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1 Introduction

Sea buckthorn (Hippophae rhamnoides L.) is a woody oil tree known for its fruits, which

are a rich source of bioactive compounds, including carotenoids and flavonoids (Ciesarova

et al., 2020; Mihal et al., 2023). In addition, the unique fatty acid composition of the fruit pulp

oil, especially the high content of omega-7 monounsaturated palmitoleic acid, which is rare in

plants, contributes to the nutritional benefits of its products (Sola Marsinach and Cuenca,

2019). In this regard, sea buckthorn products are used in medicine, cosmetics, and

nutraceuticals (Gatlan and Gutt, 2021; Wang et al., 2022; Zuchowski, 2023). In addition to

cultivation for fruit production, sea buckthorn is also used for ecological restoration due to its

high resistance to extreme conditions (Ruan et al., 2013).

Sea buckthorn is mainly cultivated in China (2.07 million ha), India (0.02 million ha),

Romania (0.02 million ha), Mongolia (0.02 million ha), Russia (0.01 million ha), and

Pakistan (0.01 million ha) (Nybom et al., 2023). Thus, 90% of sea buckthorn resources are

located in China (Singh, 2022). However, the pioneer in sea buckthorn breeding was Russia,

where selection of H. rhamnoides ssp. mongolica Rousi started in 1933 and allowed the

development of a wide range of high-yield varieties with high-quality fruits (Singh and

Zubarev, 2014). In contrast, breeding of sea buckthorn in China started later, mainly with

H. rhamnoides ssp. sinensis Rousi (Nybom et al., 2023). Varieties of H. rhamnoides ssp.
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mongolica are characterized by large fruits, high yield, high oil

content, and lower acidity compared to H. rhamnoides ssp. sinensis

varieties, which are better adapted to abiotic and biotic stresses

(Nybom et al., 2023). Sea buckthorn breeding does not stand still,

new improved varieties are being developed and genetic data can

contribute to this. However, only a few DNA markers potentially

useful for sea buckthorn breeding are known. Markers were

proposed to distinguish Hippophae species and subspecies,

including H. rhamnoides ssp. sinensis and H. rhamnoides ssp.

mongolica (Liu et al., 2015, 2016, 2018; Piao et al., 2022).

Hippophae species are dioecious, and attempts were made to

develop DNA markers to identify sex, but these markers do not

always work in genetically diverse material (Korekar et al., 2012;

Das et al., 2017; Zhou et al., 2018; Zeng et al., 2024a, b). Markers

associated with oil content in fruits (Ding et al., 2016) and genes

involved in flavonoid biosynthesis (Zhang et al., 2024) were

identified. Several works were performed to search for genes

associated with resistance of Hippophae species to biotic and

abiotic stressors (Nybom et al., 2023). In recent years, high-

quality genome assemblies of H. rhamnoides (with sizes of 849,

730, and 919 Mb) (Wu et al., 2022; Yu et al., 2022; Yang et al., 2024),

Hippophae tibetana (957 and 1453 Mb) (Wang et al., 2022b; Zhang

et al., 2024), and Hippophae gyantsensis (716 Mb) (Chen et al.,

2024) were obtained. However, a very limited number of sea

buckthorn genotypes were studied using whole-genome

sequencing. Whole-genome sequencing of only one set of 40 wild

H. rhamnoides ssp. mongolica and H. rhamnoides ssp. sinensis
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representatives and 15 cultivated H. rhamnoides ssp. mongolica

varieties was performed by Yu et al. (Yu et al., 2022). Therefore,

there is a lack of genomic data for varieties of sea buckthorn. The

aim of the present study was to fill this gap by performing whole-

genome sequencing of the unique set of 55 varieties of Russian

breeding, which are likely to be significantly different from the

Chinese varieties and characterized by valuable traits. These data

can significantly expand the knowledge of the diversity of H.

rhamnoides at the whole-genome level and provide the necessary

data for the development of genetic technologies for sea

buckthorn breeding.
2 Materials and methods

2.1 Plant material

To cover the diversity of sea buckthorn cultivated in Russia, a set

of 56 accessions representing 55 varieties of H. rhamnoides L. was

formed: one replicate for 54 varieties (one tree for each variety) and

two biological replicates for the variety Elizaveta (two different trees).

