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An efficient non-parametric
feature calibration method
for few-shot plant
disease classification
Jiqing Li , Zhendong Yin *, Dasen Li , Hongjun Zhang
and Mingdong Xu

School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin, China
The temporal and spatial irregularity of plant diseases results in insufficient image

data for certain diseases, challenging traditional deep learning methods that rely

on large amounts of manually annotated data for training. Few-shot learning has

emerged as an effective solution to this problem. This paper proposes a method

based on the Feature Adaptation Score (FAS) metric, which calculates the FAS for

each feature layer in the Swin-TransformerV2 structure. By leveraging the strict

positive correlation between FAS scores and test accuracy, we can identify the

Swin-Transformer V2-F6 network structure suitable for few-shot plant disease

classification without training the network. Furthermore, based on this network

structure, we designed the Plant Disease Feature Calibration (PDFC) algorithm,

which uses extracted features from the PlantVillage dataset to calibrate features

from other datasets. Experiments demonstrate that the combination of the Swin-

Transformer V2F6 network structure and the PDFC algorithm significantly

improves the accuracy of few-shot plant disease classification, surpassing

existing state-of-the-art models. Our research provides an efficient and

accurate solution for few-shot plant disease classification, offering significant

practical value.
KEYWORDS

deep learning, few-shot learning, plant disease classification, feature calibration,
image classification
1 Introduction

UNDER the rapid development of hardware and information technology, deep

learning has gradually become the mainstream method in the field of image

classification. In conventional deep learning image classification processes, a large

number of images are required to train the model, allowing it to learn and remember

the common features of the same category in the image classification task. This enables the

model to exhibit remarkable performance during the testing phase. With the advancement

of IoT technology, an increasing number of terminal devices in various fields are beginning
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to acquire massive amounts of images, prompting attempts to use

deep learning for specific image classification tasks, such as plant

disease classification (Khan et al., 2022a; Khan et al., 2022b; Bashir

et al., 2023; Vishnoi et al., 2023). In this field, numerous studies

(Afifi et al., 2020; Argüeso et al., 2020; Figueroa-Mata and Mata-

Montero, 2020; Karami et al., 2020; Egusquiza et al., 2022) have

confirmed the feasibility of using deep learning techniques for plant

disease classification. However, in practical applications, due to the

irregularities in time and space of crop disease occurrences, edge

devices often struggle to obtain sufficient data on rare plant diseases.

Researchers define this challenge as a few-shot classification task in

the field of plant disease. The biggest challenge of this task is how to

effectively extract crucial classification information from small

sample sets of disease data.

Recent work has primarily focused on improving and

innovating models for few-shot tasks through three main

directions: similarity-based learning, data augmentation, and

parameter optimization (de Andrade Porto et al., 2023). The

improvements in similarity-based learning methods mainly rely

on classifying by comparing the distance measures between the

support set and the query set, which are generally obtained through

feature extractors. Feature extractors can include commonly used

networks such as ResNet (He et al., 2015), VGG (Simonyan and

Zisserman, 2014), DenseNet (Huang et al., 2016), MobileNet

(Howard et al., 2017), ViT (Dosovitskiy et al., 2020), Swin-

TransformerV2 (Liu et al., 2021), etc. Egusquiza et al. (2022) used

a ResNet network for feature extraction of disease images and then

classified each extracted feature vector using a KNN classifier under

the Siamese Network architecture (Chopra et al., 2005). Figueroa-

Mata and Mata-Montero (2020) combined Siamese Network and

CNN into a single network structure, proposing a Convolutional

Siamese Network (CSN) that achieved 96% classification accuracy

for crop species under few-shot conditions. Liang (2021) used

DenseNet as a feature extractor and applied a Support Vector

Machine (SVM) for metric classification, achieving 85.3%

classification accuracy for 40 types of cotton diseases in a fewshot

classification task. Nuthalapati and Tunga (2021) used Transformer

to extract features and achieved an 89.4% classification accuracy for

plant diseases in PlantVillage. Zhang et al. (2021) innovatively

proposed the Simple Linear Image Clustering (SLIC) method,

verified its performance on general datasets like Omniglot and

mini-ImageNet, and demonstrated its superiority using aerial

images of Pepper Plants. The data augmentation-based method

primarily aims to expand the small sample data set. Scarce sample

data can affect the construction of models with generalization

capabilities. To address this deficiency, Riou et al. (2020)

improved recognition performance on the cucumber dataset by

changing the background, adjusting the lighting, and modifying the

contrast of the images. Nesteruk et al. (2021) expanded the training

set through basic image processing techniques such as noise

addition, rotation, cropping, flipping, scaling, and image

occlusion to achieve data augmentation. Another approach to

image enhancement is using Generative Adversarial Networks

(GANs) (Goodfellow et al., 2014) to generate large quantities of
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images. Khanzhina et al. (2021) used three of the most popular

GAN networks to establish a pollen grain library, training and

inferring according to the Siamese Network workflow. The main

objective of parameter optimization-based methods is to prevent

network overfitting. When the sample size per category is too small

(usually less than 1000 per category), the learned parameters cannot

guarantee strong generalization capabilities. Therefore, many

scholars have proposed various parameter optimization

techniques to ensure the learning ability of the network. Karami

et al. (2020) used a modified CenterNet structure for automatic

plant counting in aerial images and achieved certain performance

improvements in the few-shot field. Wang et al. (2022) based on

Model-Agnostic Meta-Learning (MAML) (Finn et al., 2017),

determined the optimal values to use at the beginning of the

training process to solve the problem of estimating vegetation

density in ecological irrigation areas using aerial images.

