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Rice disease detection method
based on multi-scale dynamic
feature fusion
Qian Fan*, Runhao Chen and Bin Li*

School of Artificial Intelligence, Yangzhou University, Yangzhou, China
In order to enhance the accuracy of rice leaf disease detection in complex

farmland environments, and facilitate the deployment of the deep learning

model onto mobile terminals for rapid real-time inference, this paper

introduces a disease detection network titled YOLOv11 Multi-scale Dynamic

Feature Fusion for Rice Disease Detection (YOLOv11-MSDFF-RiceD). The model

adopts the concept of ParameterNet to design the FlexiC3k2Net module, which

replaces the neck feature extraction network, thereby bolstering the model's

feature learning capabilities without significantly increasing computational

complexity. Additionally, an efficient multi-scale feature fusion module

(EMFFM) is devised, improving both the computational efficiency and feature

extraction capabilities of the model, while simultaneously reducing the number

of parameters andmemory footprint. The bounding box regression loss function,

inner-WIoU, utilizes auxiliary bounding boxes and scale factors. Finally, the

Dependency Graph (DepGraph) pruning model is employed to minimize the

model's size, computational load, and parameter count, with only a moderate

sacrifice in accuracy. Compared to the original YOLOv11n model, the optimized

model achieves reductions in computational complexity, parameter scale, and

memory usage by 50.7%, 49.6%, and 36.9%, respectively, with only a 1.7%

improvement in mAP@0.5:0.9. These optimizations enable efficient

deployment on resource-constrained mobile devices, making the model highly

suitable for real-time disease detection in practical agricultural scenarios where

hardware limitations are critical. Consequently, the improved model proposed in

this paper effectively detects rice disease targets in complex environments,

providing theoretical and technical support for the deployment and application

of mobile terminal detection devices, such as rice disease detectors, in

practical scenarios.
KEYWORDS

inner-WIoU, rice disease detection, multi-scale feature fusion, flexiC3k2Net,

deep learning
1 Introduction

Rice is a key crop for national food security, and its growth status is extremely sensitive

to diseases. The occurrence of diseases is usually related to improper agricultural
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technology practice, inappropriate variety selection and non-

standard use of pesticides, which may lead to the aggravation of

diseases. According to the forecast of the National Agricultural

Technology Extension Service Center, based on the comprehensive

analysis of the base of rice diseases (Muehe et al., 2019) and insect

pests, cultivation management methods, variety layout (Singh et al.,

2021) and climatic conditions (Hajjar et al., 2023), the occurrence

trend of rice diseases in China is expected to be more serious in

2024, and the affected area may reach 390 million acre (Hunan

Agriculture, 2024). The increase in the diversity of rice diseases, the

acceleration of transmission, and the increase in the difficulty of

prevention and control have made the early identification and

effective prevention of diseases particularly critical in modern

agricultural production. Therefore, the implementation of large-

scale and intelligent rice disease management strategies is of great

significance for controlling disease spread and ensuring

food production.

Compared with traditional computer vision technology, deep

learning technology has shown excellent generalization

performance in the field of image analysis due to its remarkable

ability in feature extraction. This technology has been introduced

into the research of agricultural plant disease recognition, and with

the rapid development of deep learning technology, its application

in the field of target detection has also received extensive attention.

Target detection technology is mainly divided into two categories:

two-stage method and one-stage method. The Two-stage method

decomposes the object detection task into two independent stages:

first, the region proposal network (RPN) is used to generate

candidate regions; secondly, these candidate regions are classified

and accurately located. Representative algorithms include Mask R-

CNN (Dorrer and Alekhin, 2021) and Faster R-CNN (Ren et al.,

2017). The advantage of this kind of method is that it has lower

error recognition rate and missed detection rate, and can achieve

higher detection accuracy. However, since it contains two separate

calculation steps, the two-stage method has certain limitations in

processing speed and is difficult to meet the needs of real-time

detection. In order to solve this problem, the one-stage method was

developed. Representatives of such methods include YOLO (Wang

et al., 2024; Wang et al., 2024b) (You Only Look Once) series and

SSD (Zeng et al., 2022) (Single Shot MultiBox Detector). Unlike the

two-stage method, the one-stage method merges the recognition

and localization process into a single stage. By dividing the image

into multiple grids and predicting the category and location of the

target simultaneously on each grid, fast target detection is achieved.

The advantage of this method is its fast recognition speed, which

can meet the needs of real-time detection. In addition, due to the

small number of model parameters and high computational

efficiency, the one-stage method is also easier to be deployed to

mobile devices and embedded systems to achieve edge computing.

It is worth noting that with the continuous optimization of the

algorithm, the one-stage method has also achieved a significant

improvement in accuracy. In some cases, the one-stage method can

even surpass two-stage method to achieve a fairly high level of
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detection. This shows that the one-stage method has broad

application prospects in the field of target detection. (Zhan et al.,

2024) based on the improved target detection model BHC-

YOLOV8 of YOLOv8, which is specifically used to detect tea

diseases and defects in real scenes. By introducing the dynamic

sparse attention mechanism BiFormer, Haar wavelet improved

downsampling module and new feature fusion network, the

model has improved in terms of computational complexity,

confidence and mAP0.5, which effectively improves the accuracy

and efficiency of tea disease and defect detection. (Wang et al., 2024)

proposed a lightweight apple leaf disease detection method called

LCGSC-YOLO. This method combines LCNet backbone network,

GSConv and VOVGSCSP modules, and coordinate attention

mechanism to achieve high-efficiency and high-precision disease

detection under the YOLO framework. It has low model parameters

and computational complexity, and high detection speed, which is

suitable for deployment on embedded devices. (Xie et al., 2024)

proposed a detection method called YOLO-Sizelect, which realized

the accurate and rapid detection of ginseng fruit in natural

agricultural environment by integrating C3f-RN feature extraction

module and model compression technology. (Liu et al., 2024)

developed an early detection method for pine wilt disease based

on UAV remote sensing, hyperspectral image reconstruction and

support vector machine (SVM) classification. In particular, a new

hyperspectral reconstruction network DW3D was proposed to

improve the detection efficiency and real-time performance. A

lightweight recognition model of plant diseases and insect pests

(PDLM-TK) based on tensor features and knowledge distillation

was proposed by (Zhang et al., 2024) The model improves the

diagnostic efficiency and accuracy of plant diseases and insect pests

by constructing a lightweight residual block based on spatial tensor

(LRBST), a branch network fusion graph convolution feature (BNF-

GC) and a model training strategy based on knowledge distillation

(MTS-KD).

