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Machine learning solutions for
integrating partially overlapping
genetic datasets and modelling
host–endophyte effects in
ryegrass (Lolium) dry matter
yield estimation
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Renata M. Retegan2, Noel O. Cogan2,3, Joe L. Jacobs1,4,
Khageswor Giri2 and Kevin F. Smith1,5

1Faculty of Science, The University of Melbourne, Parkville, VIC, Australia, 2Agriculture Victoria, AgriBio
Centre, Bundoora, VIC, Australia, 3School of Applied Systems Biology, La Trobe University, Bundoora,
VIC, Australia, 4Agriculture Victoria, Ellinbank, VIC, Australia, 5Agriculture Victoria, Hamilton,
VIC, Australia
Plant genetic evaluation often faces challenges due to complex genetic structures.

Ryegrass (Lolium), a valuable species for pasture-based agriculture, exhibits

heterogeneous genetic diversities among base breeding populations. Partially

overlapping datasets from incompatible studies and commercial restrictions

further impede outcome integration across studies, complicating the evaluation

of key agricultural traits such as dry matter yield (DMY). To address these

challenges: (1) we implemented a population genotyping approach to capture

the genetic diversity in ryegrass base cultivars; (2) we introduced a machine

learning-based strategy to integrate genetic distance matrices (GDMs) from

incompatible genotyping approaches, including alignments using

multidimensional scaling (MDS) and Procrustes transformation, as well as a novel

evaluation strategy (BESMI) for the imputation of structural missing data.

Endophytes complicate genetic evaluation by introducing additional variation in

phenotypic expression. (3) We modelled the impacts of nine commercial

endophytes on ryegrass DMY, enabling a more balanced estimation of untested

cultivar–endophyte combinations. (4) Phylogenetic analysis provided a pseudo-

pedigree relationship of the 113 ryegrass populations and revealed its associations

with DMY variations. Overall, this research offers practical insights for integrating

partially overlapping GDMs with structural missing data patterns and facilitates the

identification of high-performing ryegrass clades. The methodological

advancements—including population sequencing, MDS alignment via Procrustes

transformation, and BESMI—extend beyond ryegrass applications.
KEYWORDS

dataset calibration, multidimensional scaling alignment, Procrustes transformation,
imputation for structural missingness, population genomics, endophyte effects,
plant breeding
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1 Introduction

Plant genetics faces challenges in evaluating agricultural traits,

particularly due to the genetic diversity inherent in many plant

species, especially outcrossing and polyploid plants (Du et al., 2024;

Fu, 2015; Guo et al., 2018) (Barre et al., 2022; Pasquali et al., 2022;

Pembleton et al., 2016). Against this backdrop, ryegrass (Lolium) is

the predominant forage grass genus in many temperate regions

worldwide, valued for its high productivity and nutritional value

(Andersen et al., 2006; Leddin et al., 2022; Lee et al., 2019; Merino

et al., 2019). Its genetic variation is complex due to its outcrossing

nature and the admixture of diverse genetic backgrounds from

European and North African germplasm in breeding cultivars

adapted to Australia and New Zealand (Blackmore et al., 2016;

Barre et al., 2022; Guan et al., 2017; Pembleton et al., 2018).

The expression of genetic variation for dry matter yield (DMY),

a key performance trait in forage crops, varies considerably across

seasons, environments, and management practices. This variability

necessitates regional cultivar evaluation systems to provide rigorous

and objective assessments of relative performance (Chapman et al.,

2017, 2015; Gilliland et al., 2021; Hearn et al., 2021; Leddin et al.,

2018; McEvoy et al., 2011).

Advanced statistical methods, such as Linear Mixed Models

(LMMs) (Robinson, 1991), have been implemented in analysing

multiharvest, multisite (MHMS) field trials to provide accurate

prediction for DMY (Giri et al., 2019; Zhu et al., 2023). However,

phenotypic data alone cannot account for the complex genetic

variability in DMY, especially given the diversity of ryegrasses and

the influence of management and environmental factors on trait

expression. Addressing these challenges requires advancements in

valid genotyping pipelines to generate representative genomic data

and the application of appropriate machine learning methods to

provide genomic insight into DMY estimation.

Advancements in genotyping approaches have benefited the

studies on genetic diversity. While whole genome sequencing

remains prohibitively expensive, complexity reduction methods

such as genotyping by sequencing (GBS) (Elshire et al., 2011)

have facilitated the genetic exploration of ryegrass cultivars using

single nucleotide polymorphisms (SNPs) (Keep et al., 2020).

Similarly, targeted approaches, such as SNP arrays (Paina et al.,

2016; Wang et al., 2014), ensure consistent high coverage of targeted

regions across samples.

However, the approaches require further development to

address the genetic complexities of ryegrass species. Conventional

biallelic discrete encoding cannot accurately represent the high

heterozygosity resulting from outcrossing or the multiple

chromosome copies in polyploid species (Guo et al., 2018).

Addressing these complexities requires the validation of more

representative genotyping assays that effectively capture

population-level genetic diversity. A pivotal study by Pembleton

et al. (2016) introduced a bulk genotyping method using an

amplicon-based assay. Multiple individuals from the cultivar with

unique genetic backgrounds were bulk-sequenced as a single

population, and their genotyping variation was observed to
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approach zero with increasing bulk size. This strategy effectively

captured genetic diversity while providing a high-throughput and

cost-effective genotyping pipeline.

Missing data hinder outcome integration across studies. While

current imputation methods address genotype missing data

(Browning and Browning, 2016; Browning et al., 2021; Howie

et al., 2011; Isik et al., 2017; Jobin et al., 2018; Marchini et al.,

2007; Naito and Okada, 2024; Nguyen et al., 2024; Roshyara and

Scholz, 2015; Zhao et al., 2022, 2008), they are limited when data

originate from incompatible platforms that target different marker

types or loci (Figure 1), as imputation requires shared

marker reference.

Imputation based on derived genetic metrics offers an

alternative approach for integrating discrete datasets, particularly

genetic distance matrices (GDMs). These symmetric matrices

capture genetic relationships between individuals and exhibit

patterns reflecting underlying population relatedness (Nei, 1972;

Wright, 1949). However, when combining GDMs from

independent studies, study-specific samples often result in

partially overlapped datasets, where genetic measures for certain

samples are completely missing in one study but present in another,

leading to structural missingness (Figure 1). Imputing the combined

GDM presents an issue, as GDMs do not adhere to standard

arithmetic rules, making a direct calculation of missing distances

from existing pairwise distances challenging.

