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Introduction: Abiotic stress significantly reduces thewheat yield by hindering several

physiological processes in plant. Stay-green (SG) and stem reservemobilization (SRM)

are the two key physiological traits, which can contribute significantly to grain filling

during stress period. Validation of genomic regions linked to SG and SRM is needed

for its subsequent use in marker-assisted selection in breeding program.

Methods: Using a physiological and gene expression approach, quantitative trait

loci (QTLs) for stay-green (SG) and stem reserve mobilization (SRM) were validated

in a pot experiment study using contrasting recombinant inbred lines including its

parental lines (HD3086/HI1500) in wheat. The experiment was laid down in a

completely randomized design under normal (control, drought) and late sown

(heat and combined stress) conditions during the 2022-2023 rabi season. Drought

stress was imposed by withholding irrigation at the anthesis stage, whereas heat

stress was imposed by 1-month late sowing compared to the normal sowing

condition. Combined stress was imposed by 1-month late sowing along with

restricted irrigation at the flowering stage. Superior lines (HDHI113 and HDHI87)

had both SG and SRM traits, whereas inferior lines (HDHI185 and HDHI80) had

contrasting traits, i.e., lower SG and SRM traits. HD3086 and HI1500 had SG and

SRM traits respectively. Potential candidate genes were identified based on the

flanking markers of the mapped QTLs using the BioMart tool in the Ensembl Plants

database to validate the identifiedQTLs. Real-time gene expressionwas conducted

with SG-linked genes in the flag leaf and SRM-linked genes in the peduncle.

Results and Discussion: In this study, HDHI113 and HDHI87 showed higher

expression of SG-related genes in the flag leaf under stress conditions.

Furthermore, HDHI113 and HDHI87 maintained higher chlorophyll a content of

7.08 and 6.62 mg/gDW, respectively, and higher net photosynthetic rates (PN) of

17.18 and 16.48 µmol CO2/m
2/s, respectively, under the combined stress

condition. However, these lines showed higher expression of SRM-linked

genes in the peduncle under drought stress, indicating that drought stress

aggravates SRM in wheat. HDHI113 and HDHI87 recorded higher 1,000-grain
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weights and spike weight differences under combined stress, further validating

the identified QTLs being linked to SG and SRM traits. Henceforth, the identified

QTLs can be transferred to developed wheat varieties through efficient breeding

strategies for yield improvement in harsh climate conditions.
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1 Introduction

Wheat is an important staple food crop of humankind;

however, its production potential is hindered due to drought,

heat, and combined stress (Kumar et al., 2021; Meena et al.,

2023). Due to a decline in precipitation and an increase in air

temperature, the effects of global warming have become much more

noticeable. In addition, crop yield is significantly affected by the

frequent combined action of heat and drought stress (Sato et al.,

2024). To ensure global food and nutritional security by 2050, there

must be a major improvement in the rate of genetic gain in crop

yield, quality, input use efficiency, and adaptation to biotic and

abiotic challenges (Kumar et al., 2016). Delving into this, it is

imperative to develop wheat varieties with increased resilience to

abiotic stress. Stay-green (SG) and stem reserve mobilization (SRM)

are two important physiological traits that can be targeted for yield

improvement in wheat in the current era of global climate change.

Thus, the identification of genomic regions linked to SG and SRM

and the mining of candidate genes within the quantitative trait locus

(QTL) region are of utmost importance for future breeding

approaches for yield enhancement in wheat.

SG is a trait in which leaves retain green tissue from flowering to

physiological maturity instead of senescing and it is considered an

important trait for grain filling (Zhang et al., 2019). SG traits

improve the grain yield by improving photosynthetic capacity,

retaining higher chlorophyll content, and extending the grain

filling period (Reynolds et al., 2000; Kumari et al., 2013; Pinto

et al., 2016). It is well known that rubisco is the most abundant

protein in the earth. Although both large (rbcL) and small subunits

of proteins (rbcS) are required for the functionality of a protein, the

amount of rubisco in plant has been thought to be influenced by the

transcript levels of rbcS (Kumar et al., 2022). In addition,

chlorophyll degradation is a marker of leaf senescence and is

catalyzed by six chloroplast-localized chlorophyll catabolic

enzymes namely, non-yellow coloring 1(NYC1)/NYC1-like

(NOL), 7-hydroxymethyl chlorophyll a reductase (7-HCAR),

magnesium dechelatase, pheophytin pheophorbide reductase

(PPH), pheophorbide a oxygenase (PAO), and red chlorophyll

catabolite reductase (RCCR) (Hörtensteiner and Kräutler, 2011).

Furthermore, leaf senescence is also regulated by proteases such as

aspartic protease (Kato et al., 2004), leaf nutritional status such as

potassium (K+) in the flag leaf (Hosseini et al., 2016), and glutamate
02
decarboxylase, a rate-limiting enzyme of GABA (gamma-

aminobutyric acid) cycle (Khan et al., 2021). SG is also controlled

by the photosystem-II activity of mesophyll cells and antioxidant

status (Luo et al., 2013; De Simone et al., 2014). It was demonstrated

that D-1-pyrroline-5-carboxylate synthase 2 (P5CS2), a proline

biosynthetic enzyme, was highly expressed in SG sorghum line

than in senescent lines (Johnson et al., 2015). Plant hormones such

as cytokinin delay leaf senescence in plants (Wu et al., 2021; Glanz-

Idan et al., 2022). Although isopentenyl transferase is the rate-

limiting step in cytokinin biosynthesis, lonely guy (LOG) also

catalyzes the direct activation of cytokinin biosynthesis (Kuroha

et al., 2009), thereby contributing to SG traits.