The following valuable characteristics were considered: weight, flavor,

shape, and color of the fruits and differences in origin (Table 1).

Characteristics of sea buckthorn varieties were assessed according to

Kondrashov et al. (Kondrashov et al., 1999). Dormant shoots of the

selected genotypes were collected at the Federal Altai Scientific Center

of Agrobiotechnologies (Barnaul, Russia) in April 2023. The shoots
TABLE 1 Characteristics of the 56 sea buckthorn accessions analyzed in the study.

Variety Origin Fruit shape Fruit color Fruit flavor Fruit weight*

Afina 1186-86-2 ×
1431-86 (Tenga free pol.)

cylindrical red-orange sour 110

Altaiskaya 30-61-1487 free pol. oval orange sweet 78

Anastasiya Panteleevskaya × 1431-86 broad-oval bright
orange

sour 85

Aureliya Avgustina × 1320-86 obovoid yellow-
orange

sour 95

Avgustina 89-72-6a free pol. obovoid orange sour 110

Chechek 7-66-321 free pol. cylindrical bright
orange

sour 76

Chuyskaya seedling of Chuyskiy ecotype oval orange sour 66

Dunayskaya Danube ecotype oval orange sour 30

Dzhemovaya Prevoskhodnaya free pol. oval orange-red sour 75

Elizaveta
(rep. 1)**

Panteleevskaya free pol.
and mutagenesis

cylindrical orange sour 92

Elizaveta
(rep. 2)**

Panteleevskaya free pol.
and mutagenesis

cylindrical orange sour 92

Essel 89-72-6a free pol. obovoid orange sour-sweet 106

Etna Inya free pol. rounded red-orange sour 55

(Continued)
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TABLE 1 Continued

Variety Origin Fruit shape Fruit color Fruit flavor Fruit weight*

Inya Panteleevskaya free pol.
and mutagenesis

cylindrical bright
orange

sour 70

Klavdiya Chuyskaya × Katunskiy-45 oval orange sweet-sour 77

KP-686 Kyrgyz ecotype oval orange bitter-sour 35

Lyubimaya Shcherbinka-1 × Kudyrga-1 oval orange sweet 61

Lyubimaya clone Lyubimaya cylindrical orange sour 40

Ognivo Chechek × 14-68 11-45 cylindrical orange-red sour 77

Panteleevskaya 30-61-1508 (Shcherbinka-1 ×
seedling of Katunskiy ecotype) ×
seedling of Katunskiy ecotype

oval bright
orange

sour 85

Rosinka 30-61-1363 free pol.
(Shcherbinka-1 ×
seedling of Katunskiy ecotype)

wide-oval dark
orange

sour 75

Sudarushka Panteleevskaya free pol.
and mutagenesis

broad-oval bright
orange

sour 85

Triada Etna free pol. obovate orange sweet 98

Triumf 118/4 ×
120/2 of Katunskiy ecotype

cylindrical dark red sour 72

Ulala 61-72-12 free pol.
(Chuyskaya free pol.)

ovoid red-orange sour 70

Vitaminnaya Katunskiy ecotype free pol. rounded bright
orange

sour 49

Yantarnaya
yagoda

Shcherbinka-1 free pol. cylindrical yellow sour 100

Zarnitsa Krasniy fakel ×
104 (Zyryanka free pol.)

oval red-orange sour 55

Zhemchuzhnitsa 61-72-12 × 61-72-2-129 oval orange sweet 59

Zhivko Krasnoyarskaya-22 ×
Sayanskiy ecotype

oval red sour 55

111-05-1 Chuyskaya × Gnom cylindrical orange sour 78

111-10-2 Chuyskaya × Gnom oval bright
orange

sour 64

114-13-1 Panteleevskaya × Gnom broad-oval orange sour 87

125-02-1 Ulala × 1299-86 oval red sour 68

127-00-1 Chechek × 252-13 obovate yellow-
orange

sour 100

1320-86-6 Luchezarnaya × 10-56-952 broad-oval orange sweet-sour 85

175-02-1 Zhemchuzhnitsa × Gnom oval orange sour 48

185-99-5 Avgustina free pol. obovate yellow-
orange

sour 150

216-00-1 Elizaveta × 1431-85 oval bright
orange

sweet-sour 77

217-03-1 Avgustina × Gnom broad-oval orange sour 118

218-03-6 Avgustina × 7-70 13-74 obovate bright
orange

sour 64

(Continued)
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were placed in containers with water in a room with a temperature