Machine learning (ML) approaches are increasingly being

explored in data integration, yet their application to GDM

integration remains limited (Bhattacharjee and Bayzid, 2020; Xia,

2018). Instead, we assumed that each GDM reflects a lower-

dimensional snapshot of the true genetic relationship, where

relative genetic distances are correctly captured within the

limitations of each study. However, inconsistencies in genetic

patterns arise across datasets (snapshots) due to variations in

genotyping or analyt ical pipel ines . To address these

inconsistencies, matrix factorisation and transformation

techniques are necessary to align the genetic snapshots across

studies. Multidimensional Scaling (MDS) is well-suited for this

task, as it preserves distance relationships while reducing

dimensionality (Borg and Groenen, 2005; Kruskal and Wish,

1978; Torgerson, 1952) and has demonstrated robustness in

applications such as microbiome clustering (Chen et al., 2025)

and single-cell multiomics data integration (Chen et al., 2023).

Procrustes analysis can align datasets with differing distance scales

and has been successfully applied in studies with multidimensional

data (Andreella et al., 2023; Gower, 1975; Peres-Neto and Jackson,

2001; Wang and Mahadevan, 2008). Combining these two

techniques could provide a promising solution for merging

incompatible GDMs. Once merged, the GDM—now an extended

genetic snapshot with structural missing values—can be predicted

using ML models designed for regression problems, as genetic

distances are continuous numeric variables.

In addition, endophytes complicate the estimation of host plant

performance. Symbiotic fungi of the genus Epichloë are known to

alter the phenotypic expression of agronomic traits in ryegrass
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hosts, enhancing resilience and stabilising field performance,

including yield and stress tolerance (Devi et al., 2023; Esqueda

et al., 2017). When a ryegrass cultivar is infected with endophyte

strains of contrasting genotypes and chemotypes, these grass–

endophyte combinations often exhibit distinct agronomic

performance (Chapman et al., 2017, 2015; Chen et al., 2020; Devi

et al., 2023; Giri et al., 2019; Zhu et al., 2023). Therefore,

disentangling the effects of endophytes on host plant performance

is crucial for accurate estimation.

Considering the above, this study aimed to validate a

genotyping pipeline for representing genetic diversity in ryegrass

species, explore ML approaches for integrating partially overlapping

GDMs while addressing structural missingness and investigate the

impact of endophytes on DMY to provide a more balanced

evaluation. Our goal was to provide a high-resolution

phylogenetic–phenotypic insight for ryegrass DMY variations.

These advancements contribute to a more comprehensive

understanding of genetic diversity and its association with DMY

assessment in ryegrass.
2 Materials and methods

2.1 Population sequencing and genotyping

2.1.1 Plant materials
Seeds for all experiments described were obtained from the

Australian Pastures Genebank (APG), Australian seed companies

that own the respective cultivars, or were commercially purchased.
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Full details of the germplasm used, including their ploidy types,

species, and breeders, are provided in Supplementary File 1.
2.1.2 Target capture assay design
A target capture assay was designed using SNPs identified from

transcriptome-based GBS (GBS-t) of perennial ryegrass (Malmberg

et al., 2018). These genic SNPs were mapped to the Kyuss whole

genome reference sequence (Frei et al., 2021) via BLAST to

determine their genomic positions. Target capture probes, each

spanning 120 basepairs (bp), were designed from the SNPs with

reliably identified genomic positions in Kyuss. Overlapping probes

were removed, yielding a final set of 27,469 probes collectively

covering 71,763 SNPs from the original input list.
2.1.3 Method validation
Several batches of DNA extractions were performed to validate

the method, including “Kidman plant bulk sequencing”, “Kidman

seed bulk sequencing”, “Rohan seed bulk sequencing”, and 96

batches of individual plant sequencing of Kidman.

Samples were frozen in liquid nitrogen, ground using a Geno/

Grinder (Spex SamplePrep, Metuchen, New Jersey, USA), and DNA

was extracted using the sbeadex Mini Plant DNA Purification Kit

(LGC Biosearch Technologies, Hoddesdon, England) following the

manufacturer’s instructions. Sample libraries were prepared with

the Twist NGS Library Preparation Kits (Twist Bioscience, South

San Francisco, California, USA). All samples were sequenced on an

Illumina MiSeq using MiSeq Reagent Kit v2 Micro (Illumina, San

Diego, California, USA).
FIGURE 1

Strategies for integrating genetic datasets with varying compatibility profiles. The top panel illustrates the direct integration of compatible datasets
that share common markers and have minimal missing data. The bottom panel depicts a two-step approach (merge + imputation) necessary for
integrating incompatible datasets with differing marker loci and substantial missing data. Challenges in matrix integration arise when datasets lack
overlapping markers or exhibit structural missingness, requiring specialised imputation methods for genetic distance matrices.
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Raw sequencing data were quality-controlled (-q 20) and

adapter-trimmed using QuadTrim (v2.0.2) (bitbucket.org/

arobinson/quadtrim) and Cutadapt (v0.38) (Martin, 2011).

Trimmed reads were aligned to a Kyuss reference genome (Frei

et al., 2021) using BWA-MEM (v0.7.17) (Li, 2013) and sorted using

SAMtools (v1.9) (Danecek et al., 2021). The sorted sequences from

multiple flow cells were merged; duplicates were marked using

GATK (v4.1.3) (Van der Auwera and O’Connor, 2020). BCFtools

(v1.9) (Danecek et al., 2021) was used to call variants from the SNP

list successfully transferred from the GBS-t data to the Kyuss whole

genome reference. Indels were excluded, and the resulting Variant

Call Format (VCF) data were normalised. Only SNPs where both

the reference and alternative alleles matched those specified in the

SNP list were retained. SNP calls were subsequently filtered to retain

loci with read depths (DP) > 5 and a percentage of missing data <

5%, as well as samples with missing data < 20%.

Population genotypes were derived by calculating reference allele

frequencies from the allelic depth (AD) field using vcfR (v1.15.0)

(Knaus and Grünwald, 2017). Nei’s GDMs (Nei, 1972; Pembleton

et al., 2016) were calculated from these allele frequencies using the R

StAMPP package (v1.6.3) (Pembleton et al., 2013) and were used to

construct an unrooted tree with the R ggtree package (v3.10.0) (Yu

et al., 2017). This approach validated the population sequencing

method and helped determine the optimal number of individuals

required to represent a single genotyping population. Further details

on the validation process are available in Supplementary File 2.