Regarding the depth of the network, He et al. (2015) utilized a

residual structure, achieving the design of a 152-layer network for

the first time that could be successfully trained and inferred. The

conclusions of the paper suggest that the greater the depth of the

network, the higher the accuracy in image classification tasks. This

also prompts us to consider whether this conclusion is universally

valid for specific fewshot classification networks, and whether there

is a clear metric that can quantitatively explore the impact of

network depth on the performance of specific few-shot

classification networks. Through extensive experiments across

different datasets, we found that the last layer of features before

the fully connected layer, commonly used for few-shot

classification, does not enable subsequent plant disease few-shot

classification tasks to achieve optimal performance. Based on this

important discovery, we propose the Feature Adaptation Score

(FAS) for plant disease few-shot tasks, an indicator that allows us

to determine which layer of the network can perform best without

testing, thus identifying outstanding network structures.

Inspired by Yang et al. (2021), we designed a plant disease feature

calibration algorithm (PDFC) that can utilize features extracted from

the PlantVillage dataset to calibrate features from other datasets.

Unlike the method proposed by Yang, which requires simulating the

distribution of meta-data and training a specialized network for

classification, this paper adopts a non-parametric and training-free

approach for calibration, significantly improving efficiency over the

original method. Our innovations can be summarized in three points:
• We proposed a feature layer evaluation metric, Feature

Adaptation Score (FAS), for plant disease few-shot tasks.

Without network training, we identified the high-

performance network structure Swin-Transformer V2 F6

from the backbone of Swin-Transformer V2, suitable for

few-shot plant disease classification.

• Based on the new network structure mentioned above, we

further proposed a few-shot plant disease feature

calibration (PDFC) algorithm, suitable for the plant

disease domain. This algorithm uses a small storage of

feature vectors to calibrate the feature space of the target
frontiersin.org
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Fron
dataset, which can be combined with Swin-Transformer V2

F6 for further performance improvement.

• The effective combination of the network structure and the

algorithm enables us to achieve high performance without

compromising the accuracy of few-shot classification, even

skipping the training phase. We validated our model and

algorithm across various datasets, surpassing the

performance of contemporary few-shot plant disease

classification network models and achieving state-of-the-

art (SOTA) results.
2 Materials and methods

2.1 Pipeline of few-shot learning

Few-shot learning (FSL) aims to classify new classes with only a

few training examples per class. This capability is crucial for tasks

such as plant disease classification, where obtaining large labeled

datasets is challenging. In this section, we describe the pipeline for

applying few-shot learning to plant disease few-shot classification.

Each step is detailed below.

2.1.1 Data preparation
Given dataset D = (xi, yi)f gNi=1, where xi represents an image

and yi ∈ 1,…,Cf g is the corresponding label, we split the dataset

into base classes Dbase and novel classes Dnovel . The base classes are

used to train the feature extractor, while the novel classes are used

for few-shot evaluation.

2.1.2 Metric learning
Metric learning is a key component in few-shot learning. The

goal of metric learning is to learn an embedding space where

samples from the same class are close to each other, and samples

from different classes are far apart. This is typically achieved by

training a feature extractor fq and a distance metric d(·,·).

2.1.3 Embedding space
Given an input image x, the feature extractor fq maps it to an

embedding vector z = fq(x), where z ∈ Rd and d is the

dimensionality of the embedding space. The objective is to ensure

that in this embedding space, the distance between embeddings of

the same class is minimized, while the distance between

embeddings of different classes is maximized.
2.1.4 Distance metric
A commonly used distance metric is the L2 norm, also known

as the Euclidean distance, defined as shown in Equation 1:

d(zi, zj) = ‖ zi − zj ‖2 (1)

where zi and zj are the embedding vectors of images xi and xj,

respectively. Other distance metrics, such as cosine similarity, as

shown in Equation 2: can also be used:
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d(zi, zj) = 1 −
zi · zj

‖ zi ‖2 ‖ zj ‖2
(2)
2.1.5 Prototypical networks
In the context of few-shot learning, Prototypical Networks

(Snell et al., 2017) are a popular approach. For each class k, a

prototype vector ck is computed as the mean of the support set

embeddings for that class as shown in Equation 3:

ck =
1
Skj j o

(xi ,yi)∈Sk

fq(xi) (3)

where Sk is the set of support examples for class k. During

inference, a query image xq is classified based on its distance to each

class prototype, as shown in Equation 4:

ŷ q = arg min  
k

d(fq(xq), ck) (4)
2.1.6 Loss function
A commonly used loss in metric learning is the triplet loss. It

aims to minimize the distance between an anchor xa and a positive

sample xp (same class) and maximize the distance between the

anchor and a negative sample xn (different class). The triplet loss is

defined as shown in Equation 5:

L = max (0, d(fq(xa), fq(xp)) − d(fq(xa), fq(xn)) + a) (5)

where a is a margin parameter that ensures a minimum

difference between positive and negative pairs. Contrastive loss is

another commonly loss used in metric learning. It operates on pairs

of samples and tries to minimize the distance between similar pairs

and maximize the distance between dissimilar pairs. The loss is

defined as shown in Equation 6:

L =
1
2
(y · d2(fq(xi), fq(xj)) + (1 − y) ·max (0,m

− d(fq(xi), fq(xj)))
2) (6)

where y = 1 if xi and xj are from the same class, y = 0 otherwise,

and m is a margin parameter.

2.1.7 Training procedure
The training procedure for metric learning involves sampling

batches of images and their corresponding labels, computing the

embeddings using fq, and then calculating the chosen loss function

(e.g., triplet loss or contrastive loss). The model parameters q are

updated using gradient descent to minimize the loss, as shown in

Equation 7:

q← q − h∇qL (7)

where h is the learning rate.

2.1.8 Evaluation
The classic few-shot classification task follows the N-way-K-

shot paradigm, where there are N classes, each with K samples. The

dataset can also be represented as Equation 8
frontiersin.org
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S = (xi,j, yi) i ∈ 1,…,Nf g, j ∈ 1,…,Kf gj g�
(8)

where xi,j ∈ RH�W�3 denotes the j-th sample of the i-th class,

and yi ∈ 1,…,Nf g is the corresponding label.