In practical agricultural scenarios, especially in resource-

constrained environments like mobile terminals, the efficient

utilization of computational resources is of great significance.

Models with lower computational complexity and smaller

memory footprint can be deployed more easily on these devices,

enabling real-time and on-site disease detection. Therefore, in

addition to recognition accuracy, the resource conservation

capability of a disease detection model is equally important for its

practical application. Our proposed YOLOv11-MSDFF-RiceD

model focuses on achieving this balance by optimizing the model

structure to reduce computational load and memory usage while

maintaining acceptable detection accuracy.

Existing studies on rice disease detection, such as YOLOv8-

based models (Zhan et al., 2024) and lightweight frameworks like

LCGSC-YOLO (Wang et al., 2024), primarily focus on accuracy

under controlled laboratory conditions. However, these models face

significant limitations in real-world agricultural settings. For

instance, they often exhibit high computational complexity and

large parameter sizes, making deployment on resource-constrained
frontiersin.org
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devices impractical. Additionally, models like Faster R-CNN (Ren

et al., 2017) and Mask R-CNN (Dorrer and Alekhin, 2021), while

accurate, lack real-time capabilities due to their two-stage

architecture. Furthermore, existing datasets rarely account for

environmental variability such as lighting changes, occlusions, or

seasonal variations, leading to poor generalization in field

conditions. These limitations underscore the need for a

lightweight, adaptive model that balances accuracy with

computational efficiency while addressing complex environmental

challenges. Disease detection in complex agricultural environments

encounters challenges such as high computational resource

consumption, stringent real-time requirements, and the need for

enhanced detection accuracy. To address these issues, this study

chose the latest and relatively stable YOLOv11 model from the

YOLO series as the research foundation. The YOLOv11 model has

drawn attention for its higher detection accuracy, fewer parameters,

and smaller model size. The aim is to further enhance and optimize

this model to meet the specific demands of rice disease detection.

The proposed YOLOv11-MSDFF-RiceD model, which is the

optimized version, holds great potential for integration into large-

scale precision agriculture systems. For example, it can be installed

on drones with real-time imaging sensors to automatically monitor

rice fields, facilitating early disease detection over extensive

agricultural areas. Moreover, its lightweight design (only 4.7 MB)

enables smooth integration into handheld devices used by farmers

for on-site diagnosis. By combining the model with automated

pesticide spraying systems, farmers can precisely treat infected

areas, reducing chemical usage and operational costs. These

applications are in line with the increasing demand for

sustainable and intelligent farming practices, providing a scalable

solution to minimize crop losses and enhance food security.

Through the improvements made to the YOLOv11 model, we

expect to develop a rice disease detection model that not only

achieves high accuracy but also meets the real-time requirements in

detection speed. Considering the limited computing power of

mobile devices, we have also placed special emphasis on the

lightweight design of the model, aiming to realize efficient disease

detection on resource-constrained devices and promote the

application of rice disease detection technology in actual

agricultural production.
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2 Materials and methods

2.1 Datasets construction

In the field of deep learning, the mobility and generalization

ability of the algorithm model are always one of the key challenges.

Models showing excellent performance in the laboratory

environment often have a significant decrease in recognition

efficiency when transferred to the natural environment. In order

to solve this problem, this study mainly focuses on the accurate

detection of rice leaf diseases and has selected four common rice

diseases, including Rice Blast, Brown Spot, Fusarium wilt and

Bacterial blight.

The construction of this data set strictly follows the principles of

scientificity and diversity, covering samples widely collected from

the Internet and data taken on site to ensure the authenticity and

richness of the data set. The data collection was carried out in the

high standard farmland demonstration area (32° 44 ′N, 119° 29 ′ E)
in Qinwang Village, Cheluo Town, Gaoyou City, Jiangsu Province

from mid-June to late August 2024. In the collection process, we

used DJI MAVIC AIR UAV and iPhone 12 smartphone as the main

collection tools. In view of the limitation of the endurance of the

UAV, we determined the best shooting parameters through

multiple flight experiments: the UAV flight speed is 3m/s to 5m/

s, the height is 3 to 4 meters from the rice plant, and the mobile

phone camera is 30 to 50 cm away from the rice plant. The position

is taken to ensure that the collected image is clear and usable. All

captured images are saved in JPG format with a resolution of 2720 ×

1530 pixels or 1920 × 1080 pixels to ensure a clear presentation of

image details. Figure 1 shows some samples of the data set, and

Table 1 lists the main features of various diseases in detail. In order

to enhance the diversity and challenge of the datasets and ensure the

model’s robustness, a comprehensive approach was taken during

data collection. A variety of natural environments, including soil,

sky, paddy fields, as well as complex backgrounds like water

reflections and overlapping foliage, were deliberately selected as

the background for on - site shooting. The shooting strategies

incorporated following light, reversing light, different distances

(close and long distance), and multi - angles (pitch angle,

elevation angle) to comprehensively simulate various light and
FIGURE 1

Part of the self-built data set samples. (A) Rice blast (B) Fusarium wilt (C) Brown Spot (D) Bacterial blight.
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perspective conditions. Images were also collected across different