2.1.4 Population sequencing and genotyping
A minimum of 50 seeds per cultivar were bulk-sequenced using

an Illumina NovaSeq 6000 with an S4 flow cell (Illumina, San Diego,

California, USA), as described above. The population genotypes of

80 cultivars were derived following the same approach and

aggregated into 72 unique genotypes by averaging allele

frequencies per locus across the populations with the same host

genetic background. This aggregation ensured that each genotype

uniquely represented a single base ryegrass population for

further analysis.
2.2 Integration of partially overlapped
genetic distance matrices

2.2.1 Datasets
2.2.1.1 Ryegrass72_2024

A Nei’s GDM denoted as A, was derived from the 72 unique

ryegrass genotypes using the R StAMPP package (v1.6.3)

(Pembleton et al., 2013).
2.2.1.2 Ryegrass63_2016

Ryegrass63_2016 dataset, denoted as B, is an existing Nei’s

GDM representing relationships among 63 ryegrass populations

(Pembleton et al., 2016), including perennial ryegrass, Italian

ryegrass, hybrid ryegrass, and Festulolium cultivars. This dataset

was derived from a GBS pipeline based on 296 SNP loci (from an

initial set of 380, which were defined by the Illumina GoldenGate
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OPA), resequenced using a targeted amplicon approach on bulk

seed and leaf samples via the Illumina HiSeq 2000 platform.

2.2.2 Multidimensional scaling alignment via
Procrustes transformation

The pairwise genetic distances in each GDM were assumed to

provide a lower-dimensional snapshot of the true genetic

relationship among the tested populations, where genotyping

approaches correctly captured the relative relationship within

each study. With this assumption, the two GDMs A and B
were projected into Euclidean spaces, as EA and EB respectively,

by multidimensional scaling (MDS) (Gower, 1966; Torgerson,

1952) using “cmdscale” (v4.4.0) (R Core Team, 2024).

Eigen-decomposition was performed on the centred Gram

matrices − 1
2 HAA

2HA and − 1
2 HBB

2HB, where HA and HB are

the double-centring matrices of A and B. We obtained

X = VA,z L
1
2

A,z  and

Y = VB,z L
1
2

B,z

where X and Y denote the MDS configurations of A and B,
respectively; VA,z and VB,z are the eigenvectors; LA,z and LB,z are

the diagonal matrices containing the non-negative eigenvalues; z is

smallest number of MDS dimensions that retain non-negative

eigenvalues across EA and EB.

Y was subsequently subjected to Procrustes transformation,

using “procrustes” in an R package “vegan” (v2.6-6.1) (Oksanen

et al., 2024), based on the common genotypes (g ) with X to obtain a

calibrated MDS configuration (as Y 0) by rotating, scaling, and

translating:

Y 0 = sYR + t

where, Y 0 is the transformed MDS configuration of Y; s is a
scaling factor calculated by the ratio of the Frobenius norms of

(Xgz−�Xz) ov e r (Y gz−�Yz); Xgz and Ygz a r e t h e sh a r ed

configurations of X and Y, �Xz and �Yz are the respective

centroids, and g = 22,  z = 33; t is a translation vector

calculated by �Xz − s�YzR; R is an orthogonal rotation matrix

given by UVT ; U and V were the respective left and right

singular vectors obtained from the singular value decomposition

(SVD) of the cross-covariance matrix (Xgz − �Xz )
T (Y gz − �Yz ).

After obtaining Y 0, it was mapped back to Nei’s genetic space as

B0 by computing pairwise Euclidean norms. Finally, the two

matrices A and B0 were merged by averaging the distance values

of shared populations and keeping the distance values of unique

populations, to acquire an extended matrix denoted as M.
2.2.3 Imputation of structural missingness in the
partially overlapped genetic datasets

The matrix M contains 32.1% missing data (NAs), which were

imputed as multiple propagated regression problems in this study.

To evaluate imputation performance for structured missing data,

we introduced a strategy called Bootstrap Evaluation for Structural

Missingness Imputation (BESMI). This method introduces
frontiersin.org
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structural missingness by randomly assigning NAs to entire rows

and columns. Predictive models leverage existing distance patterns

to infer missing values while maintaining the integrity of genetic

relationships. The replaced values served as the validation set.

Ten distinct training-validating datasets, Mm, were generated

through five-fold bootstrap sampling. For each dataset Mm, 14

populations were randomly selected from A and 13 populations

from B’ (i.e., 14 ≈ 1
5= � 72 and 13 ≈ 1

5= � 63). Missingness was

simulated by replacing the observed values with NAs in the

corresponding rows and columns for the selected populations.

The imputation proceeded through multiple chained

predictions iteratively (Van Buuren, 2018). In each iteration, the

tail-imputed matrix at iteration k for dataset Mm. was given as

Mn
(m,k), where n is the upper bound at the iteration k, as:

M(m,k) =
Mn

(m,k)            ,     k = 1

Mn
(m,k)+M

n
(m,k−1)

2 ,     k > 1

8<:
AsM is pairwise and symmetric, the imputation was performed by

a column-wise prediction for the populations with NAs. Population j

was predicted from the observed or propagated predictions of the other

populations. Let z(i,j) denote the distance between the population j and

the population i, and let ẑ (i,j) denote its predicted distance. If z(i,j) is

NA, the imputed value ẑ k(i,j) at iteration k was computed as:

ẑ k(i,j) = f z(i,1), z(i,2),…, z(i,p)
� �

∪  ẑ k(i,1), ẑ
k
(i,2),…, ẑ k(i,q)

n o� �
where f is the prediction function; p and q are the indices of

observed and predicted populations, respectively; p + q = 112 in a

fully imputed matrix.

The predictions f , including Regression Tree (RT), Random

Forest (RF), Lasso Regression (Lasso), K-Nearest Neighbours

(KNN), Predictive Mean Matching (PMM), Weighted Predictive

Mean Matching (WPMM), Random Sampling (SAMPLE), and

Mean (Baseline), were achieved using “mice” (v3.16.0) (Van

Buuren and Groothuis-Oudshoorn, 2011) and “DMwR2” (Torgo,

2011). The imputation accuracy was assessed by the Coefficient of

Determination (R2) by comparing the imputed values (ẑ (i,j)) with

the actual values (z(i,j)) initially replaced with NAs in each dataset

Mm. Details of the imputation process and the prediction methods f

can be found in Supplementary File 3.