For evaluation, we use standard few-shot learning metrics, such

as 5-way-1-shot, 5-way-5-shot, and 5-way-10-shot classification

accuracy. In an N-way-K-shot task, we randomly sample N

classes from the novel classes and provide K examples per class

for training. The model is then evaluated on query images from

these N classes.

The classification accuracy Acc is calculated as Equation 9

Acc =
1
Qj jo

Qj j

i=1
1(ŷ i = yi) (9)

where Q is the query images, ŷ i is the predicted label, and yi is

the true label.
2.2 Design of STV2F6 for plant disease
few-shot classification

Assume a model can be divided into L layers according to its

depth. When an input image xi,j is fed into the model, the feature

vector output from the l-th layer is denoted as fl(xi,j), where l =

1,   2,…, L.

We aim to design a versatile few-shot classification network that

can effectively adapt to the characteristics of various plant disease

datasets, thereby achieving efficient domain generalization

capability. We ultimately chose the Swin-Transformer V2

network as our starting point for two reasons. First, this network

architecture achieved the best performance on ImageNet

(Krizhevsky et al., 2012) in 2022 and demonstrated remarkable

capabilities across various datasets. Additionally, the network has

been integrated into versions of Pytorch 1.13 and later, allowing for

direct training and inference, which reduces the cost and potential

for errors in reproduction. According to the design of general vision

classification models, the last layer (the Lth layer) is usually a fully

connected layer. In this part, we first investigate whether the

features from the penultimate layer, often used in few-shot

classification, i.e., the output of the (L − 1)-th layer fL−1(xij), are
suitable for few-shot classification in the domain of plant

disease detection.

To evaluate the Feature Adaptation Score (FAS) FASl of the

feature vector fl(x) at the l-th layer in few-shot disease

classification, we first define three parameters: the withinclass

variance s 2
within,l , the between-class variance s 2

between,l , and the

average between-class distance Dl . To derive these three

parameters, we first need to calculate the mean feature vector of

the samples of class i at the l-th layer, µi,l, and the mean feature

vector of all classes at the l-th layer, µl. The expressions are shown in

Equations 10, 11.

mi,l =
1
Ko

K

j=1
fl(xij) (10)
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ml =
1

N · Ko
N

i=1
o
K

j=1
fl(xij) (11)

Based on the above discussion, we derived the expressions for

the three key parameters, which are defined in Equations 12-14.

s 2
within,l =

1
N · Ko

N

i=1
o
K

j=1
‖ fl(xij) − mi,l ‖2 (12)

s 2
between,l =

1
No

N

i=1
‖mi,l − ml ‖2 (13)

Dl =
2

N(N − 1)o
N

i=1
o
N

j=i+1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‖mi,l − mj,l ‖2

q
(14)

Each dimension of the feature vector fl(x) in each layer is a linear

combination of the activations of many neurons, and the value of the

neurons in the l-th layer, before activation, is a linear combination of

the activations of multiple neurons from the (l − 1)-th layer.

Therefore, if we assume that the value of each neuron in the first

layer, before the RELU activation, follows a normal distribution, then

after the RELU activation, the neuron’s value follows a right-truncated

normal distribution. Moreover, assuming that the number of neurons

in each layer of the Swin-Transformer V2 exceeds 30, according to the

Central Limit Theorem, the feature vector fl(x) (before activation) in
each layer follows a multivariate normal distribution. Furthermore,

based on the property of linear combinations of normal distributions,

and according to Equations 10, 11, mi,l and ml also follow a

multivariate normal distribution, thus we have Equation 15:

mi,l ∼ N (mi,Si), ml ∼ N (ml ,Sl) : (15)

According to the definition of the chi-square distribution, we

can directly conclude that s2
within,l and s 2

between,l follow a non-central

chi-square distribution, which can be expressed as Equation 16:

s 2
within,l ∼ c2(l1), s 2

between,l ∼ c2(l2) : (16)

Consider the variableDl , where mi,l and mj,l are each multivariate

normal variables. Specifically, mi,l ∼ N (mi,Si) and mj,l ∼ N (mj,Sj).

The difference between any two feature vectors, mi,l and mj,l , is given

by the difference vector z = mi,l − mj,l . Since both mi,l and mj,l are

multivariate normal, the difference vector z follows a multivariate

normal distribution, which is shown in Equation 17:

z ∼ N (mi − mj,Si + Sj) : (17)

The squared Euclidean distance between these vectors is the

squared norm of z, given by Equation 18:

d2 = ‖ z ‖2 = zTz : (18)

Since z follows a multivariate normal distribution, the squared

distance ‖ z ‖2 follows a non-central chi-square distribution, which
is shown in Equation 19:

‖ z ‖2 ∼ c2(l3), (19)
frontiersin.org
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where l3 is the non-centrality parameter, given by

Equation 20:

l3 =
(mi − mj)

T (Si + Sj)
−1(mi − mj)

2
: (20)

The Euclidean distance itself is the square root of this squared

distance, so the Euclidean distance between mi,l and mj,l follows the

square root of a non-central chi-square distribution, as shown in

Equation 21:

Dl = d = zk k ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2(l3)

q
: (21)

Since the dimension directly affects the mean and variance of

the non-central chi-square distribution, if a comparison is to be

made, the feature vector fl(x) in each layer needs to be scaled by its

dimension so that the feature vectors of all layers are compared on

the same scale. After performing the dimensional scaling, we can

define FASl,

FASl =
s 2
between,l=n

s 2
within,l=n

+
Dlffiffiffi
n

p =
s 2
between,l

s 2
within,l

+
Dlffiffiffi
n

p : (22)