During stress, stem reserves, particularly fructans, serve as a

potential buffer for grain filling, when current leaf photosynthesis is

inhibited by various stress (Blum, 1998). Stem reserves can

contribute 20% to 40% of the final grain weight in non-stressed

environments (Vignjevic et al., 2015), which can rise up to 70%

under stressed conditions during grain filling (Rebetzke et al., 2008).

The plant hormone ABA enhances the fructans metabolism in

wheat (Valluru, 2015; Zhang et al., 2020) and a correlation between

the expression of NCED1 and ABA content and the remobilization

of stem water-soluble carbohydrates (WSCs) has been well

demonstrated (Xu et al., 2016). Furthermore, sucrose non-

fermenting-1 related protein kinase1 (SnRK1) regulates the

transcriptional network through the phosphorylation of

transcription factors in response to sugar starvation and energy

stress (Baena-González et al., 2007; Mair et al., 2015). In addition,

pentatricopeptide-repeat (PPR) containing protein genes were

found to be associated with stem WSCs in bread wheat (Dong

et al., 2016), indicating the possible involvement of PPR genes in

SRM. The involvement of endoglucanase in stem WSC

accumulation and remobilization in wheat was reported by

Guerra et al. (2021) using the genome-wide association study

(GWAS) approach. However, SG and SRM are two mutually

exclusive traits (Blum, 1998) that can be combined to improve

the grain filling in wheat under stress conditions. In our previous

study, we mapped 11, 2, and 1 QTLs for soil plant analysis

development (SPAD) value, leaf senescence rate, and SRM

efficiency, respectively, in wheat under stress conditions (Taria

et al., 2023).

To our knowledge, functional molecular markers for SG and

SRM in wheat are not available. Furthermore, there is a lack of
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research on breaking the negative linkage between SG and SRM to

pyramid these traits to enhance resource availability for grain filling

under stress conditions. Moreover, the QTLs for SRM are

unmapped for use in marker-assisted selection (MAS). Thus, it is

necessary to unveil the genomic regions linked to these traits for

further use in MAS. Given the fact mentioned above, four selected

lines from our previous study (Taria et al., 2023) including two

parental lines (HD3086/HI1500) were used to validate the identified

QTLs by employing a physiological approach and in-vivo gene

expression of QTL-linked genes. Leaf gas exchange studies were

conducted using a portable infrared gas analyzer (IRGA) and

photosynthetic pigment studies were accomplished using a

spectrophotometer. Principal component analysis and clustering

analysis were conducted to find out the latent variables and to check

the variability in these lines. In this study, it was confirmed that the

identified QTLs governed the SG and SRM traits by modulating the

expression of the putative candidate genes. The identified genes can

be further manipulated by gene editing technologies for further

improvement in these traits. Furthermore, the superior lines,

HDHI113 and HDHI87, can be used as donor parents for SG and

SRM traits in elite wheat cultivars.
2 Materials and methods

2.1 Plant materials

A total of six lines (HDHI113, HDHI87, HDHI185, HDHI80,

HD3086, and HI1500) were grown at a pot culture experimental site

at the Division of Plant Physiology, IARI, New Delhi. Four lines

(HDHI113, HDHI87, HDHI185, and HDHI80) were selected from

our earlier experiment during the 2021-2022 rabi season (Taria

et al., 2023). The set of contrasting lines was selected using the

multi-trait genotype-ideotype index (MGIDI) across multi-

environment stress conditions (Olivoto and Nardino, 2021).

HDHI113 and HDHI87 have combined SG and high SRM

potential, whereas HDHI185 and HDHI80 have non-SG and

lower SRM potential traits. The selected lines were evaluated

under normal and late-sown conditions during the 2022-2023

rabi season. Drought stress was imposed at the anthesis stage by

withholding irrigation after the booting stage. Heat stress was

imposed by 1-month delayed sowing compared to the normal

sown condition. In contrast, combined heat and drought (HD)

stress was imposed by delayed 1-month sowing with restricted

irrigation after the booting stage to impose drought stress at the

anthesis stage. The temperature (minimum and maximum

temperatures in °C) and rainfall (mm) during the wheat cropping

season (2022-2023) are depicted in Supplementary Figure S1. The

maximum and minimum temperatures at the time of anthesis

under the control, drought, heat, and combined stress conditions

are given in Supplementary Table S1. The average temperature at

anthesis in the normal sown condition was 15.5°C, whereas an

average temperature of 24.3°C was recorded in the late-

sown condition.
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2.2 Measurement of soil moisture content

The soil moisture content (SMC %) was estimated periodically

from the anthesis stage up to physiological maturity under the

control, drought, heat, and combined stress conditions. Fresh soil

samples of 25g were taken from the rooting zone of potted plants

and kept in a hot oven at 105°C. The SMC was calculated according

to Faulkner et al. (1989) and calculated as

SMC =
FM − DM

DM
 � 100

where FM represents soil fresh mass (g) and DM represents soil

dry mass (g).