Based on R2, Lasso regression was selected to impute the missing

Nei’s genetic distances in M. The imputed values were averaged with

their corresponding symmetric counterparts to maintain matrix

symmetry. The resulting imputed matrix M* provided a complete

set of pairwise Nei’s genetic distances for the 113 populations.
2.3 Estimation of DMY for potential host–
endophyte combinations

2.3.1 Field trial data
Phenotypic characteristics (DMY in kg DM/ha per harvest) of the

ryegrass cultivars were analysed using an MHMS dataset, which was

previously used to study the genotype-by-environment interaction of
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perennial ryegrass in southeastern Australia (Zhu et al., 2023). The

dataset consists of 18 MHMS pasture trials conducted over 14 years

(2008–2021) for 126 perennial ryegrasses, Italian ryegrasses, and

Festulolium cultivars.
2.3.2 Statistical modelling
The MHMS data were fitted by linear mixed models (LMMs)

using ASReml-R (v3.00) (Butler et al., 2009) to reveal the

phenotypic characteristics and the impacts of nine commercial

endophytes (plus Nil, denoting low or no endophytes) on the

DMY of the base ryegrass cultivars explored above. The

endophyte effects were modelled as fixed or random effects.

The LMMs were given as:

y = Xb + Zu + e

where y is a column vector containing the observations; X is the

design matrix for fixed effects; b is the column vector of fixed

coefficients; Z is the design matrix for random effects; u is the vector

of random coefficients; e is the vector of residual errors.
2.3.2.1 The base model (LMM0)

The models without accounting for endophyte effects were

treated as the base model (LMM0) fitted by the factor analytical

(FA) strategy (Zhu et al., 2023) and were given as:

a. The fixed components

X0b0 = (m,T ,H T ,Rj j(H,T),C (H,T))(1, bT , bH , bR, bC)
T

��
wherein, X0b0 denotes the fixed components; m,T,H T,Rj j(H,T)

H,T) denote the corresponding vectors/matrices for Intercept, Trial,

Harvest within Trial, first-order polynomial effect of Row of the Harvest

within Trial, and first-order polynomial effect of Column of the Harvest

within Trial, respectively; 1,bT ,bH ,bR,bC denote the 39, 812� 1

vector of Intercept, the 18� 1 vectors of Trial main effects, the 18h�
1 vectors of Harvest nested effects within a trial (h varies across trials),

the 18h� 1 vectors of first-order polynomial effect of Row of the

Harvest within Trial, and the 18h� 1 vectors offirst-order polynomial

effect of Column of the Harvest within Trial, respectively.

b. The random components

Var(u0) = (GG T +Y )⊗ Iɡ + diag(s 2
k (∑

ar(l)
H ⊗ Iɡ)k)

wherein, G denotes latent factors that account for the genetic

variances of the environments, and G T represents its transpose

matrix of G ; Y contains the unique variances that cannot be

accounted for by the FA; Iɡ denote the genotypic variance

components of ryegrasses and were assumed Iɡ(i,i)
� � eN (0,Rɡ),

Iɡ(i,j)
� ��(i ≠ j)g = 0  . i and j are the indexes of the matrix Iɡ; ∑

ar(l)
H

denote the variance components of harvests and were assumed to

follow an order� l autoregressive distribution, l ∈ 1, 2, 3f g; s2
k is

the independent variance for trial k.

c. The residual components

Let e denote the residual component for each set of LMMs, eeN (0, Var(e)), its variances-covariance matrix, Var(e), was given
by separate four-way structures:
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Var(e) = diag s 2
k Sar(lH )

H

� �
k
⊗ Sar(lR)

R

� �
k
⊗ Sar(lC)

C

� �
k

� �
where, s2

k denotes the independent variance component of the

trial k; Sar(lH )
H , Sar(lR)

R , and Sar(lC)
C , are the variance–covariance

matrices for harvests, rows, and columns, respectively, and are

following order� lH , order� lR, and order� lC autoregressive

distribution, lH , lR, or   lC ∈ 1, 2, 3f g.
2.3.2.2 Models where endophytes were fitted as random
components

The LMMs (LMM1) to account for endophyte effects across and

within the ryegrass populations as random effects, shared the same

fixed components (X1b1= X0b0) and residual components as the

base model (LMM0); the variance components including random

endophyte effects were given as:

Var(u1) =
Var u0)ð 0

0 Iendo

 !

Wherein, Iendo denotes the variance components of endophytes

and was assumed Iendo(i,i)
� �eN (0,Rendo), Iendo(i,j) (i ≠ j)j g = 0

�
.

2.3.2.3 Models where endophyte effects were fitted as
fixed effects

Themodels (LMM2) that fit endophyte effects as fixed effects, while

accounting for the variability caused by Harvest, Row, and Column,

retained the same random (Var(u2) = Var(u0)) and residual

components as the base model (LMM0); the fixed effects were given as:

X2b2 = (X0 ,N)(b0, bN )
T

Wherein, N denotes the matrices for endophyte; bN denotes the

10� 1 vectors of endophyte main effects.

The goodness of fit of the LMMs within each set (i.e., LMM0,

LMM1, or LMM2) was evaluated using the natural logarithm of

Restricted Maximum Likelihood (logREML), while the goodness of

fit across sets was assessed using the Akaike Information Criteria

(AIC) (Bozdogan, 1987) and mean squared error (MSE).

The predicted DMYs were analysed by ANOVA (R Core Team,

2024) to assess group differences. Endophyte impacts (E) and the

DMY of ryegrass populations (P), along with their standard errors,

were derived from the best-identified LMMs. The DMY estimates

for potential host–endophyte combinations (PE) were calculated as

PE = m + P + E. Their standard errors (S : E :) were derived by

aggregating the standard errors of endophyte estimates (SEx) and

population predictions (SEy) as: S : E : =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SE2

x + SE2
y

q
, assuming

mutual independence.
2.4 Phylogenetic–phenotypic association
of DMY

A phylogenetic tree was constructed from the imputed matrix

M* to explore phylogenetic relationships among the 113 ryegrass

populations; along with the phenotypic estimation (DMY in kg

DM/ha per harvest) and the estimated endophyte effects were
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visualised using “ggtree” (v3.10.0) (Yu et al., 2017) and “ggforce”

(Pedersen, 2024). The estimate (n) of the DMY of each group was

given by the weighted average of the DMY of the populations in

such group, as:

n = o
k
i=1w iPi

ok
i=1w i

The standard error (s : e :) of the DMY in each group was given

by aggregating the variances of population predictions and the

weighted variances among the populations in such group, as:

s : e : =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
k2o

k

i=1
se2i +

ok
i=1w i(Pi − n)2

ok
i=1w i

vuut
where k is the number of populations in such group; Pi is the

DMY of the population i; sei is standard error of Pi; w i =
1

se2i

.
, is

the inverse of the variance of Pi.