We will explain why FASl takes the form of Equation 22. First,

we discuss why the scaling factors of the three parameters are not

exactly the same. The first two variables, s 2
between,l=n and s 2

within,l=n,

represent the variance of the means. According to the law of large

numbers, the variance of the sample mean is the original variance

divided by the sample size n, meaning the variance of the mean

decreases as the sample size n increases. This is why the first two

variables use 1=n; they reflect the influence of sample size on the

variance of the mean. The last variable, Dl=
ffiffiffi
n

p
, represents the

average Euclidean distance between sample pairs, which involves

averaging the distances between multiple sample pairs. Since the

standard error of the mean is the sample standard deviation s
divided by

ffiffiffi
n

p
, we use 1=

ffiffiffi
n

p
for the last term to account for the

influence of the standard error. As the sample size n increases, the

estimation of the mean becomes more precise, which is why we

adjust the variance using 1=
ffiffiffi
n

p
. In summary, the first two terms use

1=n, while the third term uses 1=
ffiffiffi
n

p
, allowing the three different

variables to have values on the same scale, thereby making the

calculation of FASl more stable.

Another aspect we need to further clarify is why the two terms

in FASl are combined using addition rather than multiplication.

This is primarily because these two terms measure different

statistics and do not have a direct dependency or interaction. The

first term, s 2
between,l=s

2
within,l , reflects the relative dispersion between

and within the feature distributions, measuring the ratio of

differences between categories to differences within the same

category, describing the spread of the data. The second term, Dl=ffiffiffi
n

p
, reflects the precision of the sample mean, specifically the

average Euclidean distance between sample pairs divided by
ffiffiffi
n

p
,

meaning that as the sample size increases, the estimation of the

mean becomes more precise. Since these two measures

independently reflect different aspects of the data, there is no

direct interaction between them, and addition is used to

accumulate their effects instead of multiplication. Addition is
Frontiers in Plant Science 05
more natural and appropriate because it effectively combines

these two measures into a single composite score, while

multiplication is typically used when there is an interaction or

amplifying effect between the measures. Therefore, addition is the

choice that aligns better with statistical intuition.

The ideal feature vector fl(x) for calculating the distance to the

prototype should have low within-class variance, high between-

class variance, and a large between-class distance. This ensures that

the model has good consistency for samples within the same class

while maintaining high discriminability for samples of different

classes. The more suitable the feature vector fl(x) is for the Plant

Disease Few-Shot task, the higher the corresponding FASl should

be. Equation 15 meets this requirement. We refer to the new

network structure discovered through FASl as Swin-Transformer

V2 F6 (STV2F6).
2.3 Plant disease feature calibration

Plant disease few-shot classification inherently has sparse

training samples. Therefore, if existing data can assist in the N-

way-K-shot task, it can further improve the classification accuracy

of this task. Inspired by the article (Yang et al., 2021), we attempted

to use some data from PlantVillage to calibrate the feature vectors of

the support set and query set in the N-way-Kshot task. However,

unlike the method mentioned in (Yang et al., 2021), we did not train

an additional classification network to learn the distribution of the

feature space. Instead, we used an intuitive and convenient non-

parametric calibration method. The algorithm framework is shown

in Figure 1.

From the figure, it can be seen that the query set Q and the

support set S both undergo Swin-Transformer V2 F6 to obtain

feature vectors Qfeatures and Sfeatures, respectively. The entire

PlantVillage training set P also undergoes Swin-Transformer V2

F6 to obtain the feature vector set Pfeatures, which serves as a

reference for calibrating the feature vectors Sfeaturess. The

calibration steps are as follows: For each 5-way-1-shot task, each

query image q ∈ Q corresponds to a feature vector qfeatures ∈
Qfeatures. For category i, the feature vector set Pfeatures of

PlantVillage calculates the L2 distance di to the support set

Si
features of that category. These distances are sorted in ascending

order as di1 ≤ di2 ≤ … ≤ diPj j, and the top m smallest distances di1 ≤

di2 ≤ … ≤ dim are selected. The centroid of these m vectors is

calculated as ci =
1
mom

k=1d
i
k. We use the centroids of all categories

obtained by this method to calibrate Si
features. For category i, we first

calculate the L2 distances between the category centroid ci and

Si
feature and sort them in ascending order as d̂ i

1 ≤ d̂ i
2 ≤ … ≤ d̂ i

5. The

two smallest distances d̂ i
1 and d̂ i

2 correspond to centroids ca and cb.

A point T is selected on the line connecting these two centroids,

with the position of T determined by the hyperparameter l. The
Si
features is then shifted g units in the direction collinear with T,

completing the calibration of the support set Si
features to obtain the

calibrated support set Si
calibrated. The above steps are repeated to

calibrate all support sets. Finally, the distances diqSi between all

calibrated support sets Si
calibrated and the query feature vector qfeatures
frontiersin.org
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are calculated, and the label for the query set q is obtained as qlabels =

argminid
i
qSi . For the 5-way-5-shot and 5-way-10-shot tasks, it is

sufficient to use the average of the support set features Si
feature. The

implementation process of the algorithm is presented in

pseudocode form in Algorithm 1.
Fron
Input: Query set Q, Support set S, PlantVillage

training set

P, Lagrange multiplier l, Distance shift units g

Output: Query set labels qlabels

1: Calculate feature vectors Qfeatures, Sfeatures, and Pfeatures

using Swin-Transformer V2 F6

2: for each query image q ∈ Q do

3: qfeatures ← STV2F6(q)