of ~22°C for one week.When the leaves appeared, they were collected

in tubes, frozen in liquid nitrogen, and stored in a low-temperature

freezer until DNA extraction.
2.2 DNA extraction

DNA was extracted using the Magen HiPure Plant DNA Mini

Kit (Magen, Guangzhou, China). The quality and quantity of DNA

were evaluated using NanoDrop 2000C (Thermo Fisher Scientific,

Waltham, MA, USA), Qubit 4.0 (Thermo Fisher Scientific), and

agarose gel electrophoresis (2% agarose).
2.3 Whole-genome sequencing

The QIAseq FX DNA Library UDI Kit (Qiagen, Chatsworth,

CA, USA) was used for DNA library preparation. Quantity and

quality of DNA libraries were assessed using Qubit 4.0 (Thermo

Fisher Scientific) and Qsep1-Plus (Bi-Optic, New Taipei City,

Taiwan). Genome sequencing was performed on a NovaSeq 6000

(Illumina, San Diego, CA, USA) with a read length of 150 + 150 bp.
2.4 Sequencing data analysis

The obtained Illumina reads were processed with Trimmomatic

0.39 (TRAILING:28, SLIDINGWINDOW:4:17, MINLEN:40)
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(Bolger et al., 2014). The processed reads were mapped to the

annotated H. rhamnoides genome from the CNGB Nucleotide

Sequence Archive (https://db.cngb.org/cnsa), project ID

CNP0001846 (Wu et al., 2022), and VAF (Variant Allele

Frequencies) values were calculated for genome regions

corresponding to genes (exons and introns) using PPLine

(Krasnov et al., 2015). Genetic distances between sea buckthorn

accessions were calculated and clustered with Ward’s method

(ward.D2) in PPLine (Krasnov et al., 2015).
3 Preliminary data analysis

A representative set of 56 accessions comprising 55 sea

buckthorn varieties (for the variety Elizaveta, two different trees

were analyzed) was formed from the unique collection of the

Federal Altai Scientific Center of Agrobiotechnologies (Barnaul,

Russia). The selected varieties had different fruit characteristics and

different origins in order to maximize the diversity of the analyzed

set (Table 1).

Whole-genome sequencing was performed and at least 23

Gbases of raw Illumina data were obtained for each accession,

which corresponded to more than 25× genome coverage (raw

Illumina reads were deposited to NCBI SRA, BioProject

PRJNA1177110). After mapping the reads to the annotated H.

rhamnoides reference genome, data on about 4 million DNA

polymorphisms in genes were obtained (lists of DNA

polymorphisms were deposited to Zenodo, https://zenodo.org/

records/13999625). These data are useful for studying the
TABLE 1 Continued

Variety Origin Fruit shape Fruit color Fruit flavor Fruit weight*

22-02-2003 Elizaveta × Gnom broad-oval yellow-
orange

sour 90

226-00-1 87-93-3 × 35-61 2244 oval bright
orange

sweet 77

258-03-1 Zhemchuzhnitsa × 35-61 2244 cylindrical red sour 77

25-98-1 Inya × 1320-86 oval orange-red sour 70

360-05-1 4-93-1 × 35-61 2244 oval red sweet-sour 56

393-10-1 Panteleevskaya × 1301-86 oval yellow-orange sour 73

42-68-2 Krasnoyarskaya × Chitinskaya rounded red sour 55

625-08-1 Afina free pol. oval orange-red sweet-sour 65

625-14-1 Afina free pol. oval red sour 78

681-09-1 Triumf × Aley oval orange sour 60

708-13-1 Triumf free pol. broad-oval orange sour 63

762-14-1 Afina × 35-61 2244 oval red sour 50

763-14-1 Afina × 2kv. 18r. oval orange-red sour 64

787-14-1 Panteleevskaya × 149-00 41-7 oval red sour 59

93-08-6 Inya free pol. oval red-orange sour 60
free poll., free pollination; *weight – weight of 100 fruits, g; **rep. – biological replicate.
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diversity of allelic variants for specific genes, especially those that

