampling sites with and without macrophytes overlapped along the

full gradients of x-variables; the pairs of sampling sites mixed

together for the relations of log10Turb, log10ZSD, and log10Chl a

against the nutrients and the relations of log10Turb and log10ZSD
against log10Chl a (Figure 4).
3.4 Relationships between submerged
macrophyte biomass, species richness and
environmental factors

Mantel analysis showed that the biomass of submerged

macrophytes (BMac) had highly positive correlations with Z and

negative correlations with TN, TP, and Chl a (p < 0.05, Figure 5),

while the species richness of submerged macrophytes (SR) indicated

positive correlations with ZSD/Z and negative correlations with Z,

TN*Z, TP*Z, and Turb*Z (p < 0.05, Figure 5).

As for regression analysis, the biomass of submerged

macrophytes increased remarkably with increasing ZSD (p < 0.05,

Figure 6), while decreased significantly with growing Turb, TN, and

TP (p < 0.05, Figure 6). However, it showed no relationships with Z.

The biomass of submerged macrophytes also indicated same trends

with multiplications of nutrient concentrations (or turbidity)

with water depth and a division of transparency by water depth,

although only obvious relationships were found with TN*Z and
Frontiers in Plant Science 05
TP*Z (p < 0.05, Figure 6). The species richness of submerged

macrophytes showed no relationships with ZSD, Turb, TN, and

TP, while increased significantly with growing ZSD/Z (p < 0.01,

Figure 6) and saw a notable decline with increasing Z, Turb*Z,

TN*Z, and TP*Z (p < 0.01, Figure 6).

The histograms showed the correlation coefficient (R) of biomass

and species richness with Z, ZSD, Turb, TN, TP, ZSD/Z, Turb*Z,

TN*Z, and TP*Z. The absolute values of R between BMac and ZSD,

Turb, TN, and TP were higher than that when ZSD, Turb, TN, and TP

integrated with water depth, however, the absolute values of R

between SR and ZSD, Turb, TN, and TP were less than that when

ZSD, Turb, TN, and TP integrated with water depth (Figure 6).

The redundancy analysis revealed that 48.07% of the overall

variability was explained by the first two principal components

(RDA1 and RDA2) (Figure 7). Among the assessed physicochemical

factors, Z was the most significant variable that influenced submerged

macrophyte biomass and species richness (p < 0.001).
3.5 The thresholds of collapse and
recovery of submerged macrophytes

When plotting the submerged macrophyte biomass and species

richness against ZSD and Turb, no folded bifurcation was found. The

scatterplots for sampling sites with and withoutmacrophytes overlapped

along the full gradients of x-variables (Figures 8A, C, E, G). While

multiplying ZSD and Turb by water depth, a clear folded bifurcation

emerged for their relations with log10(BMac+0.1) and log10(SR+0.1)

(Figures 8B, D, F, H).
FIGURE 2

The occurrence frequencies of identified submerged macrophytes in the nine studies lakes (The points indicate the presence of submerged
macrophyte species in the lakes. U. aurea, Utricularia aurea; P. crispus, Potamogeton crispus; P. perfoliatus, Potamogeton perfoliatus; Eg. Densa,
Egeria densa; El. Canadensis, Elodea canadensis; N. marina, Najas marina; N. minor, Najas minor; P. lucens, Potamogeton lucens; O. acuminata,
Ottelia acuminata; P. wrightii, Potamogeton wrightii; H. verticillata; Hydrilla verticillata; P. maackianus, Potamogeton maackianus; P. pectinatus,
Potamogeton pectinatus; C. demersum, Ceratophyllum demersum; M. spicatum, Myriophyllum spicatum; V. natans, Vallisneria natans).
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The thresholds of collapse and recovery of submerged

macrophytes in lakes with large water depth spans were 0.06 and

0.53 for ZSD/Z, 81.6 and 9.92 NTU m for Turb*Z, respectively.
4 Discussion

The study found that Potamogeton pectinatus and Myriophyllum

spicatum were most widely distributed in the investigated lakes, with a

larger nutrient and turbidity ranges. In other words, they had a higher

resistance to high nutrients and turbidity, which was consistent with

other survey (Li et al., 2017). Potamogeton pectinatus and

Myriophyllum spicatum both belongs to canopy-forming submerged

macrophytes with long branches and vigorous crown. Due to the high

growth rate, canopy-forming submerged macrophytes can
Frontiers in Plant Science 06
concentrate at or near the water surface and have strong

competition ability for light and space (Chambers and Kalff, 1987;

James et al., 2004). Compared with other growth forms, canopy-

forming macrophytes have a high tolerance to eutrophication (Zhang

et al., 2022b). As a result, when the water quality deteriorates, canopy-

forming submerged macrophytes gradually replace other growth

forms as the main dominant species (Jeppesen et al., 2000; Sand-

Jensen et al., 2017; Murphy et al., 2018).