4: for each category i do

5: Calculate L2 distance di between Pfeatures and Si
features

6: Sort di in ascending order: di
1 ≤ di

2 ≤ … ≤ di
Pj j

7: Select the top m distances: di
1 ,d

i
2 ,…,d

i
m

8: Calculate centroid: ci = 1
mom

k=1Pi,m
features

9: end for

10: for each category i do

11: Calculate L2 distances d̂ i between ci and Si
features

12: Sort d̂ i in ascending order: d̂ i
1 ≤ d̂ i

2 ≤ … ≤ d̂ i
5

13: Select the top 2 smallest distances: d̂ i
1 , d̂

i
2

corresponding to centroids ca,  cb

14: Determine point T on the line connecting ca and cb

using Lagrange multiplier l

15: Shift Si
features g units toward T to obtain Si

calibrated

16: end for

17: end for

18: for each query image q ∈ Q do
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19: Calculate distances di
qSi between qfeatures and Si

calibrated

20: qlabels ← argmini d
i
qSi

21: end for

22: Return: qlabels
Algorithm 1. PDFC Algorithm.
3 Results

3.1 Environment platform

The hardware setup for the entire experiment is as follows:

Processor: Intel(R) Core(TM) i7–10700 CPU @ 2.90GHz, 16GB

RAM, NVIDIA GeForce RTX 3060 12GB GPU. Software

environment: Python 3.9, Pytorch 1.13.1.
3.2 Implementation details

We first train Swin-Transformer V2-T on the ImageNet dataset

using the stochastic gradient descent (SGD) optimizer (momentum

of 0.9 and weight decay of 4 × 10−5). The initial learning rate is set to

0.05, and adjusted using step decay with a decay factor of 0.1 every

30 epochs. The model is trained for 300 epochs with a batch size of

128. Data augmentation includes random cropping, horizontal

flipping, and color jittering, and the input image size is resized to

224×224. Dropout is set to 0.2, and L2 regularization is used to

further enhance the model’s generalization ability. Under these

settings, the feature extractor achieves a Top-1 accuracy of 73.18%

on the ImageNet dataset. After pre-training, the last layer block, F7,

is removed to obtain the feature extractor STV2F6, which is then
FIGURE 1

Schematic diagram of plant disease feature calibration algorithm.
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used for comparative experiments on various datasets with

STV2F6+PDFC.

Before the comparative experiments, due to the small number

and narrow range of hyperparameters in the PDFC algorithm, we

first use Bayesian optimization to find the best combination as the

nearest hyperparameter combination for the current dataset, and

then perform the final large-scale experiments. Finally, to ensure the

stability of the experimental results, each set of N-way-K-shot data

in the experiments is sampled 1,000 times, and the average of 20

experimental results is obtained after cross-validation.
3.3 Datasets

CUB (Wah et al., 2011) dataset contains 11,788 images of 200

bird species, and is a classic dataset in the field offine-grained object

classification. Each image is annotated with detailed information,

such as the bird species, morphological features, and colors. It is

widely used in bird classification and object detection research,

especially in visual recognition applications.

mini-ImageNet (Vinyals et al., 2016) is a subset of ImageNet,

designed to provide a standard evaluation platform for few-shot

learning. It contains 100 categories, with 600 images per category,

covering various everyday objects. mini-ImageNet is widely used in

testing and research for few-shot learning algorithms, particularly

in convolutional neural networks (CNNs) and meta-

learning methods.

PlantVillage (Hughes and Salathé, 2015) is an epidemiological

dataset used for evaluating automated plant disease recognition

systems. All images were collected in a laboratory setting and

include images of both healthy and diseased plant leaves.

Additionally, the dataset includes augmented images obtained

through operations such as flipping, gamma correction, noise

injection, PCA color augmentation, rotation, and scaling,

encompassing a total of 38 plant diseases and 61,486 images,

making it one of the most crucial evaluation datasets in the field

of plant disease research.

PlantDoc (Singh et al., 2019) is an open-source dataset for plant

disease diagnosis, containing over 4,000 images, covering 13 crop

species and 26 types of plant diseases. This dataset is particularly

suitable for few-shot learning and transfer learning tasks, providing

researchers with a rich resource for training and evaluating plant

disease classification models.

Plant Real-World (Li et al., 2023) is a small-scale crop disease

diagnosis dataset, containing samples of multiple diseases from four

common crops: rice, wheat, maize, and soybean, with a total sample

size exceeding 1,000. The dataset includes 12 types of diseases and

all samples are captured from field images and disease maps. With a

complex and diverse background, this dataset can be used for

researching the cross-domain generalization issues in few-

shot learning.

Plant&Pest (Li and Yang, 2021) is another small dataset used to

validate the performance of few-shot classification models, which

includes two parts: plants and pests. In this experiment, we used the

plant part of the dataset for few-shot classification experiments.
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The illustrations of the four crop datasets used in the

experiment are listed in Figure 2.
3.4 Results

We use the lightweight version of Swin-Transformer V2, Swin-

Transformer V2-T, and employ its pre-trained weights on

ImageNet-1K (Krizhevsky et al., 2012) to extract features for the

query set Q. According to the structure in the original paper,

SwinTransformer V2-T consists of a total of 7 large blocks, each

of which outputs a feature fl(x) as the input to subsequent

components. The output of the 7th block, f7(x), is directly

connected to the fully connected layer. To verify whether the final

feature f7(x), similar to conventional few-shot tasks, is also suitable

for the Plant Disease Few-Shot task, we input all images from six

datasets into the backbone of SwinTransformer V2-T. This allows

us to obtain 7 sets of features f1∼7(x) generated in the backbone for

the six datasets, as well as the corresponding Feature Adaptation

Scores FAS1∼7, as shown in Table 1.

As shown in Table 1, the score FAS6 corresponding to the sixth

layer feature (Feature Six, F6) of Swin-Transformer V2-T far

exceeds the scores of all other layers, indicating that the sixth

layer feature F6 is more suitable for the Plant Disease Few-Shot task

than the features from other layers. We then conducted

comparative experiments using the sixth layer feature F6 and the

most commonly used seventh layer feature F7 on different datasets

to examine the accuracy of the Plant Disease Few-Shot task. The

results are shown in Table 2. From the experimental results, it is

evident that F6, with the highest score, achieved a significant

improvement in accuracy for the Plant Disease Few-Shot task

compared to the commonly used F7. Therefore, both the

Performance Adaptation Score PAS and the accuracy comparison

of the Plant Disease Few-Shot task’s test set confirm that F6 is more

suitable for the Plant Disease Few-Shot task than F7. We consider

this an important finding in the field of plant disease diagnosis.