The SMC at different developmental stages under the control,

drought, heat, and combined stress is depicted in Supplementary

Figure S2.
2.3 E-mapping of candidate genes in the
identified SG and SRM QTLs

The potential candidate genes were selected from identified QTLs

for SG (SPAD and LSR) and SRM traits (Taria et al., 2023). To identify

potential candidate genes, the flankingmarker was used to search in the

Chinese Spring (CS) wheat genome using the BioMart tool, available in

the Ensembl Plants database (https://plants.ensembl.org/biomart/

martview). The list of selected candidate genes and respective

primers are given in Supplementary Table S2.
2.4 Primer design and quantitative real-
time PCR analysis

Primers were designed using the PrimerQuest™ tools available at

Integrated DNA Technology (IDT) software (https://www.idtdna.com/

PrimerQuest/Home/Index). The primers were designed by selecting

quantitative PCR (qPCR) with two primer (intercalating dyes) icons

available in IDT software. The selection of the primers was done by

checking the hairpin (secondary) structures of the primer list and

cross-checking their melting temperature and DG value

(Supplementary Table S2). The amplicon size of the genes was

also confirmed using the sequence manipulation suite (SMS) tool

(https://www.bioinformatics.org/sms).

Plant flag leaf and peduncle RNA were isolated using a Sigma™

Plant Total RNA kit. For the removal of the trace amount of

genomic DNA from the RNA sample, column DNase I digestion

was used. The quality and quantification of isolated RNA were

checked using 1.2% agarose gel electrophoresis (for integrity) and a

spectrophotometer (Nano Drop™ 1000, Thermo Fisher Scientific)

respectively. The gel was run for 5V/cm for 60 min.

A Thermo Scientific Verso cDNA synthesis kit was used for the

synthesis of complementary DNA (cDNA) from the RNA sample.

Anchored Oligo dT primers were used to provide flexible RNA

priming for cDNA synthesis. In total, 20μl of the reaction mixture
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(5X cDNA synthesis buffer, dNTP mix, RNA primer, Verso

Enzymes Mix, RNA template, and nuclease-free water) was

provided with a thermal cycle of 30 min at 42°C for 1 cycle

followed by inactivation for 2 min at 95°C for 1 cycle. To check

the amplification of cDNA, a normal PCR reaction was set up with

housekeeping gene primers (actin genes).

The real-time quantitative PCR reaction was performed using a

Step One Plus TM real-time detection system to determine gene

expression under the control, drought, heat, and combined stress

conditions and 10μl of reaction mixture (SYBR, Forward primer,

Reverse primer, cDNA, High ROX and Nuclease free water) was

used in the reaction. The program was set at 95°C for denaturation

followed by an annealing temperature of 58°C for primer binding.

Finally, 72°C was set for the final extension. Two melt peaks were

recorded for two genes put in one plate (24 samples for each gene)

for confirmation of the specific gene amplification. Fold changes in

gene expression (as 2DCt) were calculated by the comparative Ct

method (Schmittgen and Livak, 2008), where DCt = [Ct target gene

- Ct reference gene]. Actin was set as the reference gene

(housekeeping gene) for normalization of the gene expression data.
2.5 Estimation of leaf chlorophyll and
carotenoid concentration

At the anthesis stage, the concentration of chlorophyll and

carotenoids in the flag leaves was determined according to the

method outlined by Hiscox and Israelstam (1979). 6 mg of fresh

leaf sample was added to the test tube containing 6 ml of dimethyl

sulfoxide (DMSO). Tubes were kept in the dark for 4 h at 65 °C. The

sample was then removed and cooled at room temperature. The

absorbance of a known volume of leachates was measured at 663

and 645 nm for the leaf chlorophyll concentration and 480, 649, and

665 nm for the total leaf carotenoid concentration. Chlorophyll a

(Chl a), chlorophyll b (Chl b), and total chlorophyll content (Total

Chl) were estimated using the formula given by Arnon (1949), while

total carotenoid content (Total Car) was determined by following

the formula provided by Wellburn (1994) as follows:

Chlorophyll a =
½(12:7� A663) − (2:69� A645)� � V

(1000�W)

Chlorophyll b =
½(22:9� A645) − (4:68� A663)� � V

(1000�W)

Total chlorophyll  =
½(20:2� A645) + (8:02� A663)� � V

(1000�W)

For the calculation of the total carotenoids, the following

formulae were used

Ca = (12:19� A665 − 3:45� A649)

Cb = (21:99� A649 − 5:32� A665)
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Total carotenoids

=
½(1000� A480) − (2:14� Ca) − (70:16� Cb)� � V

220�W

Whereas,

A480 = Absorbance values at 480 nm

A645 = Absorbance values at 645 nm

A649 = Absorbance values at 649 nm

A663 = Absorbance values at 663 nm

A665 = Absorbance values at 665 nm

W = Weight of the sample in g

V = Volume of the solvent used (ml)

For dry weight conversion, 1 g of fresh leaf tissue was kept in a

hot oven (70 °C) to obtain the dry weight of the respective samples

and the chlorophyll and carotenoid concentrations were expressed

on a dry weight basis (Dwivedi et al., 2018). The percentage

decrease of photosynthetic pigments under stress was calculated

with reference to the control condition.
2.6 Measurement of gas exchange traits

Gas exchange traits were measured in fully expanded (sunlit

exposed) flag leaves using a portable IRGA, model LI6400XT (Li-

COR Ltd., Lincoln, Nebraska, USA), at the anthesis stage. All the

parameters were measured between 10:00 am and 11:00 am by

providing an artificial light source of 1,000 μmol (photon) m-2 s-1

(Dwivedi et al., 2018). The recorded parameters were net

photosynthetic rate (PN), stomatal conductance to water vapor

(gsw), transpiration rate (E), and instantaneous water use

efficiency (WUEi). WUEi was calculated by dividing the net

photosynthetic rate (PN) by the transpiration rate (E) (Yan et al.,

2015; Redhu et al., 2024). The percentage decrease in PN under

stress was calculated in reference to the control condition.
2.7 1000-grain weight and spike
weight difference