seasons, specifically from mid - June to late August, which allowed

for the inclusion of seasonal variations. For instance, images of early

- stage (yellowing leaves) and late - stage (necrotic lesions)

infections were captured. Additionally, different lighting scenarios

were considered, such as those at dawn, midday, and dusk, with

deliberate inclusion of overcast, sunny, and partially shaded

conditions. This extensive coverage of diverse environmental

conditions mimics real - world challenges and ensures the

model’s adaptability to climatic and environmental heterogeneity,

which is a crucial factor for its deployment in precision

agriculture systems

In order to solve the problem of over-fitting or under-fitting of

the model caused by the imbalance of the number of images of

different disease categories in the data set, and enhance the

robustness and generalization ability of the model, this study uses

image enhancement technology to expand the data set. The specific

enhancement methods include horizontal flipping of the image,

random rotation, and random adjustment of brightness and

contrast (Zhong et al., 2017). After these enhancement steps and

excluding the images with information loss, 13464 disease images

were finally obtained. These images are divided into training set,

validation set and test set according to the proportion of 70%, 20%

and 10%. The number of samples in each part is listed in Table 2.

In the process of dataset construction, we noticed that the

characteristics of bacterial blight often appear as thin strips, which

may lead to many non-disease features being incorrectly included in

the annotation process, as shown in Figure 2A. This mislabeling

may cause the model to learn invalid features, which will affect its

detection performance. In order to solve this problem, this study

decided to introduce more detailed disease images, as shown in

Figure 2B, to help the model learn more effective features. This
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method will improve the accuracy of the model ‘s recognition of

disease features, thereby improving the overall performance of

the model.
2.2 YOLOv11 network model

YOLOv11n is a lightweight target detection model in the

YOLOv11 series. Compared with the same series of models such

as YOLOv11s and YOLOv11x, although there is a compromise in

detection accuracy, it has achieved a significant improvement in

detection speed. By reducing the amount of calculation and

parameters, YOLOv11n reduces the requirements for hardware

devices, and effectively improves real-time performance, so that it

shows more prominent advantages in scenarios with strict

requirements for real-time performance and hardware resources.

As shown in Figure 3, the network structure of YOLOv11 n is

composed of Input, Backbone, Neck and Head. The input end

performs image acquisition and preprocessing. By implementing an

adaptive scaling strategy, the size of the input image is ensured to

match the input requirements of the model. The adaptive anchor

frame technology is used to calculate the bounding box that is most

suitable for the current image. In addition, the input data is

enhanced by using multi-image stitching and cropping techniques

to improve the performance and robustness of the model. The

backbone network consists of several key modules, including the

convolutional layer (Conv), C3k2, SPPF, and C2PSA, which are

jointly responsible for extracting feature information from the input

image. The C3k2 module is developed on the basis of C2f, which

integrates two different parameter configurations: C3k and

Bottleneck. The design goal of this module is to improve the

accuracy of feature extraction while maintaining computational

efficiency and inference speed. The C3k2 module allows switching

between C3k and Bottleneck configurations by introducing an

optional C3k parameter. When the C3k configuration is enabled,

the module enhances the extraction ability of local features by

adding two convolution operations, which is particularly useful in

complex scenes because it can improve the resolution and

expression ability of features. On the contrary, if the C3k

parameter is not enabled, the module will adopt the standard

Bottleneck configuration, and the function of the C3k2 module is

the same as that of C2f. This design flexibility enables the C3k2
TABLE 2 The number of samples in each part.

Type Train Val Test Total

Rice blast 2539 648 372 3559

Baterial blight 2918 704 370 3992

Fusarium wilt 951 592 257 1800

BrownSpot 2857 859 397 4113
TABLE 1 This paper studies rice diseases and their characteristics.

Type The main characteristics of the disease

Rice blast Spindle or oval gray-white to brown lesions appeared on the leaves, with yellow halos. Brown dots appeared on stem nodes and panicle necks,
which may lead to fracture. Brown oval or irregular spots are formed on the grains (Shang, 2021).

BrownSpot The lesion usually starts from the leaf tip or leaf margin. At first, it is dark green water stain, and then expands into a short strip spot, and then
extends up and down along the leaf margin or midrib to a long strip spot, and finally turns to gray white and curls inward (Feng et al., 2022).

Fusarium wilt The leaves first appeared dark green, and then the lower leaves expanded from the tip along both sides of the leaf margin to the base to become
yellowish brown, and produced many rust-like spots of different sizes of reddish brown or dark brown. Finally, the spots merged into plaques, and
the leaves gradually withered (Qi et al., 2021).

Baterial blight Rice bacterial blight is mainly manifested as yellow-green to dark-green water-soaked stripes on the leaves, and then develops into corrugated
spots along the leaf margin or midrib, which can lead to yellowing, curling or wilting of the leaves in severe cases (Qi et al., 2021).
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module to adjust its structure according to the needs of different

tasks. SPPF includes three maximum pooling operations and one

convolution operation, which is helpful to realize the effective fusion

of global information and local information. C2PSA extends C2f by

introducing PSA (Position-Sensitive Attention), aiming to enhance

feature extraction ability through multi-head attention mechanism

and feedforward neural network. It can selectively add residual

structure (shortcut) to optimize gradient propagation and network

training effect. The neck network is composed of a path aggregation

network (PAN) and a feature pyramid network (FPN), which is

mainly used to integrate feature maps from different levels and

scales to achieve effective fusion of features. The Head part adopts a

decoupling head structure and combines an anchor-free strategy to

allow the model to perform image detection and classification tasks

independently at different scales.
2.3 YOLOv11-MSDFF-RiceD

In order to increase the detection speed and accuracy of the

model for rice diseases in complex field environments, this study

improved the model based on the original YOLOv11. The network

structure is shown in Figure 4 above.
2.4 Optimization of backbone feature
extraction

As a new lightweight model of low floating-point operations

(FLOPs), YOLOv11n has achieved a corresponding improvement

in detection speed although it has been damaged in detection

accuracy. In order to balance the computational efficiency and

detection accuracy of the model in the disease detection task, this

study draws on the design idea of ParameterNet (Han et al., 2023).