The populations whose predictions could not be derived from

the LMMs were estimated by the groups they belong to; their

standard errors were given by the standard error of the group.
3 Results

3.1 Validation of population genotyping
approaches

The reliability of the population genotyping assay was

validated, as shown by the unrooted tree in Supplementary File

2. The branches of “Kidman plant bulk sequencing” and “Kidman

seed bulk sequencing” were tightly clustered, validating that the

sequencing material does not bias the genotyping results. The

branches of Kidman individual sequencing (branches 1–10)

clustered with the two Kidman bulk sequencing branches (i.e.,

plant and seed), demonstrating the capability to consistently

genotype ryegrasses with the same genetic background when

applying different sequencing strategies (i.e., bulk vs. individual);

“Rohan seed bulk sequencing” branch was distinctly separated

from all the Kidman branches, validating the effectiveness of

differentiating ryegrasses with different genetic backgrounds.

The genetic distances of Kidman branches were observed to

decrease to less than 0.01 when the samples pooled 20 or

more individuals.
3.2 Population sequencing and genotyping

A total of 80 ryegrass cultivars were successfully genotyped

using bulk seed sequencing, with an average coverage depth of

350.81 × across the target regions. After variant calling and

filtration, 85,903 valid SNPs were identified, and all samples

passed the filtering thresholds.

The genotypes were represented as reference allele frequencies

(Zhu et al., 2024), with their distribution (Figure 2) revealing

cultivars with distinct genetic backgrounds. Cultivars with
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identical genetic backgrounds but associated with different

endophytes clustered closely. For example, 24Seven, Ansa,

Avalon, Base, Excess, Maxsyn, and One50 exhibit genetic

distances of less than 0.0182 within their corresponding genetic
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identity. The 80 cultivars were consolidated into 72 base cultivars

with unique genetic backgrounds.
3.3 Multidimensional scaling alignment via
Procrustes transformation

The GDM A and B were projected into MDS space X and Y,
respectively. A 33-dimensional solution was selected after

examining the cumulative explained variances, accounting for

97.7% of the variance in A and 100% in B. The configurations on
the first two principal coordinates of the MDS spaces were

illustrated in a scatter plot (Figure 3), where the first two

principal coordinates accounted for 52.8% and 11.5% of the

variance in A, and 66.4% and 8.9% in B, showing the direction

and magnitude of the transformation from the MDS configurations

of Y to X.
The bias between A and B followed a distribution with a mean

of − 0.021, which is 34.4% biased relative to the mean of A (0.061),

while the bias between A and B0 followed a distribution with a mean

of − 0.0003. The sum of squared differences (SSD) was reduced by

73.2%, decreasing from 0.284 before calibration to 0.076

after calibration.
3.4 Imputation of structural missingness in
the partially overlapping genetic datasets

Eight imputation methods were explored and evaluated through

BESMI on M (Figure 4). Lasso regression emerged as the best-

performing method, with an R2 of 0.99 ± 0.005 standard deviations,

followed by WPMM (0.97 ± 0.011), RT (0.96 ± 0.022), RF (0.95 ±

0.016), and KNN (0.88 ± 0.052). The mean imputation (baseline)

achieved an R2 of 0.47 ± 0.080, while PMM performed similarly

(0.49 ± 0.088). SAMPLE showed the lowest performance, with R2

values below the baseline. Given its highest R2, Lasso regression was

selected for imputing the structural missingness inM. Details about

the merged matrix before (M) and after (M*) imputation are

available in Supplementary File 5.
3.5 Estimation of DMY for potential host–
endophyte combinations

Three sets of LMMs (LMM0, LMM1, and LMM2) were

conducted to assess the impact of endophytes on the DMY of

ryegrasses. Wald tests (Table 1) confirmed that the best-fitting

models in each set adequately accounted for the main

environmental (Trial) and temporal (Trial : Harvest) effects. The

inclusion of endophyte effects was significant with p < 0.001 (Wald

statistic = 36, df = 9).

All identified models (Table 2) consistently retained an order-1

autoregression structure for Row and Column in the residual

components. The optimal structure for Harvest varied between

models, featuring order-2 autoregression in the random
FIGURE 2

Density ridges of the reference allele frequency distribution across
the 80 ryegrass cultivars. The dendrogram represents hierarchical
clustering based on Nei’s genetic distances. The dashed line (at Nei’s
genetic distance of 0.0182) suggests a potential threshold for
populations that share the same genetic background. The scale bar
corresponds to 0.05 Nei’s genetic distances.
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components and either order-1 or order-2 autoregression in the

residual components.

The identified LMM0 contained an order-3 factor analytic

structure to account for genetic variances across environments

and an order-1 autoregression variance structure for Harvest

within Trial. The identified LMM1, which included endophyte as

a random component, demonstrated improvement over LMM0,

with a lower AIC (472,537.2 vs 472,602.6) and a Chi-square statistic

of c2
(12) = 63.3, p < 0.001. Notably, genotypic variances accounted for

24.3% of the total estimated variance (26,332.7/108,375.3 × 100%),

while endophyte explained 5.6% of the total estimated variance

(6,061.8/108,375.3 × 100%). The identified LMM2, which modelled

endophyte effects as fixed effects, further reduced the AIC to

459,519.6 and demonstrated the highest overall fit (AIC:

459,519.6, MSE = 82,037.28). Wherein, the genotypic variance
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component accounts for 25.3% of the total estimated variances

(26,907.2/106,352.8 × 100%). Since REML models do not naturally

estimate the variance of fixed effects, the variance explained by

endophyte in LMM2 was calculated as the difference between the

residual variances of the full model (LMM2) and its reduced version

omitting the fixed endophyte component, accounting for 10.4% of

total estimated variances (11,072.4/10,6352.8×100%).