For SG traits, we recorded the 1000-grain weight (TGW) of each

line at physiological maturity. For SRM traits, all the leaves of the

five main culms were defoliated at 12 days after anthesis and the

stem weight was recorded. The remaining five defoliated culms were

left in the field and were sampled at physiological maturity by

allowing the mobilization of stem reserve from stems to grains.

Spike weight difference (SWD) was calculated by adopting the

methods described by Ehdaie et al. (2006) as follows:
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Spike weight difference  =

Spike weight at physiological maturity − Spike weight at 12 days after anthesis
Spike weight at physiological maturity

� 100
2.8 Statistical analysis

The least significant difference (LSD) test was conducted to

check significant differences among the lines at a = 0.05 (n=5).

Principal components were extracted using the FactomineR package

and enhanced visualization was carried out using the factoextra

package. Agglomerative clustering was performed using Euclidean

distance measures. A hierarchical rectangular dendrogram was

created using the hclust function by following the agglomeration

methods of Ward.D2. In addition, the cluster score was calculated

as a weighted linear combination of physiological traits (i.e.,

summation of weightage multiplied by their respective

physiological trait), where Xi referred to the mean value of the ith
physiological trait of a given cluster and Wi referred to the

weightage associated with the ith physiological trait of a given

cluster. The weightage was obtained from the commonalities in

the PCA analysis. The cluster score was calculated by the methods

described by Nagar et al. (2015). Figures were created using the

inbuilt ggplot2 package in R. Values are presented in the graphs as

the means of traits, whereas vertical bars represent standard error.

The gene expression of candidate genes was visualized through

a heat map using the “pheatmap” package in R. A spider network

chart was prepared using the “fmsb” package in R.
Frontiers in Plant Science 05
3 Results

3.1 Gene expression analysis of potential
candidate genes

The RT-PCR analysis revealed that the superior lines, HDHI113

and HDHI87, showed a higher expression of photosynthesis-related

genes such as a LHCII-type chlorophyll a-b binding protein

(TraesCS5B02G353200), PSB28 protein (TraesCS5B02G516600),

chlorophyll synthase (TraesCS1D02G226100), and rubisco small

subunit (TraesCS2B02G079100). These lines also recorded a higher

expression of L-ascorbate peroxidase (TraesCS2B02G096200),

pyrroline carboxylate synthase (TraesCS3B02G395900), and

cytokinin riboside 5’-monophosphate phosphoribohydrolase

LOGL10 (TraesCS1A02G156100) under the combined stress

condition. Furthermore, the superior RILs exhibited a lower

expression of the TraesCS1D02G241000 gene, encoding 7-HCAR,

compared to the inferior RILs under the combined stress condition

(Figure 1A). Expression analysis of senescence-associated genes

were also studied. The superior RILs, HDHI113 and HDHI87,

showed a lower expression of aspartyl protease family protein 2-

like (TraesCS2D02G112800) compared to the inferior RILs and

parents under combined stress conditions. Furthermore, expression

of potassium transporter-9 (TraesCS2D02G106600) and glutamate

decarboxylase1-like (TraesCS4B02G052300) was found to be higher

in the superior RILs under the drought, heat, and combined stress

conditions (Figure 1B).

Gene expression analysis of putative candidate genes for SRM was

also conducted in the stem peduncle at 12 DAA under the multi-
FIGURE 1

Relative gene expression of stay-green-related genes (A), leaf senescence-related genes (B), and stem reserve mobilization-related genes (C) under
drought, heat, and combined stress conditions.
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environment stress condition. In this study, we found a higher

expression of PPR5 (TraesCS6B02G332800), endoglucanse-8-like

(TraesCS6B02G368000), serine-threonine protein kinase-OSR1-like

(TraesCS6B02G386100), and NCED1 (TraesCS6B02G298800) in the

superior lines (HDHI113 and HDHI87) under the drought stress

condition followed by the combined stress, control, and heat stress

conditions, respectively (Figure 1C).

From the gene expression study, it was observed that the

superior lines had a higher expression of SG-related genes and a

lower expression of 7-HCAR under the drought, heat, and

combined stress conditions. However, the superior lines had

higher transcript levels of SRM-related candidate genes under the

drought stress condition, indicating that drought stress aggravated

the mobilization of stored carbon to grains.
3.2 Effect of drought, heat, and combined
stress on photosynthetic pigments

Lower concentrations of Chla, Chlb, total Chl, and total Car

were observed under drought, heat, and combined stress,

respectively, compared to the control condition at the anthesis

stage in wheat for all the lines tested, including the parental lines

(Supplementary Table S3). However, a lower level of leaf

photosynthetic pigment was observed under combined stress

compared to individual stress. A significant difference in

photosynthetic pigment was observed between the superior and

inferior lines across all the environmental conditions. Under

combined stress, HDHI113 recorded the highest chlorophyll a

concentration of 7.08 mg/gDW (14.91% decrease), whereas

HDHI185 recorded the lowest chlorophyll a concentration of 4.55
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mg/gDW (30.09% decrease) (Figure 2A). For chlorophyll b,