Our study further found that submerged macrophyte species

richness was more susceptible to the combinations of nutrient (or

turbidity) or light conditions with water depth than single variables

of nutrient or light conditions, while biomass showed the opposite

patterns. The main reason is that water depth had a substantial

negative effect on species richness, with no impact on biomass,

which was in accordance with other previous study (Fu et al., 2014).
FIGURE 3

The distribution ranges of the eight frequent submerged macrophytes along the gradients of (A) water depth, (B) transparency, (D) turbidity, (F) TN -
total nitrogen, (H) TP - total phosphorus and along most of them integrated with water depth e.g., (C) transparency, (E) turbidity, (G) TN, (I) TP (C.
demersum, Ceratophyllum demersum; V. natans, Vallisneria natans; H. verticillata; Hydrilla verticillata; M. spicatum, Myriophyllum spicatum; P.
wrightii, Potamogeton wrightii; P. pectinatus, Potamogeton pectinatus; P. maackianus, Potamogeton maackianus).
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Water depth can more directly bring about light reduction and the

stress of water pressure of submerged macrophytes (Schwarz et al.,

1996; Søndergaard et al., 2013). With the increase of water depth

and the attenuation of light, canopy-forming species, i.e. P.

pectinatus and P. maackianus with higher light demand cannot

survive and are replaced by bottom-dwelling and rosette-forming

species with low light requirement. In our study, Charophyta was

the only taxon where the water was deeper than 7 m. Due to the

absence of competition from other species for space and light in
Frontiers in Plant Science 07
deep water, charophytes were able to proliferate in large numbers

and formed dense and extensive “underwater meadows” with

enormous biomass (Middelboe and Markager, 1997). Therefore,

although the numbers of species in submerged macrophyte

community decreased as the water depth increased, the overall

biomass showed no obvious reduction.

Our study found that the thresholds of collapse and recovery of

submerged macrophytes in deep lakes were 0.06 and 0.53 for ZSD/Z,

81.6 and 9.92 NTU m for Turb*Z, respectively. Compared to Yangtze
FIGURE 4

Relationships of Turb (A, B), ZSD (C, D), and Chl a (E, F) with TN and TP and relationships of ZSD (G) and Turb (H) with Chl a for sampling sites with
(Blue points) and without macrophytes (Red points).
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FIGURE 6

Linear regressions between submerged macrophyte biomass (BMac) and species richness (SR) and ZSD, Turb, TN, TP, ZSD/Z, Turb*Z, TN*Z, and TP*Z.
Histograms showed the values of correlation coefficient (R) of biomass (BMac) and species richness (SR) with ZSD, Turb, TN, TP, ZSD/Z, Turb*Z, TN*Z,
and TP*Z.
FIGURE 5

Pairwise correlations of environmental factors are shown with a color gradient denoting Spearman’s correlation coefficient. Submerged
macrophytes biomass (BMac) and species richness (SR) were related to each environmental factor by Mantel tests (The size of the square stands for
the size of the Spearman’s correlation coefficient).
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River Plain lakes, the thresholds for ZSD/Z of collapse of submerged