By increasing the number of parameters of large-scale visual pre-

training models without significantly increasing FLOPs, the

network uses dynamic convolution technology. Figure 5 shows

the structure of dynamic convolution. The dynamic convolution
Frontiers in Plant Science 05
in can significantly enhance the expression ability of the model by

using multiple convolution kernels and dynamically adjusting the

weight of these convolution kernels according to the input features.

This design improves its capacity by integrating multiple dynamic

convolution kernels to capture more complex functional

relationships. According to its adaptive computer mechanism, the

model can automatically adjust the weight of the convolution kernel

according to different input features to achieve more flexible and

effective feature extraction. Dynamic convolution is used to

introduce additional parameters into the network, which only

brings a slight increase in FLOPs. This paper uses similar design

ideas to innovate the Bottleneck in C3k2 and proposes the

FlexiC3k2Net module. Figure 6 is the FlexiC3k2Net structure

diagram.FlexiC3k2Net enhances feature extraction by dynamically

adjusting convolutional kernel weights based on input

characteristics. Unlike static convolutions, FlexiC3k2Net employs

multiple kernels whose contributions are weighted via a lightweight

MLP. For example, in detecting thin bacterial blight stripes, the

module prioritizes kernels capturing linear patterns, while for larger

lesions like rice blast, it emphasizes spatial context. This adaptability

reduces redundant computations while improving accuracy for

heterogeneous targets.

PNC3k2 has M dynamic convolution kernels, which can be

expressed as Equation 1:

Y = X*W
0,            W 0 =oM

i=1a iWi (1)

Among them,Wi ∈ RCout�Cin�H�W represents the weight tensor

of the i th convolution kernel, and ai is the dynamic coefficient

corresponding to the convolution kernel. These coefficients ai are

calculated dynamically through a multi-layer perceptron (MLP)

module based on the different characteristics of the input samples

and are expressed as Equation 2:

a = softmax(MLP(Pool(X))), (2)

In comparison with the original convolutional layer, the

coefficient generation in Formula 2 only leads to a slight increase

in the number of floating-point operations (FLOPS). Therefore, the

PNC3k2 implemented by dynamic convolution can significantly
FIGURE 2

Datasets samples. (A) Complex background samples. (B) Simple background samples.
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reduce the growth of FLOPs while introducing a large number of

additional parameters.

In the ordinary convolution layer, the total number of

parameters is Cout · Cin · K · K, and the corresponding floating-

point operations (FLOPs) are H0 ·W0 · Cout · Cin · K · K. In

contrast, the dynamic convolution architecture enhances the

parameter efficiency and computational performance of the

model by integrating the coefficient generation module, the

dynamic weight fusion mechanism and the convolution execution

process. Specifically, the coefficient generation module is conFigd

with  Cin hidden units, which requires C2
in + CinM parameters and

consumes C2
in + CinMFLOPs to dynamically derive the coefficients

of the convolution kernel. Although the dynamic weight fusion

process does not increase the parameter burden of the model, it

involves M · Cout · Cin · K · K FLOPs to achieve real-t ime

combination of weights. Combining these components, the total

number of parameters of the dynamic convolutional layer and the

amount of FLOPs calculation are increased to C2
in + CinM +M ·

Cout · Cin · K · K and C2
in + CinM + M · Cout · Cin · K · K + H0 ·W0 ·

Cout · Cin · K · K, respectively. This design not only improves the

adaptability of the model to the input data, but also achieves the

goal of increasing the complexity of the model while maintaining

the computational efficiency through refined parameter

management and computational optimization.

The parameter ratio of dynamic convolution to standard

convolution is (Equation 3):
Frontiers in Plant Science 06
Rparam =
C2
in + CinM +MCoutCinK

2

Cout ·Cin·K ·K

=
Cin

CoutK2 +
M

CoutK2 +M≈
1
K2

+M : (M≪CoutK
2,  Cin≈Cout) (3)

The proportion of FLOPs is (Equation 4):

Rf lops =
C2
in+CinM+MCoutCinK

2+H 0 ·W 0 ·Cout ·Cin ·K ·K
H 0 ·W 0 ·Cout ·Cin ·K ·K = Cin

H 0 ·W 0 ·Cout ·K ·K
+ M

H 0 ·W 0 ·Cout ·K ·K
+

M
H 0 ·W 0 + 1≈1,(1<M≪H 0·W 0,        Cout≈Cin)

(4)

Therefore, compared with standard convolution, dynamic

convolution has about M times the parameters, and the

additional FLOPs can be ignored.
2.5 Efficient multi-scale feature fusion
module

In the rice disease detection task, the coexistence of small target

lesions and large targets (such as healthy leaves) poses a challenge to

model training. In the training process, the model may tend to focus

on the big target and ignore the small target lesions, resulting in

insufficient capture of the contextual features of the small target.