HDHI113 recorded the highest chlorophyll b concentration of

2.78 mg/gDW (8.24% decrease), whereas HDHI185 and HDHI80

recorded the lowest chlorophyll b concentration of 0.49 mg/gDW

(79.53% and 79.58% decreases respectively) under the combined

stress condition (Figure 2B). For total chlorophyll, HDHI113

recorded the highest total chlorophyll concentration of 9.86 mg/

gDW (13.14% decrease), whereas HDHI185 recorded the lowest

total chlorophyll concentration of 5.03 mg/gDW (43.31% decrease)

under the combined stress condition (Figure 2C). For total

carotenoid, HDHI113 recorded the highest total carotenoid

concentration of 1.36 mg/gDW (29.14% decrease), whereas

HDHI80 recorded the lowest total carotenoid concentration of

0.40 mg/gDW (71.86% decrease) under combined heat and

drought stress (Figure 2D). Furthermore, one of the parents,

HD3086, recorded higher photosynthetic pigments at the anthesis

stage across multi-environment stress conditions, indicating

potential SG traits.

From the photosynthetic pigment study, it was found that

HDHI113 and HDHI87 maintained higher chlorophyll and

carotenoid pigment levels under combined stress conditions.
3.3 Effect of drought, heat, and combined
stress on gas exchange traits

In our study, significant differences in gas exchange traits were

noted between the superior and inferior lines across all the

environmental conditions (Supplementary Table S4). We

observed a significant decrease in the PN under combined stress

conditions compared to the control, drought, and heat stress
FIGURE 2

Effect of drought, heat, and combined stress on chlorophyll a (A), chlorophyll b (B), total chlorophyll (C), and total carotenoid (D) at the anthesis
stage. Different letters indicate significant genotype × treatment interactions among the lines using the LSD test at P<0.05.
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conditions (Figure 3A, Supplementary Table S4). HDHI113

maintained a PN of 17.18 μmol CO2 m-2 s-1 (35.66% decrease)

and HDHI185 recorded the lowest PN of 10.87 μmol CO2 m
-2 s-1

(46.41% decrease) at the anthesis stage under combined stress

conditions. For gsw, we observed a significant decrease in gsw in

all the lines under stress conditions compared to the control plants

(Figure 3B, Supplementary Table S4). Under combined stress

conditions, the superior lines (HDHI113 and HDHI87)

maintained a higher gsw (0.25 mol H2O m-2 s-1) and HDHI185

(inferior line) maintained the lowest gsw (0.16 mol H2O m-2 s-1).

E declined under drought stress in all the RILs including the

parental lines (Figure 3C, Supplementary Table S4). Under heat
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stress conditions, the transpiration rate was enhanced in all the RILs

compared to the control condition. The highest E of 7.84 mmol

H2O m-2 s-1 was recorded by HDHI113 and the lowest E of 5.38

mmol H2O m-2 s-1 was recorded by HDHI185 under heat stress

conditions. Under combined stress conditions, the highest E of 5.39

mmol H2O m-2 s-1 was recorded by HDHI87 and the lowest E of

4.32 mmol H2O m-2 s-1 was recorded by HDHI80. WUEi was

enhanced for the superior lines, HDHI113 and HDHI87 under

drought stress. However, it declined for the inferior lines, HDHI185

and HDHI80 (Figure 3D, Supplementary Table S4). Under heat

stress conditions, WUEi was found to be decreased in all the tested

lines compared to the control and drought stress conditions.
FIGURE 3

Effect of drought, heat, and combined stress on net photosynthetic rate (PN) (A), stomatal conductance (gsw) (B), transpiration rate (E) (C), and
instantaneous water use efficiency (WUEi) (D) at the anthesis stage. Different letters indicate significant genotype × treatment interactions among the
lines using the LSD test at P<0.05.
FIGURE 4

Effect of drought, heat, and combined stress on 1000-grain weight (TGW) (A) and spike weight difference (SWD) (B) in wheat RILs including the
parental lines. Different letters indicate significant genotype × treatment interactions among the lines using the LSD test at P<0.05.
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However, HDHI87 recorded a higher WUEi (3.04 μmol CO2/mmol

H2O) and HDHI80 recorded the lowest E of 2.49 μmol CO2/mmol

H2O under heat stress conditions. Moreover, a higher WUEi was

recorded by HDHI113 (3.21 μmol CO2/mmol H2O) and the lowest

E of 2.38 μmol CO2/mmol H2O was recorded by HDHI185 under

combined stress conditions.

From the gas exchange traits study, it was observed that

HDHI113 and HDHI87 maintained higher PN under combined

stress conditions.
3.4 1000-grain weight and spike weight
difference under combined stress

Combined stress significantly reduced the TGW in all the RILs

including the parents (Figure 4A). Moreover, HDHI113 recorded the

highest TGW of 31.13 g and HDHI80 recorded the lowest TGW of

17.12 g under combined stress conditions (Supplementary Table S4).

Furthermore, drought stress accelerated SRM to grains in all the RILs
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and HDHI113 recorded the highest SWD of 1.73 g under drought

stress (Figure 4B, Supplementary Table S4) due to the higher SRM.

However, heat stress resulted in a lower SWD in all the RILs.

Based on the SG traits, it was found that HDHI113 and HDHI87

recorded higher TGW under all environmental stress conditions.