Based on the above experimental results, we propose that the most

suitable feature extraction network structure for the Plant Disease

FewShot task is Swin-Transformer V2 F6 (STV2F6), as shown

in Figure 3.

Further, we use STV2F6 as a fixed feature extractor and apply

the PDFC algorithm to calibrate the feature space of the features

extracted from this structure. At the same time, we compare the

performance results of STV2F6 combined with the PDFC algorithm

with various state-of-the-art methods in the field of few-shot

learning. The evaluation metrics for the comparison are the

standard few-shot learning metrics: 5-way-1-shot, 5-way-5-shot,

and 5-way-10-shot classification accuracy. We first compare our

method with several recent few-shot works on the two general

datasets, CUB and miniImageNet. During the experiments, the

feature vectors in the database are all computed from the samples in

ImageNet. The results are shown in Table 3. It is evident from

Table 3 that STV2F6+PDFC significantly outperforms the latest

research results due to the calibration of the target domain using

feature vectors from the ImageNet training set.
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In addition, we compared our approach with various methods

recently used in crop disease few-shot tasks, and the comparison

results across four datasets are shown in Tables 4-7. From the

results, it is clear that the STV2F6+PDFC structure outperforms

recent methods in terms of classification accuracy, recall, and F1-

score for crop disease few-shot tasks. The experimental results

across multiple datasets also clearly demonstrate that the FAS

metric can accurately identify the best network structure for

fewshot tasks. Meanwhile, the PDFC algorithm can adjust the
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target domain’s sample feature vectors toward the source domain

(ImageNet or PlantVillage), enabling STV2F6+PDFC to efficiently

and accurately classify test samples, even when there are no large

numbers of reference samples during the testing phase, by

leveraging the features learned from previous training.

To further explore the direct impact of the PDFC algorithm on

calibrating the embedding feature space, we visualized the feature

distributions of STV2F6 before and after calibration using the t-

SNE (van der Maaten and Hinton, 2008) tool. The visualization
TABLE 1 Performance adaptation score table FAS1∼7.

Dataset FAS1 FAS2 FAS3 FAS4 FAS5 FAS6 FAS7

CUB 4.57 6.58 6.93 13.34 18.63 24.71 19.11

mini-ImageNet 8.10 9.36 13.37 17.84 17.48 20.30 18.09

PlantVillage 6.68 11.63 10.21 18.21 17.83 29.92 11.40

PlantDoc 2.92 4.13 3.66 5.70 6.18 9.26 4.83

Plant Real-World 7.95 12.61 10.75 20.06 19.43 30.48 9.86

Plant&Pest 7.29 13.31 12.27 22.38 21.83 37.25 11.85
FAS1∼7 units are all ×10
−2.

Bold values highlight the best results obtained by our method in comparison with existing approaches.
FIGURE 2

Examples of images from four crop datasets.
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results on the PlantVillage test set are shown in Figure 4. As can be

seen from the figure, the features calibrated using the PDFC

algorithm are more compactly clustered within the same class,

and different classes are further apart, with less overlapping

distribution areas. This indicates that it is an effective feature

calibration method.
3.5 Sensitivity analysis of the experimental
parameters

The parameters affecting the accuracy of the STV2F6+PDFC

algorithm experiment results are numerous. In terms of training

paradigms, the main aspects include whether to use a pre-trained

model, whether to perform finetuning. The parameters mainly involve

two hyperparameters, namely the Lagrange Multiplier l and the Shift

Units g. Below, we discuss and experiment with the stability of the

algorithm in terms of training paradigms and parameters.
Frontiers in Plant Science 09
In our previous experimental results, we directly used the pre-

trained model of Swin-Transformer V2-T without any finetuning.

We will now conduct separate experiments on whether or not to use

a pre-trained model, whether or not to finetune, and whether or not

to use the PDFC algorithm. Since the STV2F6 model must either be

pre-trained or trained from scratch, a model that neither requires

pre-training nor finetuning does not exist. Therefore, there are a

total of six remaining scenarios. We conducted separate

experiments for these six scenarios on PlantVillage, and the

experimental results are shown in Table 8. In the table, the fine-

tuning option refers to training the STV2F6 from scratch if no pre-

trained model is used. As shown in the table, the model using the

pre-trained model and fine-tuning, combined with the PDFC

algorithm, exhibits a significant performance drop compared to

the model without fine-tuning. This can be explained by the

catastrophic forgetting phenomenon that occurs after fine-tuning

the neural network. Since few-shot tasks impose higher

requirements on the model’s generalization ability, fine-tuning

focused on the dataset disrupts some of the already optimized

weights of the pre-trained model. Additionally, the results of this

experiment show that by directly using the pre-trained model with

the PDFC algorithm, without any parameter training, not only does

it skip the model training step, but it also achieves the best 5W1S

task accuracy. This is an important first attempt in the field of plant

disease classification, emphasizing to some extent that the model’s

generalization ability should be the primary consideration in this

field. Fine-tuning and further algorithm optimization should only

be considered for models with poor generalization ability.

In addition to training paradigms, the parameters mainly

involve two hyperparameters, the Lagrange Multiplier l and the

Shift Units g, which affect the enhancement effect of the PDFC

algorithm on the model. We used grid search to test different

Lagrange Multiplier l and Shift Units g on PlantVillage. The impact

of different l and g on the performance of STV2F6 is shown in

Figure 5. We searched l and g with step sizes of 0.1 and 0.2,

respectively. The different parameter combinations have a crucial

impact on the model’s performance. Since these two parameters

have definite meanings mathematically, we can define their ranges

as [0,1]. Thanks to the small number of parameters and the lack of
FIGURE 3

The architecture of Swin-Transformer V2-F6.
TABLE 2 Comparison of few shot task performance between F6 and F7
on different datasets.