Figure 5 compares the endophyte effects as fixed versus random

components. Figure 5A presents the random endophyte effects,

which are compressed toward 0, reducing variation among

endophytes. In contrast, Figure 5B illustrates endophyte effects as

fixed components, revealing greater distinctions. Notably, NEA12

and Epichloë uncinatum (U2) exhibit the most significant positive

and negative impacts on DMY, with effects of 113.79 kg DM/ha per

harvest and − 82.77 kg DM/ha per harvest, respectively.
FIGURE 3

Result visualisation of multidimensional scaling (MDS) alignment via Procrustes transformation. (A) Projections of Nei’s genetic distances among 72
ryegrass populations in A (red) and 63 ryegrass populations in B (turquoise) on the first two principal coordinates (2PCs) of the MDS configurations of
X. The red arrows represent the first 2PCs of X, while the turquoise arrows represent the first 2PCs of Y before the Procrustes transformation. The
lengths of the coordinates correspond to 0.1 genetic units. Only populations present in both datasets are labelled. (B) Cumulative variances are
explained by a series of MDS configurations for X (red) and Y (turquoise). The number of nonnegative eigenvalues contributing to the MDS spaces
for X is 59 and 33 for Y.
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3.6 Phylogenetic–phenotypic association
of DMY

The predicted population DMYs (kg DM/ha per harvest)

derived from the identified LMM2 are provided in Supplementary

File 6. This file also includes group estimates for genetically similar

populations, genetic distances within each group, and estimates of

potential host–endophyte combinations.

Figure 6 visualised the phylogenetic tree of the 113 ryegrass

populations and its association with DMY predictions (kg DM/ha

per harvest). The tree displays genetic distances ranging from 0 to

0.251, revealing genetically distinct ryegrass clades. In the upper

section, a clade containing populations such as Prospect, Viscount

Halo, Base, Bealey, and One50 exhibits high DMY performance, as

indicated by the green colouration in the adjacent heatmap. This

high-performing group has an estimated DMY of 1,575.2 kg DM/ha

per harvest, with a standard error of 41.8 kg DM/ha per harvest and

a genetic distance of 0.054 within the group. Another high-

performing clade (DMY: 1,579.1 ± 45.2; genetic distances: 0–

0.064) was observed in the middle section of the tree, comprising

populations like Impact2, 4Front, Maxsyn, and Kidman. In

contrast, the upper-middle section of the tree contains a clade

(distance = 0.080) with populations ranging from Award and

Avalon to BL007, consistently exhibiting lower DMY

performance (1,507.8 ± 51.9), as indicated by the orange and red

colouration. ANOVA revealed significant differences in DMY

estimates across groups (F(9, 61) = 3.952, p < 0.001).
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4 Discussion

4.1 Population genotyping

Ryegrass exhibits greater heterozygosity than other mainstay

crops and exists in both diploid and tetraploid cultivars, resulting in

a heterogeneous distribution of genetic variants within populations.

This study found that the conventional discrete format inadequately

encodes such variation, making genotyping in allele frequency

format a more effective approach.

Ryegrass cultivars with similar genetic backgrounds but

different endophytes clustered closely (Figure 2). This pattern is

expected, as seedlings from base cultivars are typically inoculated

with novel endophyte strains to maintain genetic consistency.

However, a threshold value (0.0182) posed challenges in detecting

subtle genetic differences between cultivars, possibly due to

sequencing, genotyping, or data-processing protocols. Examples

include Avalon and Award, as well as the trio of Victorian,

Bolton, and Victoca. Interestingly, all these cultivars were

developed through Australian ryegrass breeding programs, which

focus on selecting broadly adapted yet genetically diverse cultivars

from a Victorian ecotype. In many cases, the exact breeding

programs are not documented, but they were largely based on an

initial collection of plants from diverse established pastures. The

multisite, half-sib family evaluation process used to develop Avalon

perennial ryegrass was described by Croft et al. (2000).

In addition, population genotyping accurately captured the

heterogeneous heterozygosity of ryegrass. The validation

(Supplementary File 2) confirmed that when using a target capture

assay, population genotyping can reliably differentiate cultivars with

distinct genetic backgrounds. Specifically, bulking a minimum of 20

individuals per population demonstrated consistency with traditional

individual genotyping methods, ensuring an accurate representation

of ryegrass genomic variation. Further analysis showed that

increasing the bulked sample size to at least 50 individuals

provided a more conservative estimate of genetic variability within

a population. This suggests a potential standard for future ryegrass

studies. However, given the varying genetic diversity across plant

species, researchers are encouraged to optimise bulk settings tailored

to specific study requirements.
4.2 Multidimensional scaling alignment via
Procrustes transformation

This study introduces an innovative approach to integrating

diverse genetic datasets derived from different genotyping methods.

While GDMs from independent studies capture valid internal

relationships, they exhibit inconsistencies when directly

compared, primarily due to differences in genotyping techniques

and unique population entries across studies.

MDS alignment via Procrustes transformation was proposed to

address this challenge. Each GDM was treated as a high-

dimensional snapshot of true genetic relationships among tested

populations. This assumption guided the development of an MDS-
FIGURE 4

The coefficient of determination (R²) for the eight imputation
models using the Bootstrap Evaluation for Structural Missingness
Imputation (BESMI) on the partially overlapping genetic distance
matrix M. Each bar represents an imputation method: Predictive
Mean Matching (PMM), Weighted Predictive Mean Matching
(WPMM), random sampling (SAMPLE), K-Nearest Neighbours (KNN),
Lasso regression (Lasso), Regression Trees (RT), Random Forest (RF),
and mean. The height of each bar indicates the mean R² value
across multiple BESMI runs, while the error bars represent standard
deviations. The horizontal line marks the baseline
(Mean) performance.
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based calibration framework, which projects genetic distance data

into computationally manageable lower-dimensional spaces,

followed by Procrustes transformation. This approach calibrates

inconsistencies across studies using shared populations as reference

points while preserving internal genetic patterns. Notably, mapping

the Procrustes-transformed configurations back to genetic distances

resulted in a 73.2% reduction in SSD between datasets,

demonstrating substantial bias reduction.

This method enables the integration of genetic data from

diverse sources, allowing comparative analyses across studies with

different sequencing approaches, SNP loci variations, or

heterogeneous patterns of structural missingness. However,

calibration performance is case-specific and depends on factors

such as the number and representativeness of shared populations

and the optimal dimensionality for transformation. To support
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further investigation, we have shared the source code (Zhu, 2025;

Supplementary File 3) for researchers interested in applying this

approach to their own datasets.
4.3 BESMI: an evaluation strategy for
structured missingness imputation

Structural missingness often arises when merging genetic

datasets from incompatible studies, leading to partially

overlapping matrices in the merged dataset. The imputation of

these missing values was framed as multiple propagated regression

problems that leverage existing distance patterns in the data. BESMI

was developed to assess imputation performance specifically for

structural missingness—a scenario where traditional random cross-
TABLE 1 Wald tests of the best-fitting linear mixed models for DMY analysis.