However, these lines recorded higher SWD under drought stress

conditions based on SRM traits.
3.5 Relative performances of the lines
under combined stress conditions

A comparison of the performance of the RILs including the

parents revealed that there were differences in the trait values under

the control, drought, heat, and combined stress conditions. With

improved gas exchange and photosynthetic pigment characteristics,

including grain yield, as shown in the spider network chart,

HDHI113 and HDHI87 performed better in multi-environment

conditions (Figures 5A-D).
FIGURE 5

Relative performance of RILs and parents under control (A), drought (B), heat (C), and combined stress conditions (D). Pn, net photosynthetic rate;
Gsw, stomatal conductance; (E), transpiration rate; WUE, water use efficiency; TGW, 1000-grain weight; SWD, spike weight difference; Chl a,
chlorophyll a; Chl b, chlorophyll b; Total Chl, total chlorophyll; Total Car, total carotenoid.
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3.6 Principal component analysis

Using PCA, it was inferred that most of the traits were captured

by Dimension 1 (Dim1) under control (Figure 6A), drought (Figure

6B), heat (Figure 6C), and combined stress conditions (Figure 6D).

Under control conditions, traits including PN, TGW, E, Chl b, Total

Car, Total Chl, and Chl a were captured by Dim1 (Supplementary

Figure S3A). Under drought stress conditions, the maximum

numbers of traits were captured by Dim1 except for TGW, SWD,

Gsw, and E (Supplementary Figure S3B). Similarly, all the important

traits were captured by Dim1 except for E, Gsw, andWUE under heat

stress (Supplementary Figure S3C) and total Car, Chlb, SWD, and

WUE under combined stress (Supplementary Figure S3D).

As most of the traits were captured by Dim1, it can be inferred that

these traits significantly contributed towards the grain filling in wheat.
3.7 Cluster analysis

Under each environmental condition, three clusters were

formed. Under control conditions, each group contained two

lines (Figure 7A). Group 1 retained HDHI113 and HDHI87 with

the highest cluster score of 106.389 (Supplementary Table S5A).
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Under drought stress conditions, cluster sizes of 1, 3, and 2 were

recorded in clusters I, II, and III respectively (Figure 7B). Group 1

retained only HDHI113 with the highest cluster score of 95.974

(Supplementary Table S5B). Under heat stress conditions, cluster

sizes of 3, 1, and 2 in clusters I, II, and III respectively were recorded

(Figure 7C). Group 1 retained HDHI113, HDHI87, and HD3086

with the highest cluster score of 77.258 (Supplementary Table S5C).

Under combined stress conditions, each group contained two lines

(Figure 7D). Group 1 retained HDHI113 and HDHI87 with the

highest cluster score of 76.872 (Supplementary Table S5D).
4 Discussion

One of the main aims of wheat breeding globally is the

development of stress-tolerant cultivars; this is particularly

important for rain-fed conditions in India. The broadening of

genetic diversity by employing diverse alleles for SG and SRM traits

is needed for further improvements in wheat yield. Previous studies

have reported numerous QTLs for SG traits, however, genomic

regions linked to SRM and its potential candidate genes have not

been explored so far. In this study, we validated the mapped QTLs by

employing a gene expression and physiological approach.
FIGURE 6

PCA biplot depicting the contribution of traits to Dim1 and Dim2 in the control (A), drought (B), heat (C) and combined stress conditions (D). Pn, net
photosynthetic rate; Gsw, stomatal conductance; E, transpiration rate; WUE, water use efficiency; TGW, 1000-grain weight; SWD, spike weight
difference; Chl a, chlorophyll a; Chl b, chlorophyll b; Total Chl, total chlorophyll; Total Car, total carotenoid.
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4.1 Stay-green traits

In our study, we found a higher expression of SG-related genes

such as chlorophyll synthase, chlorophyll a/b binding protein,

Psb28, L-ascorbate peroxidase, pyrroline carboxylate synthase,

and LOG10 in the superior lines under stress conditions. This

indicated the influence of true positive SG-QTLs in maintaining the

leaf greenness in the superior lines. It is well-known that

chlorophyll a/b binding proteins are part of light-harvesting

complexes (LHCs) and genes encoding for LHCs (Lhca and Lhcb)

are of great importance for maintaining photosynthetic activity

(Standfuss et al., 2005; Sato et al., 2009). In addition, Psb28 has been

shown to protect the RC47 assembly intermediates of PSII and its

absence impaired PSII recovery after photodamage in high-

temperature and high-light conditions (Weisz et al., 2017).

Through transcriptomic analysis, it was also found that the

pyrolline carboxylate synthase 2 (P5CS2) gene was highly

expressed in SG lines compared to senescent lines in sorghum

(Johnson et al., 2015). It has been established that the application of

6-benzylaminopurine improved the grain yield and quality of wheat

under water deficit conditions (Zarea and Karimi, 2023). The role of

APX in inducing cold tolerance (Xu et al., 2014), heat tolerance

(Zhang et al., 2023), and ROS detoxification (Guan et al., 2015; Yan

et al., 2016; Shafi et al., 2017) is well reported.
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Again, the higher expression of chlorophyll synthase in the

superior lines (HDHI113 and HDHI87) was accompanied by higher

levels of photosynthetic pigments under stress conditions. However, we

found a lower level of photosynthetic pigments under combined stress.