may be associated with valuable traits, such as the content of

bioactive compounds and other fruit characteristics and resistance

to stressors. It is worth noting that a significant part of the identified

DNA polymorphisms was present in all analyzed sea buckthorn

varieties, indicating that they are genetically distinct from the used

reference genome. In addition, genetic distances between the

accessions were calculated to evaluate their relationships

(Supplementary Table S1).

To visualize the relationships of the studied varieties based on

DNA polymorphisms in gene sequences, a dendrogram was

constructed (Figure 1). Cluster I was the most distinct and

included KP-686 (Kyrgyz ecotype), Dunayskaya, and Yantarnaya

Yagoda, which are not varieties of Altai breeding and probably have

significant differences at the genome level from the other studied

accessions. The same cluster included 175-02-1, obtained by

crossing varieties of Altai breeding, and its position in the

dendrogram is not expected and requires additional research.

The remaining sea buckthorn varieties were divided into four

clusters. Cluster II included Afina and all studied progeny of this

variety, namely 625-08-1, 625-14-1, 762-14-1, and 763-14-1. It can

be assumed that Afina and sea buckthorn genotypes obtained with

its participation are genetically quite different from the other
Frontiers in Plant Science 05
studied varieties of Altai breeding. In addition, 111-05-1, 258-

03-1, and 42-68-2, which are believed to be unrelated to Afina,

were in Cluster II, which is difficult to explain from a genealogical

point of view.

Cluster III clearly distinguished a group of sea buckthorn

varieties with Panteleevskaya in their lineages. Thus, this group is

likely to be significantly different from other studied sea buckthorn

genotypes at the genome level.

Cluster IV included 14 varieties, among which the genetic

relationships were not as clear as in the first three clusters, but

they were still present. Thus, a group of four Novosibirsk accessions

was isolated: Triumf, Zarnitsa, 681-09-1, and 708-13-1, with Triumf

being the parental form for 681-09-1 and 708-13-1. Ulala and its

progeny 125-02-1 were also in this cluster. Two varieties with

Panteleevskaya in their lineages were also in Cluster IV: 22-02-

2003 and 226-00-1. In general, however, this cluster contained a

mixture of quite different sea buckthorn varieties.

Cluster V contained 23 accessions. In this cluster, as in other

clusters, some relationships corresponding to lineages were observed.

For example, Rosinka and Sudarushka, which entered this cluster,

have common roots. In addition, varieties Essel and 218-03-6 have

the genotype 89-72-6a in their lineages. 89-72-6a is very interesting in

terms of strong inheritance of large fruit size. In this respect, it is the
FIGURE 1

Dendrogram for 56 sea buckthorn accessions based on the obtained whole-genome sequencing data. DNA polymorphisms (VAF values) in gene
sequences were analyzed. Ward’s method of cluster analysis.
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progenitor of many varieties, most of which were present in Cluster

V. The exception was the variety Aureliya, which was in Cluster IV.

Other relationships can also be traced in Cluster V. For example,

Lyubimaya clone is a seedless mutant of the variety Lyubimaya.

Several closely related groups were also isolated: Elizaveta (two

biological replicates) and its progeny 2016-00-1, Chechek and its

progeny Ognivo, Chuyskaya and its progeny Klavdiya and 111-10-2,

and Panteleevskaya and its progeny 114-13-1.