This bias may reduce the recognition accuracy of the model for
FIGURE 3

YOLOv11n network structure diagram.
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small target lesions and increase the risk of missed or false

detection. At the same time, the existence of large targets also

introduces a large amount of redundant information, which

increases the learning burden of the model. In order to solve this

problem, this study proposes an efficient multi-scale feature fusion

module (Efficient multi-scale feature fusion module, EMFFM). The

design of the module draws on the design concepts of GhostNet

(Han et al., 2020) (Figure 7) and FasterNet (Chen et al., 2023)

(Figure 8 where * represents the meaning of multiplication).
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The core idea of GhostNet is to decompose the traditional

convolutional layer into two smaller convolutional layers: one is the

ghost convolutional layer, which only uses a part of the original

convolutional layer for calculation; the other is the residual

convolution layer, which is responsible for processing the output

of the remaining channels.

FasterNet introduces the concept of Partial Convolution to

extract spatial features more efficiently by reducing redundant

computation and memory access.
FIGURE 4

YOLOv11-MSDFF-RiceD network structure diagram.
FIGURE 5

Structure diagram of dynamic convolution. (1) Normal layer. 2) MoE layer.
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The design of EMFFM combines these two network design

concepts. As shown in Figure 9 (where * represents the meaning of

multiplication) below, the input image is first processed by a 3x3

convolutional layer and then divided into two sets of features: one

set of features continues to be processed by a 5x5 convolutional

layer, while the other set of features is retained for subsequent

feature fusion. After multiple convolution operations, the feature

information will inevitably be lost, so the features of P2, P3 and P4

layers are partially fused. However, this operation is only carried out

on some channels, which improves the computational efficiency.

Finally, the features of different scales are fused by 1x1 convolution

layer, and the input features are added to the processed features by

residual connection, which effectively retains the original

information and introduces new multi-scale information, and

enhances the expression ability of the model.
Frontiers in Plant Science 08
2.6 Loss function

In YOLOv11, CIoU (distributed focusing loss function) is used as

the regression loss function of the detection box, and the matching

accuracy is improved by considering the overlapping area, center

distance and aspect ratio between the target boxes. Compared with

the traditional IoU loss function, the computational complexity of the

CIoU loss function is higher, because it requires additional

calculation of the distance and angle differences between the target

detection boxes, which will increase the calculation time and resource

consumption. And CIoU may have limitations when dealing with

small targets. Due to the small size of small targets, the difference of

bounding box distance and angle between them is relatively small,

which makes it difficult for the CIoU loss function to effectively

distinguish the subtle differences between these small targets.
FIGURE 7

GhostNet structure diagram.
FIGURE 6

FlexiC3k2Net structure diagram.
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In this study, we refer to the concept of Inner-IoU (Zhang et al.,

2023). By introducing multi-scale auxiliary bounding boxes, the

concept allows these bounding boxes to be dynamically adjusted

according to the sample characteristics to improve the efficiency of

bounding box regression. At the same time, the scale factor ratio

parameter is added, which can adjust the size of the auxiliary

bounding box, and can be optimized for different data sets and

detectors, thereby improving the computational performance of the

loss function. Inspired by these ideas, we designed Inner-WIoUv2.

Figure 10 below is a diagram of Inner-IoU. As shown in the Figure,

the Ground Truth (GT) and Anchor are represented as Bgt  and B,

respectively. The center point inside the GT bounding box and its
Frontiers in Plant Science 09
corresponding GT bounding box itself are represented by (xgtc , y
gt
c ).

The center point inside the anchor box and its corresponding

anchor box are represented by (xc, yc). The width and height of

the GT bounding box are represented by  wgt and  hgt, respectively,

while the width and height of the anchor box are represented by w

and h, respectively. The scale factor, usually expressed as ‘ratio’,

ranges from [0.5, 1.5].

In addition, the definition of Inner-loU is as follows (Equations

5–11):

bɡtl = xɡtc −
wɡt

*ratio
2

, bɡtr = xɡtc +
wɡt

*ratio
2

(5)
FIGURE 8

Pconv structure diagram.
FIGURE 9

Efficient multi-scale feature fusion module (EMFFM).
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bɡtt = yɡtc −
hɡt*ratio

2
, bɡtb = xɡtc +

wɡt
*ratio
2

(6)

bl = xc −
w*ratio

2
, br = xc +

w*ratio
2

(7)

bt = yc −
h*ratio

2
, bb = yc +

h*ratio
2

(8)

inter = (min(bɡtr , br) −max(bɡtl , bl))*(min(bɡtb , bb)

−max(bɡtt , bt)) (9)

union = (wɡt
*h

ɡt)*(ratio)
2 + (w*h)*(ratio)

2 − inter (10)

IoUinner =
inter
union

(11)

WIoUv2 (Tong et al., 2023) The bounding box regression loss

function is constructed to reduce the loss effect on simple samples,

and a monotonic focusing coefficient is introduced so that the

model can process difficult samples more intensively, thereby

improving the target detection performance. The formula of the

loss function is shown in Equation 12, which aims to optimize the

training effect of the model and highlights the superiority in the face

of challenging target detection tasks.

LWIoUv2 = Lr*
IoULWIoUv1,   r>0 (12)

In the process of model training, Lr�
IoU in the above formula may

decrease the convergence speed with the gradual decrease of loss
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function LIoU, which may lead to the slow convergence of the model

in the later training stage. In order to deal with this challenge, we

introduce the moving average LIoU, which can effectively maintain

the overall loss function at a relatively high level, thus promoting

the stable training and faster convergence of the model. As shown in

Equation 13:

LWIoUv2 = (
Lr*
IoU

LIoU
)rLWIoUv1 (13)

According to the above formula, the calculation formula of

Inner-WIoU is (Equation 14):

LInner−WIoUv2 = LWIoUv2 + IoU − IoUInner (14)

It can be seen from Figure 11 that after the network is added

such as Inner-WIoUv2, the accuracy is significantly improved.
2.7 Model pruning

In order to optimize the neural network structure and reduce

the computational resource consumption on resource-constrained

embedded devices, this paper adopts a model pruning method

based on Dependency Graph [DepGraph (Fang, 2023)]. This

method first reconstructs the convolutional neural network

(CNN) into a graph structure, as shown in Figure 12. In this

structure, we can identify two key dependencies: one is the inter-

layer dependency between layers, and the other is the intra-layer

dependency within a single layer. Through this graph structure, the

network can be decomposed into smaller and more basic
FIGURE 10

Inner-IoU diagram.
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components, which helps us to understand and model these

dependencies more accurately.