Dataset 5W1S 5W5S 5W10S

CUB[F7] 62.39 71.81 74.29

CUB[F6] 91.96 94.14 96.14

mini-ImageNet[F7] 64.25 77.52 80.71

mini-ImageNet[F6] 76.41 88.26 90.03

PlantVillage[F7] 40.95 51.42 53.38

PlantVillage[F6] 68.78 90.89 94.04

PlantDoc[F7] 28.57 36.25 37.02

PlantDoc[F6] 36.84 55.38 62.00

Plant Real-World[F7] 48.50 72.97 78.54

Plant Real-World[F6] 69.44 84.55 87.61

Plant&Pest[F7] 42.57 53.03 55.28

Plant&Pest[F6] 75.80 95.35 97.40
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TABLE 4 Comparison results of plant disease few-shot task on PlantVillage.

Model

5W is 5W5S 5W10S

Precision Recall F1 Precision Recall F1 Precision Recall F1

Li and Yang (2021) 81.10 80.45 80.77 87.00 82.32 84.64 90.40 85.12 87.74

Yang et al. (2022) 85.38 83.21 84.29 88.12 85.57 86.83 90.59 86.14 88.32

Huang et al. (2022) 83.32 81.56 82.43 89.12 84.73 86.83 91.67 88.28 89.96

Zhang et al. (2021) 80.56 78.89 79.71 85.82 80.68 83.13 88.32 82.54 85.35

Rezaei et al. (2024) 86.23 85.67 85.95 92.01 88.12 90.01 94.23 90.11 92.06

STV2F6+PDFC 91.81 91.39 91.60 95.32 93.26 94.27 95.50 94.12 94.81
F
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 fr
The unit of F1 Score in the table is 10−2.
Bold values highlight the best results obtained by our method in comparison with existing approaches.
TABLE 3 Comparison results of few-shot task on cub and mini-ImageNet.

Model

CUB mini-ImageNet

5WIS 5W5S 5WIS 5W5S

RestoreNet (Xue and Wang, 2020) 74.32 – 59.28 –

RAP-ProtoNet (Hong et al., 2021) 75.17 88.29 53.64 74.54

MAML (Finn et al., 2017) 55.92 72.09 58.37 69.76

MultiSem (Schwartz et al., 2019) 76.1 82.9 67.3 82.1

CPDE (Zou et al., 2020) 80.11 89.28 63.21 79.68

CFA (Hu et al., 2019) 73.90 86.8 63.21 79.68

Neg-Cosine (Liu et al., 2020) 72.66 89.40 63.85 81.57

CentAlign (Afrasiyabi et al., 2019) 74.22 88.65 59.88 80.35

DC (Hu et al., 2019) 77.22 89.58 66.91 80.74

SRestoreNet (Xue and Wang, 2020) 76.85 – 61.14 –

EPNet (Rodr’iguez et al., 2020) 82.85 91.32 66.50 81.06

ICI (Wang et al., 2020) 87.87 92.38 65.77 78.94

TIM-GD (Boudiaf et al., 2020) 82.2 90.8 73.9 85.0

LaplacianShot (Ziko et al., 2020) 80.96 88.68 72.11 82.31

RAP-LaplacianShot (Hong et al., 2021) 83.59 90.77 74.29 84.51

BD-CSPN (Liu et al., 2019) 84.90 90.22 65.94 79.23

STV2F6+PDFC 91.26 94.14 76.41 88.26
Bold values highlight the best results obtained by our method in comparison with existing approaches.
TABLE 5 Comparison results of plant disease few-shot task on PlantDoc.

Model
5W1S 5W5S 5W10S

Precision Recall F1 Precision Recall F1 Precision Recall F1

Li and Yang (2021) 37.58 50.43 43.12 51.24 58.99 54.83 58.96 64.53 61.61

Yang et al. (2022) 37.95 52.36 43.96 52.77 60.42 56.33 55.63 68.12 61.20

Huang et al. (2022) 37.69 50.76 43.22 51.25 55.71 53.38 56.34 68.23 61.70

Zhang et al. (2021) 38.63 51.34 44.06 50.41 57.39 53.65 57.32 64.90 60.86

Rezaei et al. (2024) 44.27 55.12 49.07 62.49 62.01 62.25 70.74 70.63 70.69

STV2F6+PDFC 49.29 56.29 52.54 65.88 63.43 64.63 72.00 70.12 71.05
Bold values highlight the best results obtained by our method in comparison with existing approaches.
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need for training, even with grid search, all results can be obtained

in a very short time.

In our experiments, we need to select different values for the

Lagrange Multiplier l and Shift Units g based on the dataset. When

dealing with large datasets, we can use Bayesian optimization to

efficiently search for the best combination of l and g. First, we
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define the parameter space for l ∈ [10−3,101] and for g ∈ [10−3,101].

Bayesian optimization uses a Gaussian model to simulate the

performance of different hyperparameter combinations. It then

employs the Expected Improvement acquisition function to

balance exploration and exploitation, guiding the search for the

optimal hyperparameters. On the largest datasets, we evaluate
FIGURE 4

Feature distribution visualization before and after using the PDFC algorithm in STV2F6.
TABLE 6 Comparison results of plant disease few-shot task on plant real-world.