Our finding was in line with other studies in wheat (Zaefyzadeh et al.,

2009; Sharifi and Mohammadkhani, 2016; Dwivedi et al., 2018; Yousaf

et al., 2022), chickpea (Mafakheri et al., 2010), and tomato (Raja et al.,

2020). Furthermore, we observed a lower level of photosynthetic

pigments in wheat at the anthesis stage under heat stress compared

to drought stress (Lamaoui et al., 2018; Yousaf et al., 2022). This greater

decrease in leaf chlorophyll under heat stress in the sensitive lines was

also probably because of an increase in proteolytic enzyme activity (Al-

Khatib and Paulsen, 1984; Harding et al., 1990) and due to the damage

to the thylakoid membrane and PSII complex (Ristic et al., 2007).

Moreover, retention of chlorophyll content during post-flowering heat

stress was reported to minimize yield losses in winter wheat (Fu

et al., 2023).
In our study, we also studied the expression patterns of senescence-

associated genes. We found a higher expression of 7-HCAR and

aspartyl protease in the inferior lines (HDHI185 and HDHI80)

under combined stress conditions. This higher expression was also

substantiated by lower photosynthetic pigments in these inferior lines.

The overexpression of 7-HCAR from cucumber in tobacco has been

shown to hasten the dark-induced degradation of chlorophyll (Liu
FIGURE 7

Agglomerative hierarchical clustering depicting various clusters under control (A), drought (B), heat (C), and combined stress (D) conditions.
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et al., 2021). However, we found a lower expression of K+-transporter-9

and glutamate decarboxylase genes in the inferior lines. The role of

potassium in inhibiting drought-induced leaf senescence by promoting

ABA degradation in barley has been reported (Hosseini et al., 2016).

Furthermore, Arabidopsis thaliana, which produces less GABA,

exhibited a greater vulnerability to drought stress (Mekonnen et al.,

2016). Furthermore, it was also reported that the application of GABA

to Oryza sativa seedlings, creeping bent grass, and Piper nigrum

improves the performance of the individuals under heat and drought

stress conditions respectively (Nayyar et al., 2014; Li et al., 2016;

Vijayakumari and Puthur, 2016).

We also found greater downregulation of rubisco small subunit

expression under stress conditions in the inferior lines. Rubisco is an

importantprotein forphotosynthetic carbonfixation(OgrenandBowes,

1971; Le Roux et al., 2020). Amongst the senescence downregulated

genes (SDGs), the rubisco small subunit (rbcs) and chlorophyll a/b

binding (cab) proteins are mainly downregulated during the senescence

process (Rampino et al., 2006). This lower expression of rubisco small

subunit in the inferior lines was correlated with a lower PN value under

stress conditions. In the present study, a decrease in PN under drought

stress was due to stomatal limitation, i.e., we observed a lower gsw in our

study(Centritto et al., 2003;Flexaset al., 2004;Grassi andMagnani, 2005;

Erismann et al., 2008; Chaves et al., 2009; Peeva and Cornic, 2009), and

non-stomatal limitation, i.e., lower chlorophyll content and lower

rubisco activity (Xu et al., 2010; Simova-Stoilova et al., 2020). This

decrease in gswwasprobably due to lower soilmoisture content (18.20%)

at the anthesis stage (Supplementary Figure S2),which induced stomatal

closing as a drought avoidance response (Chaves et al., 2009; Ghotbi-

Ravandi et al., 2014). The decrease in gswwas substantiated by a decrease

in E. The lowering of E under drought stress was reported by various

researchers inwheat (Li et al., 2017; Itamet al., 2021;Guizani et al., 2023),

naked oat (Zhang et al., 2022), and cowpea (Singh andReddy, 2011). An

increase inWUEi in the superior lines under drought stresswas reported

by previous researchers in wheat (Van den Boogaard et al., 1997; Sikder

et al., 2016) and cowpea (Anyia andHerzog, 2004) as well. However, we

observed a greater decrease in PN under combined stress thanheat stress

at the anthesis stage. In C3 plants such as wheat, an increase in

temperature above the optimal growth temperature generally

decreases PN (Berry and Bjorkman, 1980). In our study, a decrease in

PN under heat stress was due to lower gsw, except for HI1500 and

HDHI80 (as compared to drought stress), lower chlorophyll content,

and lower rubisco activity. However, a decrease in gsw under heat stress

was decoupled from increased E and lower WUEi. Moreover, higher E

was observed in HDHI113 under heat stress, probably to make the

canopy cool (Ayeneh et al., 2002; Gommers, 2020), and it has been

reported that heat-tolerant lines with higher yields exhibited better

cooling capacity (Reynolds et al., 1997). Moreover, greater E under

heat stress was also because a higher VPD is a natural consequence of

higher temperatures (Sharma et al., 2015) and higher stomatal

conductance, as transpiration rate can be approximated as

VPD×stomatal conductance (Cowan, 1977; Will et al., 2013).