Then, based on this decomposition, a dependency graph is

constructed, which records the direct dependencies between adjacent

layers as a simplified representation of network dependencies. Finally,

DepGraph (Figure 13) groups the layers with dependencies according

to the dependency graph, and performs pruning operations at the

group level to ensure that if the parameters in a group are pruned, all

the parameters of the entire group will be pruned, thereby maintaining

the integrity of the network structure and achieving effective structural

pruning. Through this method, we can effectively reduce the amount of

calculation and parameters of the model while maintaining the

expression ability of the model, making it more suitable for

deployment on edge computing devices.
3 Experimental environment and
evaluation index

3.1 Experimental environment and
parameter settings

The hardware equipment of this research experiment is based

on Windows system, RTX4090 graphics card, 24 G graphics

memory, Intel i7–13700 K CPU. The deep learning development

environment is Pytorch2.2.0 + CUDA11.8 + Python3.10. The deep
Frontiers in Plant Science 11
learning software used is publicly available and can be found on

GitHub or other open-source platforms. After many experiments,

the most suitable training hyperparameters for this study were

found. The specific parameter settings are shown in Table 3.
3.2 Evaluation indicators

In this paper, the performance of the model is evaluated using key

indicators such as mean Average Precision (mAP), computational

complexity, parameter size, and model size. Among them, the mean

average precision (mAP) is used as the core evaluation index to

quantify the accuracy performance of the model in multi-category

target detection tasks. Specifically, the calculation of recall, precision

and average precision is based on the statistical data of True Positives

(TP), False Positives (FP) and False Negatives (FN). The determination

of mAP is achieved by drawing the Precision-Recall Curve (P-R Curve)

and calculating the area under the curve, and then summarizing the

average of all categories. Through the comprehensive consideration of

these indicators, the performance of the model can be comprehensively

evaluated and its performance in different application scenarios can be

deeply understood. The calculation formulas of accuracy rate P, recall

rate R and average accuracy mAP are as follows (Equations 15–17):

P =
TP

TP + FP
(15)
FIGURE 12

CNN in DepGraph.
FIGURE 11

Comparison of experimental results of different loss functions.
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R =
TP

TP + FP
(16)

mAP =
1
no

N
i=1AP(i) (17)
3.3 Ablation experiment

In order to verify the advantages of the improved method

proposed in this study in the field of rice disease detection, this
TABLE 4 Data comparison of ablation experiments.

Treatment mAP@0.5/% mAP@0.5:0.9/% Parameter/M GFLOPs

YOLOv11 88.1 68.4 2.58 6.3

YOLOv11+FlexiC3k2Net 88.7 70.1 3.46 6.3

YOLOv11+EMFFM 88.5 69.8 2.63 5.8

YOLOv11+Inner-WIoU 89.1 70.6 2.59 6.4

YOLOv11+FlexiC3k2Net+EMFFM 89.4 70.3 3.64 5.9

YOLOv11+FlexiC3k2Net+Inner-WIoU 89.7 70.1 3.67 6.4

YOLOv11+Inner-WIoU+EMFFM 89.5 70 2.71 6.0

YOLOv11-MSDFF-RiceD 90.4 70.6 3.46 6.1
TABLE 3 Deep learning hyperparameters.

Parameter Value

Image size 640

Batch size 32

learning rate 0.01

epoch 300
FIGURE 13

The pruning method of DepGraph.
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study designed ablation experiments to evaluate the contribution of

each improved module. The experiment includes a total of 8

verification schemes, and all experiments are carried out under a

unified hardware environment and experimental parameters. The

experimental results are detailed in Table 4. The first four groups of

experiments introduced FlexiC3k2Net module, EMFFM module

and Inner-WIoU module respectively. The results showed that the

addition of these modules increased the mAP @ 0.5 index by 0.6%,

0.4% and 1% respectively. In the subsequent experiments, these

improved modules are gradually combined and integrated into the

model. Finally, compared with the original YOLOv11 model,

although the improved YOLOv11-MSDFF-RiceD model has

increased in the number of parameters, it has achieved 2.3% and

2.2% improvement in the two key performance indicators of mAP

@ 0.5 and mAP @ 0.5: 0.9, respectively. The experimental results

show that the proposed improved method has significant

performance advantages in rice disease detection tasks.
3.4 Comparative experiments of different
loss functions

In order to verify that the loss function proposed in this paper

has certain advantages for disease detection tasks, we systematically

compared and analyzed the performance of six different loss

functions (CIoU, DIoU (Zheng et al., 2019), EIoU (Zhang et al.,

2021), GIoU (Rezatofighi et al., 2019), SIoU (Gevorgyan, 2022),

Inner-WIoU) in rice disease detection tasks. The detailed

experimental results are shown in Table 5.
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The performance of these loss functions is evaluated by

Precision, Recall, and average precision at two different thresholds

(mAP @ 0.5 and mAP @ 0.5: 0.9). The results show that CIoU and

DIoU are the closest in accuracy, 94.5% and 94.5% respectively, but

DIoU is higher in recall rate, 83.4%, while CIoU is 82.6%. EIoU is

slightly lower in accuracy, 91.7%, and performs worst on mAP @

0.5: 0.9, only 64.9%. GIoU and SIoU are relatively close in all

indicators, but SIoU is slightly lower at mAP @ 0.5: 0.9, which is

68.6%, while GIoU is 68.7%. Inner-WIoU is not as good as CIoU

and DIoU in accuracy, which is 94.1%, but it exceeds other loss

functions in recall rate, mAP @ 0.5, mAP @ 0.5: 0.9. The

experimental results show that the Inner-WIoU loss function is

helpful to improve the efficiency of rice disease detection.
3.5 Pruning experiment