Model 5W1S 5W5S 5W10S

Precision Recall F1 Precision Recall F1 Precision Recall F1

Li and Yang (2021) 54.18 55.23 54.69 67.39 70.12 68.71 70.64 75.89 73.16

Yang et al. (2022) 55.31 57.45 56.35 66.41 68.34 67.36 71.49 78.23 74.72

Huang et al. (2022) 57.06 60.12 58.53 70.91 75.67 73.22 72.43 80.45 76.23

Zhang et al. (2021) 58.21 59.87 59.02 66.33 69.89 68.05 69.86 77.12 73.32

Rezaei et al. (2024) 64.88 66.34 65.60 80.23 82.01 81.11 84.25 88.76 86.43

STV2F6+PDFC 70.95 68.41 69.64 85.62 82.57 84.06 88.12 89.98 89.04
fr
Bold values highlight the best results obtained by our method in comparison with existing approaches.
TABLE 7 Comparison results of plant disease few-shot task on plant & pest.

Model

5W1S 5W5S 5W10S

Precision Recall F1 Precision Recall F1 Precision Recall F1

Li and Yang (2021) 84.58 85.23 84.90 89.34 90.12 89.73 92.78 93.89 93.33

Yang et al. (2022) 81.63 83.45 82.53 87.45 88.34 87.89 91.81 92.23 92.02

Huang et al. (2022) 85.72 86.12 85.92 90.63 91.67 91.15 93.71 94.45 94.08

Zhang et al. (2021) 84.96 85.87 85.41 89.74 90.89 90.31 93.65 94.12 93.88

Rezaei et al. (2024) 93.21 94.34 93.77 95.36 96.01 95.68 95.93 96.76 96.34

STV2F6+PDFC 97.09 96.41 96.75 98.42 97.57 97.99 98.46 98.98 98.72
Bold values highlight the best results obtained by our method in comparison with existing approaches.
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through 100 iterations, with the algorithm selecting the best-

performing combination of l and g based on the model’s

performance on the validation set. This process allows for

efficient hyperparameter search, especially in large-scale

experiments where computational resources are limited. Finally,

after the optimization process, the best combination of l and g is
used for the final largescale experiments, ensuring the model’s

optimal performance on the target dataset.
4 Discussion

In exploring the STV2F6 structure, we also tested whether the

FAS parameter could identify the optimal depth range of various

network structures on backbone networks of mainstream

architectures, including ResNet, VGG, MobileNet, and ShuffleNet.

The actual test results show that the size of FAS is still strictly

positively correlated with the PDFS test accuracy using the pre-
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trained model directly. However, due to the insufficient accuracy of

the above networks themselves and issues such as the inability to

perform feature calibration with the PDFC algorithm or the lack of

significant calibration effects, they cannot be compared on the same

level with the latest models using pre-training, fine-tuning, and

network structure adjustments. Therefore, we used Swin-

Transformer V2-T as the backbone network to maximize the

structural finding ability of FAS. It can be considered that the

STV2F6 structure is a successful practice guided by theory.

As shown in the experimental results in Table 4, the

performance of STV2F6+PDFC on the 5W10S task in

PlantVillage has already approached the accuracy of the standard

model (Afifi et al., 2020) trained with full supervision. On one hand,

this demonstrates the excellent performance of our algorithm. On

the other hand, it also raises the question of whether we need a more

complex standard dataset to replace PlantVillage. It is well known

that PlantVillage holds a similar position in plant disease

recognition as ImageNet does in image classification. However,

due to the rapid evolution of neural network structures, STV2F6

can achieve remarkable classification accuracy by using the pre-

trained model directly without fine-tuning, even with only 10

images per class. Therefore, it might be more beneficial for the

development of smart agriculture to supplement the PlantVillage

benchmark, for example, by using PlantDoc as the benchmark

instead of PlantVillage. This could encourage future researchers to

focus more on datasets with more complex backgrounds, such as

PlantDoc, thereby enhancing the practicality of the algorithms.

Seeing the performance results of STV2F6+PDFC, we also

envision future work. In terms of the algorithm, we plan to apply

the PDFC algorithm to a variety of frameworks, rather than being

deeply tied to STV2F6. As can be seen from the implementation

process of the PDFC algorithm, it does not depend on the

configuration of the feature extraction network. With the advent
FIGURE 5

The impact of hyperparameters l and g on the performance of the PDFC algorithm.
TABLE 8 Comparison results of plant disease few-shot task
on PlantVillage.

Model Pretrained Fine-tune PDFC 5W1S

STV2F6

✓ 61.09

✓ ✓ 61.25

✓ 68.78

✓ ✓ 91.81

✓ ✓ 75.12

✓ ✓ ✓ 76.57
Bold values highlight the best results obtained by our method in comparison with
existing approaches.
“√” denotes the use of the corresponding method.
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of GPT-4 (Achiam et al., 2023), we are preparing to replace STV2F6

with a Transformer-based large language model framework to

explore the potential of the model in the field of natural language

processing. In terms of improving model performance and

efficiency, we intend to further refine the feature vector database

of the PDFC algorithm by using representative sample feature

vectors for comparison, rather than using the feature vectors of

the entire training set for retrieval. This approach can significantly

reduce the forward inference and feature vector calibration time,

especially when the dataset is large.
5 Conclusion

Through in-depth research on few-shot classification tasks for

plant disease identification, this paper identifies a highp-erformance

network structure, Swin-Transformer V2 F6, using the Feature

Adaptation Score (FAS) metric without network training and

fine-tuning. Based on this structure, we propose a Plant Disease

Feature Calibration (PDFC) algorithm that complements it.

Extensive experiments on different datasets show that the Swin-

Transformer V2 F6 network structure, evaluated and selected using

FAS, combined with the PDFC algorithm, significantly improves

the accuracy of few-shot plant disease classification, surpassing

existing models and achieving state-of-the-art performance. Our

research provides an efficient and accurate method for addressing

plant disease classification with few-shot data, offering both

theoretical innovation and practical value. It provides robust

support for the automatic identification of rare plant diseases and

agricultural production management.
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