Increased E under heat stress was also reported in wheat (Sharma

et al., 2015;Nagar et al., 2021).Moreover, decreases inWUEi under heat

stress were probably because of higher E compared to the control

condition (Sharma et al., 2015) and a decrease in PN (Agarwal et al.,

2021), which was the case in our findings. The decrease in PN under
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combined stress was due to a lowering of gsw, lower chlorophyll content,

and lower rubisco activity (Kumar et al., 2021; Meena et al., 2023). A

decrease in gsw was reported by various researchers in plants under

combined stress (ElHabti et al., 2020;MaChadoandPaulsen, 2001; Shah

and Paulsen, 2003). It was reported that the maintenance of E during

combined stress is indispensable for sustaining wheat productivity (El

Habti et al., 2020). According to Zandalinas et al. (2016), the ability of

citrus trees to withstand the combined effects of heat and drought was

facilitated by an increase in E. The higher WUEi in the superior lines

under combined stress was probably due to the better trade-off

mechanisms of the superior RILs leading to the maximizing of carbon

assimilation and reducing water loss through transpiration (El Habti

et al., 2020).

From this study, it was inferred that HDHI113 and HDHI87

maintained their SG traits under stress conditions by upregulating

the SG-linked gene expression to maintain leaf greenness and by

activating ROS scavenging systems such as ascorbate peroxidase.
4.2 Stem reserve mobilization

During the post-anthesis periods, the photosynthetic capacity of

leaves declines due to natural senescence and various biotic and abiotic

stresses. There is a rapid decline in the current leaf photosynthesis rate

under terminal drought conditions (Johnson et al., 1981). Grain

development in wheat depends upon carbohydrates from three

sources: (i) carbohydrates produced before anthesis stored in the

stem and remobilized to grains during grain filling, (ii) carbohydrates

produced after anthesis and translocated directly to the grains, and (iii)

carbohydrates produced after anthesis but stored temporarily in the

stem before being remobilized to the grains (Gallagher et al., 1975;

Daniels et al., 1982; Kobata et al., 1992). Thus, as the highest

accumulation of water-soluble carbohydrates (WSCs) occurred at 12

DAA (Gurumurthy et al., 2023) and all the leaves including the flag

leaves were defoliated at 12 DAA, spike weight difference between 12

DAA and at physiological maturity was most likely due to the

mobilization of stored reserves from the stems to the grains.

The resulting higher expression of PPR5 and endoglucanse-8 like

in the superior lines under drought stress in the peduncle at 12 DAA

was probably to mobilize the stored carbon pool to the grain for sink

requirements. This was further substantiated by the observation that

the highest starch metabolism occurs at 14 days after anthesis in wheat

(Cimini et al., 2015). The role of PPR proteins in inducing drought

(Luo et al., 2022) and salt tolerance (Lu et al., 2022) in rice has been

reported. The role of b-glucanase in plant development and adaptive

response has also been stated (Perrot et al., 2022). In addition, the

enhanced activity of ST protein kinase OSR1-like under drought stress

in the superior lines was probably due to the fact that the ABA level

enhanced the activity of the ST protein kinase for carbon mobilization.

CaDIK1, an ST kinase, has been reported to regulate drought tolerance

by modulating ABA sensitivity in pepper (Lim et al., 2020). Hu et al.

(2022) reported that SnRK1 regulates the transport of non-structural

carbohydrates from the sheath to the grain during grain filling in rice.

Exposure to drought stress was shown to induce NCED gene

expression in maize (Tan et al., 1997), tomato (Burbidge et al., 1999),

Arabidopsis (Iuchi et al., 2001), and cowpea (Iuchi et al., 2000). The
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increase in the activity of NCED1 under drought stress might be due to

the fact that the stress level enhanced the ABA level to provide stress

tolerance to plants through fructans breakdown (Xiong and Zhu,

2003). Moreover, the role of ABA in SRM has also been

demonstrated (Xu et al., 2016), indicating the role of ABA in the

mobilization of temporarily stored carbon to grain under abiotic stress

conditions, particularly under drought stress.

In this study, it was observed that drought stress enhanced the

expression of key genes linked to SRM, thereby causing the

mobilization of stored carbons in the stems to the grains.
4.3 1000-grain weight and spike
weight difference

The combined effect of heat and drought stress significantly

decreased the grain yield in all the RILs (Kumar et al., 2021; Meena

et al., 2023). Drought and heat stress decrease the grain filling

duration and grain filling rate, thereby reducing the grain yield

(Prasad et al., 2008). However, drought stress enhanced the SWD

due to a higher SRM (Gurumurthy et al., 2023; Ntawuguranayo

et al., 2024). In the cluster analysis, it was shown that HDHI1113

and HDHI87 were grouped together with the highest cluster score.

The PCA also revealed that most of the traits contributed towards

the total variance, indicating a significant contribution of SG and

SRM traits towards grain filling in wheat under stress conditions.

The spider chart also clearly displays the significant contribution of

SG and SRM traits to grain yield under stress conditions, which can

be further exploited for yield improvements.
5 Conclusion

In this era of global climate change, there is an urgent need to

develop new crop varieties to meet the ever-increasing demand for

food. The identification of genomic regions regulating physiological

traits will pave the way to breeding new and improved crop

varieties. SG and SRM are crucial for grain filling in wheat during

abiotic stress. In this study, we validated our mapped QTLs for SG

and SRM by employing a gene expression and physiological

approach, which can be used for MAS to improve the yield

potential under stress conditions. By employing selection indexes,

we selected two superior lines (HDHI113 and HDHI87) that can be

used as suitable donor parents for SG and SRM traits in elite wheat

cultivars. Moreover, the identified QTL-linked markers will help

wheat breeders to accumulate desirable allelic combinations in

future breeding programs. Thus, understanding the genetic basis

of SG and SRM will improve crop productivity under abiotic stress

conditions not only in wheat but in other cereal crops as well.
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