When studying the effect of different compression ratios on the

performance of the disease detection model, we conducted six

experiments with different compression ratios. The experimental

results are shown in Table 6. The experimental data show that with

the increase of compression ratio, the parameters, computing

requirements and storage space of the model are reduced, but the

performance of the model is also reduced. When the compression

ratio is 2, the parameters, computation and storage space of the

model are reduced by 25.4%, 49.1% and 36.9% respectively compared

with the original model, while the accuracy, mAP @ 0.5 and mAP @

0.5: 0.9 are only reduced by 1.4%, 0.6% and 0.5% respectively.

Therefore, while significantly reducing hardware requirements, the
TABLE 6 Effects of different compression ratios on model performance.

Compression Precision Recall mAP@0.5 mAP@0.5 Parameters GFLOPs Model size

ratio /% /% /% :0.9/% /M /G /MB

/ 95.1 84.8 90.4 70.6 3.46 6.1 7.45

2 93.9 84.8 89.8 70.1 2.58 3.1 4.7

2.5 92.5 83.1 88.7 68.8 2.1 2.7 3.5

3 90.8 82.4 88 65.4 1.7 2.6 2.9

3.5 87.3 79 86.2 62.8 1.2 2.3 2.3

4 85.2 76.4 85.6 60.1 0.9 1.8 1.9
TABLE 5 Comparative experimental data of different loss functions.

Loss function Precision/% Recall/% mAP@0.5/% mAP@0.5:0.9/%

CIoU 94.5 82.6 88.1 68.4

DIoU 94.5 83.4 88.5 68.8

EIoU 91.7 82.7 87.8 64.9

GIoU 93.6 83.5 88.7 68.7

SIoU 92.5 84.5 88.7 68.6

Inner-WIoU 94.1 84.8 89.1 70.6
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loss of model accuracy is small. We use a pruning method with a

compression ratio of 2 to optimize the model.
3.6 Comparative experiments of different
models

In order to further evaluate the performance difference between

YOLOv11-MSDFF-RiceD and the current mainstream target

detection algorithms, this paper selects key indicators such as the

number of parameters, the amount of calculation, mAP @ 0.5, mAP

@ 0.5: 0.9, accuracy, recall rate and model size, and compares

YOLOv11-MSDFF-RiceD with YOLOv5n, YOLOv6n, YOLOv8n,

YOLOv9t, YOLOv10n and YOLOv11n on the self-defined data set.

The experimental results are summarized in Table 7. The results

showed that the mAP @ 0.5 of YOLOv11-MSDFF-RiceD reached

89.8%, which was 1.7 percentage points higher than that of

YOLOv11n, and 2%, 3.4%, 1.8%, 1.1% and 1.9% higher than that

of YOLOv5n, YOLOv6n (Li et al., 2022), YOLOv8n, YOLOv9t

(Wang et al., 2024c) and YOLOv10n (Wang et al., 2024a),

respectively. This shows that YOLOv11-MSDFF-RiceD performs

best in average accuracy, showing its excellent ability in disease

detection. In addition, the model size and parameter number of

YOLOv11-MSDFF-RiceD were reduced to 4.7 MB and 1.3 million,

respectively, which was 36.9% and 49.6% lower than that of

YOLOv11n, and showed significant optimization effect in

comparison with other detection models.

In this study, we conducted a detailed comparison of the

detection performance between YOLOv11-MSDFF-RiceD and

YOLOv11n to better understand their capabilities in complex

farmland environments. To achieve a more accurate evaluation,

we enlarged and cropped images for closer inspection, as shown in

Figure 14. The results clearly demonstrate that YOLOv11-MSDFF-

RiceD outperforms YOLOv11n significantly, with our proposed

model achieving higher detection accuracy and eliminating missed

detections. The missed detections observed with YOLOv11 in some

cases can be attributed to two primary factors. Firstly, the network

structure of YOLOv11 has inherent limitations in feature

extraction. It fails to fully capture the feature information that is

truly useful for disease detection, leading the model to learn
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incorrect feature patterns and thereby compromising detection

accuracy. Secondly, the complex farmland environment poses

significant challenges. The model is exposed to a large amount of

redundant and complex interference information during the

learning process, making it difficult to accurately extract the

effective features of the disease. This results in suboptimal

detection performance. In contrast, YOLOv11-MSDFF-RiceD

addresses these challenges through enhanced feature extraction

capabilities and improved robustness to environmental

complexities, ensuring more reliable and accurate disease detection.

The comparison of the effects in Figure 15 shows the superiority

of the YOLOv11-MSDFF-RiceD model over other models such as

YOLOv5, YOLOv6, YOLOv8, YOLOv9, YOLOv10 and YOLOv11

in rice disease detection tasks. From the results, in addition to

YOLOv11-MSDFF-RiceD, other models generally have missed

detection during the detection process, and YOLOv5 and

YOLOv6 have the problem of misidentification of rice blast as

brown spot. These missed and false detections not only affect the

accuracy of disease detection, but also may mislead the actual

disease management. The YOLOv11-MSDFF-RiceD model

significantly reduces the missed detection and false detection,

improves the detection accuracy, and can more accurately identify

rice diseases including rice blast and brown spot. Although the

model achieves good detection performance (89.8% mAP @ 0.5), its

accuracy will decrease under extreme background or low resolution

input. Similarly, small lesions (< 10 pixels) in severely occluded

areas also showed a high false negative rate. Future work will

explore a hybrid architecture that combines attention

mechanisms with super-resolution preprocessing to address these

challenges. In addition, although in this study, there was no

misjudgment between diseases in the model, this does not mean

that similar problems will not occur in subsequent studies, which

also sounded the alarm for us. In order to prevent the occurrence of

such problems, future research will focus on the following two

aspects: First, expand the scale of the data set, especially increase the

number of disease samples with similar symptoms, so as to enhance

the adaptability of the model to complex situations; the second is to

continuously optimize the feature extraction method to further

improve the model ‘s ability to capture subtle differences, so as to

better achieve the goal of accurate classification.
TABLE 7 Comparative experiments of different models.