macrophytes in Yunnan Plateau lakes were much lower than that in

Yangtze River Plain lakes (Yunnan Plateau lakes: 0.06 and Yangtze

River Plain lakes: 0.45). It seemed that the submerged macrophytes in

Yunnan Plateau lakes had a higher resistance to low light than those in

Yangtze River Plain lakes. The higher stoichiometric characteristics of

submerged macrophytes in Yunnan Plateau lakes can best explain it

(Xing et al., 2013; Li et al., 2017). For instance, the contents of C, N,

and P ofM. spicatum in Yangtze River Plain lakes were 359.87, 12.09,

and 2.92 mg g-1, respectively, while the contents were 425.11, 22.84,

and 3.06 mg g-1 in Yunnan Plateau lakes. The similar values were also

found for P. malaianus (Xing et al., 2013; Li et al., 2017). Under

stresses, plants can produce various kinds of primary and secondary

metabolites, i.e. enzyme to protect themselves, while, C, N, and P are

the basic elements for the synthesis of various enzymes. Submerged

macrophytes may accumulate additional C, N, and P to improve their

resistance to low light. Besides, the difference in the UV part of the

spectrum between the Yunnan Plateau and Yangtze plain may also

influence the distribution of submergedmacrophytes. UV-B radiation,
FIGURE 8

Relationships between log10TN (A, C), log10(TN*Z) (B, D), log10TP (E, G), log10(TP*Z) (F, H) with log10(BMac+0.1) and log10(SR+0.1) (Blue points indicate
the sampling sites with macrophytes, red points indicate the sampling sites without macrophytes).
FIGURE 7

Redundancy analysis (RDA) of environmental factors and submerged
macrophyte biomass (BMac) and species richness (SR).
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which is harmful to organisms, can penetrate several meters or even

tens of meters into the water column (Smith et al., 1992). Due to the

negative effects of strong UV-B on the physiological characteristics of

submerged macrophytes, macrophytes may shift to greater depths to

avoid damage (Yuan et al., 2019). Therefore, the collapse thresholds

for ZSD/Z of submerged macrophytes in Yunnan Plateau lakes were

much lower than those in Yangtze River Plain lakes.

Previous studies on the thresholds of disappearance of

submerged macrophytes was commonly focused on shallow lakes

(Bayley and Prather, 2003; Ibelings et al., 2007; Wang et al., 2014). It

had been identified turbidity and transparency as key environmental

factors, which influenced the survival of submerged macrophytes in

shallow lakes (Scheffer et al., 1993; Wang et al., 2014; van Wijk et al.,

2023). However, due to nonnegligible effect of water depth on the

survival of submerged macrophytes in deep lakes (Jeppesen et al.,

2007; Kosten et al., 2009), the thresholds in deep lakes were different

from shallow lakes (Jeppesen et al., 1990; Bachmann et al., 2002;

Kosten et al., 2009; Wang et al., 2014), which may mainly depend on

the differences of lake morphometry (Genkai-Kato and Carpenter,

2005; Kosten et al., 2009). For instance, the average water depth in

this study was 10.03 m (1.79-24.19 m), which is much deeper than

other lakes such as Lake Væng (1.2 m), Lake Veluwe (1.5m), and Lake

Baoan (1.9 m) (Jeppesen et al., 1999; Ibelings et al., 2007; Wang et al.,

2014). Because of the good variation of BMac along the gradients of

ZSD/Z and Turb*Z (contrary to the situation when water depth was

removed), the thresholds of collapse and recovery of submerged

macrophytes in deep lakes had a great dependence on the water

depth. However, there was also a certain relevance between the

thresholds for the two types of lakes. Turb and nutrients

(promoted the growth of phytoplankton and then had a shading

effect) can affect underwater light conditions and thus affect the

distribution of submerged macrophytes (Schelske et al., 2010;

Arthaud et al., 2012; Olsen et al., 2015; Zhang et al., 2016), but

water depth can more directly bring about light reduction and the

stress of water pressure (Schwarz et al., 1996; Søndergaard et al.,

2013). It seemed that underwater light conditions were the most

important factors affecting the survival of submerged macrophytes.

Turb, ZSD, Chl a, nutrient, and water depth all restricted the

maximum growing depth of submersed macrophytes (Chambers

and Kalff, 1985; Søndergaard et al., 2013). Therefore, the survival of

submerged macrophytes in lakes with different depths mainly

depended on the demand of light.
5 Conclusions

In the present study, we found that: 1) Canopy-forming

submerged macrophytes, i.e. Potamogeton pectinatus and

Myriophyllum spicatum, were most widely distributed in the

investigated lakes, with a higher resistance to high nutrients and
Frontiers in Plant Science 10
turbidity; 2) Submerged macrophyte species richness had significant

negative response to water depth, while biomass did not; 3)

Compared to the single variables, a multiplication of turbidity and

a division of transparency with water depth provided a better

explanation on predicting the thresholds of collapse and recovery

of submerged macrophytes for lakes with large depth gradients.; 4)

The thresholds of ZSD/Z were 0.06 for the collapse of submerged

macrophytes and 0.53 for the recovery of submerged macrophytes;

the corresponding thresholds were 81.6 and 9.92 NTUm for Turb*Z,

respectively. Our findings demonstrate that the role of water depth

should be taken into account when restoring submergedmacrophytes

in the management of lakes with large depth gradients.
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