Models Fixed components DF Wald statistic p-Value

LMM0 (Intercept) 1 46,923 < 0.001***

Trial 17 15,815 < 0.001***

Trial:Harvest 367 78,801 < 0.001***

Trial:Harvest:lin (Row) 385 1,928 < 0.001***

Trial:Harvest:lin (Column) 385 1,487 < 0.001***

LMM1 (Intercept) 1 29,281 < 0.001***

Trial 17 16,267 < 0.001***

Trial:Harvest 367 78,810 < 0.001***

Trial:Harvest:lin (Row) 385 1,911 < 0.001***

Trial:Harvest:lin (Column) 385 1,481 < 0.001***

LMM2 (Intercept) 1 39,812 < 0.001***

Trial 17 30,008 < 0.001***

Endophyte 9 36 < 0.001***

Trial:Harvest 367 101,505 < 0.001***

Trial:Harvest:lin (Row) 385 2,180 < 0.001***

Trial:Harvest:lin (Column) 385 1,843 < 0.001***
DF, degree of freedom. *** means p< 0.001; the values are already in the table. No additional edit needed here.
TABLE 2 Comparison of the best-fitting linear mixed models for DMY analysis.

Models Y Components LogREML AIC MSE

LMM0 Yield
Xb :∼ Trial+Trial:Harvest+Trial:Harvest:(lin(Row)+lin(Column))
Var(u) :∼ fa(Trial,3):Cultivar+at(Trial):ar1(Harvest):Cultivar
Var(e) :∼ at(Trial):ar3(Harvest):ar1(Row):ar1(Column)

− 236,106 472,602.6 83,007.68

LMM1 Yield
Xb :∼ Trial+Trial:Harvest+Trial:Harvest:(lin(Row)+lin(Column))
Var(u) :∼ fa(Trial,3):Cultivar+at(Trial):ar2(Harvest):Cultivar+Endophyte
Var(e) :∼ at(Trial):ar2(Harvest):ar1(Row):ar1(Column)

− 236,075 472,537.2 83,310.92

LMM2 Yield
Xb :∼ Trial+Trial:Harvest+Trial:Harvest:(lin(Row)+lin(Column))+Endophyte
Var(u) :∼ fa(Trial,3):Cultivar+at(Trial):ar2(Harvest):Cultivar
Var(e) :∼ at(Trial):ar1(Harvest):ar1(Row):ar1(Column)

− 228,881 459,519.6 82,037.28
LogREML, the natural logarithm of restricted maximum likelihood; AIC, Akaike information criteria; MSE, mean squared error.
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validation fails due to its inability to capture inherent data

structures. By introducing missing values at the row/column level,

BESMI effectively stimulates realistic structural missingness

scenarios while preserving genetic structure integrity.

BESMI exhibited varying performance across imputation

functions. Lasso regression generally outperformed others due to

its selective consideration of population configurations via L1

regularisation. Similarly, methods that prioritise specific

populations during prediction (WPMM, KNN, RF, RT)

performed well—WPMM assigned variable weights to

populations, while KNN leveraged the nearest populations for

prediction. Conversely, methods treating all populations as

predictors (PMM, SAMPLE) showed suboptimal performance.

These findings underscore the importance of capturing inherent

patterns in the genetic matrix when imputing structurally

missing data.

The simulation study further confirmed that inherent patterns

influence imputation performance. The best-performing model

varied across simulated datasets with different genetic structures,

highlighting the case-specific nature of structural missingness

imputation. While Lasso regression performed well in our

analysis, researchers are advised to apply BESMI to evaluate

imputation functions on their own datasets to determine the most

suitable approach. Additionally, the optimal number of iterations

differed across datasets, underscoring the need to use BESMI in

varied cases. The source code is provided for researchers interested
Frontiers in Plant Science 11
in adapting BESMI to diverse study scenarios (Zhu, 2025;

Supplementary File 3).
4.4 Phylogenetic analysis and breeding
history

Ryegrass genetic analysis presents challenges due to the lack of

definitive breeding histories. The merged GDM in this study

provides extended quantitative measurements of genetic

divergence among ryegrass populations. The phylogenetic tree

generated from this extended GDM improves the resolution of

genetic relationships among base ryegrass cultivars, aligning with

previous findings by Pembleton et al. (2016). This enhanced

analysis identifies four principal breeding clades: Italian ryegrass

(G01 and G02, genetic distance: 0–0.128), European perennial

ryegrass (G03: 0–0.066), Boucheanum hybrids (G05: 0–0.093),

and Australian/New Zealand perennial ryegrass (G06, G07, and

G08: 0–0.149). Importantly, these genetic findings challenge

traditional classification methods. Cultivars such as BanquetII,

Impact2, and Amasa—previously classified as Boucheanum

hybrids based on morphological traits like awning—were

genetically more aligned with perennial ryegrass. This discrepancy

underscores the limitations of relying solely on morphological

characteristics for species classification while demonstrating how

extended phylogenetic analysis provides valuable insights into the
FIGURE 5

Estimated endophyte effects on dry matter yield (DMY) of ryegrass. (A) Random endophyte effects on DMY (kg DM/ha per harvest). (B) Fixed
endophyte effects on DMY (kg DM/ha per harvest). Error bars indicate standard errors. Endophyte strains are arranged from highest to lowest effect
based on their fixed effects. Nil means low or no endophytes.
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genetic structures and breeding histories of commercial

ryegrass cultivars.
4.5 Phylogenetic–phenotypic association

The phylogenetic–phenotypic association study offered valuable

insight into ryegrass breeding programs. Current breeding efforts

primarily rely on genomic prediction (GP) to estimate phenotypic

performance, typically assuming a genetically coherent population

to capture genetic variation and maintain stable linkage
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disequilibrium (Crossa et al., 2017; Daetwyler et al., 2012;

Goddard, 2008; Habier et al., 2007; Isik et al., 2017; Meuwissen

et al., 2001; Newell and Jannink, 2014; Shi et al., 2021; VanRaden,

2008). However, this assumption is often violated in populations

with diverse genetic backgrounds, as estimates of SNP effects vary

across populations (Alemu et al., 2024; Daetwyler et al., 2012;

Goddard, 2008; Habier et al., 2007; Resende et al., 2012).