Modules Parameters GFLOPs mAP@0.5 mAP@0.5:0.9 Precision Recall Size

YOLOv5n 2.18M 5.8G 87.8% 65.5% 91.8% 82.6% 12.7MB

YOLOv6n 4.16M 11.6G 86.4% 68.4% 92.7% 83.5% 8.18MB

YOLOv8n 2.68M 6.8G 88% 68.3% 92.5% 84.3% 7.98MB

YOLOv9t 6.19M 22.1G 88.7% 69% 92.7% 85.1% 6.01MB

YOLOv10n 2.26M 6.5G 87.9% 59.6% 89.4% 79.1% 7.16MB

YOLOv11n 2.58M 6.3G 88.1% 68.4% 94.5% 82.6% 7.45MB

YOLOv11-
MSDFF-RiceD

1.3M 3.1G 89.8% 70.1% 93.9% 84.8% 4.7MB
The optimal data for each term is expressed in bold.
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3.7 Model deployment comparison
experiment

In this study, in order to highlight the performance advantages

of lightweight models, we deployed multiple models on the Jetson

Orin Nano development board and compared their frame rates.

TensorRT is not used for acceleration processing during
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deployment. Table 8 shows the frame rate differences between

different models in detail. This comparison is mainly based on

the video stream data taken by the drone. The flight parameters of

the drone are: the flight speed is 3 m/s to 5 m/s, and the flight height

is 3 m to 4 m away from the rice plant.

It can be seen from the results that the YOLOv11-MSDFF-

RiceD model shows significant real-time and deployable advantages
FIGURE 14

(A-H) Details of detection effect.
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on the Jetson Orin Nano development board. The frame rate is as

high as 27 FPS, and the preprocessing time is only 112 ms, which

are significantly better than other models. This performance enables

it to complete target detection quickly and efficiently in farmland

disease detection tasks, and is suitable for real-time deployment in a

resource-constrained hardware environment (Li et al., 2025). It

provides a strong theoretical basis for the subsequent deployment of

hardware equipment to drones, and provides strong support for
Frontiers in Plant Science 16
rapid monitoring and precise prevention and control of

farmland diseases.
4 Conclusion

Aiming at the challenge of rice leaf disease detection in complex

field environment, this study proposes a lightweight network model
FIGURE 15

(A-G) Comparison of the effects of different models.
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based on improved multi-scale dynamic feature fusion based on

YOLOv11 framework, named YOLOV11-MSDFF-RiceD. The model

introduces the concept of ParameterNet, and replaces the original neck

feature extraction network by designing the FlexiC3k2Net module to

enhance the model ‘s ability to learn features and control the increase in

computation. In addition, this study designs an efficient multi-scale

feature fusion module (Hyper Multi-Scale Fusion Module, Hyper-

MFFM), which aims to improve the computational efficiency and

feature capture ability of the model, while reducing the number of

parameters and memory usage. In terms of loss function, this study

uses the auxiliary bounding box and the scale factor bounding box

regression loss function (inner-WIoU) to improve the prediction

accuracy of the model. Finally, through the Dependency Graph

(DepGraph) pruning technique, the model volume is reduced and

the computational load is reduced at a moderate sacrifice of

model accuracy.

The experimental results show that the YOLOv11-MSDFF-RiceD

model significantly reduces the computational load and model size (4.7

MB) while maintaining considerable detection accuracy. Although the

improvement on mAP @ 0.5 is modest (1.7%), the lightweight design

of the model addresses the urgent need to deploy AI solutions on edge

devices with limited computing resources, such as drones or handheld

agricultural sensors. Although the model shows robustness in complex

farmland environments, there are still some challenges. Firstly, the

dataset mainly covers four common rice diseases, and its performance

in rare or emerging disease categories has not been tested. Secondly,

changes in light conditions (such as overexposure or shadows) and

background interference (such as overlapping leaves or soil patterns)

may reduce the detection reliability. For example, under weak light

conditions, the thin strip lesions of bacterial blight may be confused

with natural veins. In addition, due to the limitation of rice cycle, this

study did not deeply explore the influence of different heights and flight

speeds on model training and detection performance during data

acquisition. Future research will focus on expanding the data set to

include more disease types and environmental changes, integrating

illumination invariant feature extraction techniques to enhance

robustness, and planning to study the effects of different altitudes

and flight speeds on model performance. At the same time, future

research directions also include optimizing the model structure and

parameters to improve its robustness in complex scenarios, and

exploring advanced technologies such as transfer learning and
Frontiers in Plant Science 17
federated learning to further improve the performance of the model

on embedded devices and ensure its effective deployment and

application in actual agricultural scenarios.
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TABLE 8 Comparison of deployment speed of different models.

Modules FPS Preprocess

YOLOv5n 15 156ms

YOLOv6n 10 263ms

YOLOv8n 12 189ms

YOLOv9t 9 298ms

YOLOv10n 12 178ms

YOLOv11n 15 147ms

YOLOv11-
MSDFF-RiceD

27 112ms
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