In general, the dendrogram obtained by us on the basis of DNA

polymorphisms in all sea buckthorn genes annotated in the used

reference genome (Wu et al., 2022) reflected well the known data on

the relationship of the studied genotypes. The research on H.

rhamnoides performed by Yu et al. using whole-genome

sequencing allowed the authors to separate wild genotypes of H.

rhamnoides ssp. mongolica from cultivated ones, as well as to

separate H. rhamnoides ssp. sinensis accessions into a separate

group (Yu et al., 2022). However, we were unable to find any

other work that characterized representative sets of sea buckthorn

genotypes using whole-genome sequencing (NCBI PubMed,

https://pubmed.ncbi.nlm.nih.gov/; Google Scholar, https://

scholar.google.com; accessed October 28, 2024). Meanwhile,

whole-genome sequencing and linkage mapping is an urgent need

for sea buckthorn studies (Sharma, 2022).

Data on the diversity of sea buckthorn varieties at the genomic

level are of great value in understanding the extent to which

selection has affected the gene pool of this crop and what patterns

can be traced by analyzing the genetic data. We studied the sea

buckthorn varieties of Russian breeding, which has a long history.

The forms with valuable traits created by Russian breeders became

the progenitors of many varieties all over the world (Singh, 2022), so

the obtained by us data are of special value. In addition, the

evaluation of genetic relationships of different accessions is

important for breeders when selecting parental forms for crosses.

Recently, there has been an increasing number of articles

devoted to the beneficial properties of sea buckthorn (Wang et al.,

2022a; Chen et al., 2023; Mihal et al., 2023; Nybom et al., 2023; Teng

et al., 2024; Xu et al., 2024), but in terms of genetics, this crop is still

relatively understudied (Sharma, 2022). Indeed, several high-quality

genome assemblies of H. rhamnoides were obtained (Wu et al.,

2022; Yu et al., 2022; Yang et al., 2024) and some transcriptome

studies were performed (Bansal et al., 2018; Ye et al., 2018; Liang et

al., 2022; Lyu et al., 2022; Yu et al., 2022). A number of works were

also devoted to fatty acid synthesis in sea buckthorn and genes/

microRNAs involved in this process (Ding et al., 2018, 2019, 2022;

Yu et al., 2022; Arkhipov et al., 2024). However, the genetic

determinants and their diversity remain unknown for most of the

key traits that define the value of sea buckthorn varieties, including

carotenoid content, fruit shape and flavor. In this context, data on

DNA polymorphisms in gene sequences obtained for a

representative set of accessions characterized by phenotype will

allow the search for associations between allelic variants of genes

and valuable traits. These data are the basis for the development of

marker-assisted and genomic selection of sea buckthorn, which are

increasingly used in breeding practice for other agricultural plants

(Xu et al., 2020; Hasan et al., 2021; Thudi et al., 2021; Dmitriev et al.,

2022; Werner et al., 2023; Mangal et al., 2024).
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4 Conclusions

H. rhamnoides is a valuable crop whose fruits are rich in

bioactive compounds with health benefits. To date, there is a lack

of genetic data for varieties of sea buckthorn. This fact hinders the

identification of genetic determinants of valuable traits and limits

the efficiency of breeding. In the present study, we analyzed a

representative set of 55 valuable H. rhamnoides varieties of Russian

breeding with different fruit characteristics and diverse lineages.

Whole-genome sequencing was performed on the Illumina

platform, and at least 25× genome coverage was obtained for each

accession. Based on the sequencing data, DNA polymorphisms

were identified in genomic regions corresponding to genes. These

polymorphisms were used to evaluate the genetic relationships of

the studied sea buckthorn varieties. We revealed genetically distinct

groups of accessions that mostly corresponded to the lineages of the

genotypes. Our data are important for assessing the effect of

selection on sea buckthorn diversity and for evaluating the

genetic relationship of different varieties, which is useful for

breeders when selecting parental forms for crosses. The obtained

data on genomic sequences of 55 H. rhamnoides varieties in

combination with information on valuable traits of their fruits are

the basis for identification of quantitative trait loci (QTL) and

quantitative trait nucleotides (QTN) for further development of

DNA tests. This will be the basis for marker-assisted selection of sea

buckthorn. The obtained information on DNA polymorphisms is

also necessary to study the diversity of genes, including those that

may determine valuable traits, such as fruit characteristics. This will

help to promote genomic breeding ofH. rhamnoides. Thus, our data

can benefit both basic and applied research on sea buckthorn.
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