In contrast, the phylogenetic–phenotypic association approach

leverages population relationships to assess breeding potential.

Unlike GP, which relies on less interpretable marker estimates,

this method provides more straightforward inferences by directly
FIGURE 6

The phylogenetic tree of 113 ryegrass populations and its association with dry matter yield (DMY). Circles represent diploidy (D), while diamonds
indicate tetraploidy (T) populations. Subspecies are colour-coded: Lolium perenne L. (blue), Lolium multiflorum Lam. (red), Lolium x boucheanum
(yellow), Festulolium hybrids (purple), and Lolium ssp. (grey). The coloured table by the side illustrates the predicted DMYs (kg DM/ha per harvest).
Group distances among populations are indicated, and the dot heatmap visualizes estimated DMYs for potential host–endophyte combinations.
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linking population relationships to performance variations within

phylogenetic clades. For example, the perennial ryegrass Amasa is

expected to exhibit high DMY performance due to its position

within a high-performing clade (Figure 5), demonstrating the

feasibility of evaluating the performance of closely related

populations even in the absence of phenotypic data.

However, phenotypic data remain essential for validating

inferences about desired traits. In certain groups, such as those

spanning from Melways to Tyrella and from Winterstar II to

LM414, the absence of field trial data completely prevents DMY

estimation. Additionally, phylogenetic-based inferences require

refinement in estimation precision, as they assume that closely

clustered cultivars exhibit similar phenotypic characteristics.

Compared with GP-based estimation, which directly fits genetic

correlations, this approach provides a more precise means of

accounting for phenotypic variation (Arojju et al., 2020, 2018;

Cericola et al., 2018; Endelman, 2011; Esfandyari et al., 2020;

Faville et al., 2021, 2018, 2016; Fè et al., 2016, 2015; Grinberg

et al., 2016; Jahufer et al., 2021; Keep et al., 2020; Konkolewska et al.,

2023; Lin et al., 2016; Malmberg et al., 2023).

Moreover, phylogenetic-based inferences would be particularly

beneficial when GP identified multiple candidates with similar

genetically estimated breeding values in a selection process.

Breeders could choose germplasm within related clades to

maintain performance consistency or select germplasm from

distant clades to introduce genetic variability, depending on

whether the breeding goal is to stabilise specific traits or develop

cultivars adaptable to a broader environment. Furthermore, the

phylogenetic analysis helps breeders select germplasm with similar

genetic components without relying on external sources, preserving

proprietary genetic resources while enhancing trait performance.

Given these considerations, the phylogenetic–phenotypic

association method was proposed as a complementary approach

to GP, enhancing breeding decisions for complex plant species like

ryegrass. This method not only addresses GP’s limitations by

leveraging population structures but also provides a more

interpretable insight into breeding potential and genetic diversity.
4.6 Endophyte impacts on ryegrass DMY
estimates

Estimating DMY in ryegrass was challenged by the presence of

endophytes, as genetically similar ryegrass cultivars often exhibited

varying DMY responses to specific endophytes. This challenge was

addressed by differentiating endophyte effects, with statistical modelling

(LMM2) confirming their significance. Treating endophytes as fixed

effects provided clearer differentiation (Figure 5), suggesting that

assuming consistent endophyte effects across base ryegrass cultivars

could effectively capture their impact on host plant DMY.

The impact of endophytes may be attributed to their distinct

alkaloid profiles and compatibility with host plants (Eady, 2021;

Popay and Hume, 2013; Vassiliadis et al., 2023). NEA12 and AR37

positively influence DMY, likely due to their production of epoxy-

janthitrems, which enhance the host plant’s pest resistance
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(Vassiliadis et al., 2023). The distribution of alkaloids within the

plant may also affect DMY performance. Vassiliadis et al. (2023)

found that janthitrem is evenly distributed between shoots and roots,

whereas peramine—another alkaloid commonly found in AR1,

NEA2, and Edge—is concentrated almost entirely in the shoots.

This more even distribution of janthitrem may provide enhanced

protection against both above- and belowground pests compared to

peramine. In contrast, U2 produces lolines, which, although

beneficial against pests, may impose a metabolic cost. Additionally,

U2 is a nonnative endophyte for ryegrasses and was originally

associated with meadow fescue. This may explain its reduced

compatibility with ryegrass hosts and the lack of growth benefits

observed in other native host–endophyte combinations (Eady, 2021).

The initial assessment of endophyte impacts in this study also

reinforced insights into the phylogenetic–DMY association and

enabled a comprehensive estimation of DMY for untested host–

endophyte combinations. This information can help companies

assess how endophytes from external sources may affect the

performance of their own cultivars. Future research could benefit

from developing methods to biologically separate and recombine

endophytes with plants, as well as implementing more balanced tests

to improve the understanding of endophyte–ryegrass interactions in

DMY estimates. However, it is important to acknowledge the

limitations posed by the imbalanced dataset used in this study. Not

all endophytes were present or tested across every ryegrass, primarily

because endophytes were inherently confounded with host cultivar(s)

due to commercial restrictions between endophyte owners and

ryegrass breeding companies. This limitation has hindered

comprehensive evaluations of endophyte impacts across a broader

range of ryegrass cultivars.
4.7 Applications beyond ryegrass

While this study focused on ryegrass, the approaches presented

have potential applications across a wide range of plant species,

particularly those with complex genetic backgrounds. The population

sequencing approach could be adapted for other forage species, such

as lucerne or tall fescue. The MDS-based calibration provides

valuable solutions for integrating datasets from incompatible

platforms, while BESMI offers an effective strategy for addressing

structural missingness in genetic data. Notably, combining these

methods for dataset integration could enhance cross-institute

collaboration, particularly in cases where raw data are unavailable

due to permission constraints or when data originate from

incompatible protocols. Addressing these discrepancies is essential

for integrating inferences from independent studies and expanding

their applications without requiring large-scale de novo sequencing or

genome assembly. Furthermore, phylogenetic–phenotypic

association can serve as a supplementary approach for assessing

species with heterogeneous genetic backgrounds in breeding

programs. This approach provides researchers and breeders with

clearer insights, aiding in the preservation of genetic diversity.

Moreover, these insights can enhance the communication of

scientific findings to a broader range of agricultural stakeholders.
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