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Introduction: The taxonomy of Euphorbiaceae is extremely difficult, especially

the phylogeny of closely related genera. In Ricinus, which embraces an important

non-food oil-seed crop worldwide, Discocleidion and Speranskia are closely

related genera based on molecular evidence (tribe Ricineae), however the

intergeneric and interspecific relationship of the tribe is not well-resolved.

Methods: Plastome and transcriptome were sequenced and assembled before

maximum likelihood and Bayesian inference phylogenetic trees were reconstructed.

Plastome features and comparative analyses were conducted. Morphological traits

of the tribe were explored as supplement to the molecular data.

Results: The newly sequenced plastomes ranged from 167,327 to 190,093 bp

with typical circular quadripartite structures. The longest genome of S.

tuberculata may due to higher number of simple sequence repeats. Natural

selection pressure on chloroplast genes was relatively small and the tribe likely

experienced a population contraction. The transcriptome assembly contig N50

of the tribe ranged from 1506 (D. rufescens) to 2489 bp (S. tuberculata). A total of

50,513 genes (S. cantonensis) to 78,048 genes (D. ulmifolium) were detected,

and the GC content varied between 38.17% (S. cantonensis) and 40.01% (R.

communis). The three genera formed a well-supported monophyletic lineage,

confirmed by different genomic data using different methods. Discocleidion and

Ricinus were supported to be closely related. In Speranskia, S. yunnanensis

diverged first and the divergence of S. tuberculata and S. cantonensis was

followed. Further, morphological similarities supported the monophyletic

lineage and intergeneric and interspecific relationship.

Discussion: The relationship in the tribe Ricineae is clearly revealed by genomic

and morphological data, providing a genetic basis for future comparative

genomic investigations and phylogeny reconstruction of Euphorbiaceae.
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1 Introduction

The taxonomy of Euphorbiaceae, which includes 299 genera

with ca. 6,500 species, is one of the most complicated among

angiosperms (Govaerts et al., 2000; Sun et al., 2016). Discordance

lies between/within morphological and molecular phylogenetic

classifications (Webster, 2014; Sun et al., 2016). Ricinus communis

L. is an important non-food oil-seed crop worldwide that produces

rich ricinoleic acid that has been widely used in industry and its

seeds contain the extremely toxic protein ricin that has been used as

an immunotoxin for therapeutic purposes in different cancers (Xu

et al., 2021). Unclear phylogenetically closely related genera with the

Ricinus L. complicate the comparative genomics researches that will

deepen the understanding of the formation mechanism and

biochemical process of these substances.

Morphologically, Ricinus was first defined as the sole genus of

the tribe Ricineae Bartl (Bartling, 1830) (Ord. Nat. Pl.: 371. Sep

1830.). Hutchinson (1969) merged Homonoia Lour., Spathiostemon

Blume, and Lasiococca Hook. f. into the tribe Ricineae. Hans (1973)

suggested Ricinus belongs to the tribe Crotoneae and the tribe

Ricineae was not retained. Webster (1994) defined Ricinus as the

single genus of the subtribe Ricininae of tribe Acalypheae and the

genus appeared to be most closely related to Adriana Gaud. Then,

the two genera were classified as the tribe Ricineae by Webster

(2014). Flora of China (FOC) included Ricinus and Discocleidion

(Muell. Arg.) Pax et Hoffm. in the tribe Acalypheae while genera

composition was different compare to Webster (1994). Speranskia

Baill. (a closely related genus based on molecular phylogeny, see

below) was not included in Hutchinson (1969) and Hans (1973),

while Webster (2014) suggested it belonged to tribe Chrozophoreae

as in the FOC.

Molecular phylogenies show different relationships. Through

two chloroplast fragments (rbcL and trnL-F), Wurdack et al. (2005)

indicated Speranskia was closely related to Ricinus while the

posterior probability (PP) was low. A similar relationship was

further supported by Zhou et al. (2017) through combined 18S

and four chloroplast fragments (atpB, matK, rbcL, and trnL-F),

while Ricinus and Discocleidion were found to be more closely

related when using three chloroplast fragments (except atpB). A

close relationship between Ricinus and Discocleidion was also

reconstructed through chloroplasts rbcL, atpB, and matK and

mitochondrial matR gene (Sun et al., 2016); or a standardized set

of 353 nuclear genes (Zuntini et al., 2024). Speranskia and

Discocleidion are likely closely affiliated with Ricinus (the three

genera are treated as tribe Ricineae in this study), however, the

intergeneric relationship is inconsistent in different studies.

In addition to the inconsistencies in phylogenetic relationships

arising from different fragments within the plastome, the

phenomenon of cytoplasmic-nuclear conflict is also widely

observed in systematic studies (Fu et al., 2023; Koenen et al.,

2020; Meng et al., 2021). The discrepancy can be attributed to

incomplete lineage sorting (ILS), hybridization, or introgression

(Meleshko et al., 2021; Osuna-Mascaró et al., 2023). In order to

clarify the intergeneric and interspecific relationships of the tribe

Ricineae, both organelle (plastome) and nuclear (transcriptome)
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genomes were used to provide further evidence of the phylogenetic

relationship in this study. The specific aims of this study were to

ascertain (1) whether Ricinus, Discocleidion, and Speranskia form a

well-supported monophyletic lineage and whether cytoplasmic-

nuclear discordance exists for intergeneric and interspecific

relationships, and (2) what are the comparative features of the

plastome among different species in the tribe.
2 Materials and methods

2.1 Sample collection, sequencing, and
genome assembly

Fresh leaves of S. tuberculata, S. yunnanensis, S. cantonensis,

D. rufescens, and D. ulmifolium, representing all species in the tribe

except R. communis, were sampled and preserved with silica gel before

DNA extraction. Mixed samples of roots, stems, leaves, and flowers

were sampled and preserved with liquid nitrogen for RNA extraction.

Voucher specimens were kept in the herbarium of Southwest Forestry

University (Figure 1; Supplementary Table S1). DNA was extracted

using the Cetyltrimethylammonium bromide (CTAB)method before it

was sequenced using the Illumina HiSeq 2500 platform (USA,

California) by Commission Feisha Bioinformatics Co., Ltd. (Wuhan,

China). RNA was extracted using an RNAsimple Total RNA

Extraction Kit (DP419), sequenced on the Illumina HiSeqTM

platform (USA, California), and were commissioned to NextOmics

Biosciences Co., Ltd. (Wuhan, China). The raw data were filtered and

cleaned using fastp v0.20.0 (Chen et al., 2018) to obtain clean reads.

The plastome was assembled using GetOrganelle v1.7.5 (Jin

et al., 2020) and annotated and visualized using the online software

CPGAVAS2 (Shi et al., 2019) (http://47.96.249.172:16019/analyzer/

annotate) using Nicot iana tabacum as the reference

(Kunnimalaiyaan and Nielsen, 1997). RNA-seq data of six

Euphorbiaceae species (R. communis, Jatropha curcas, Euphorbia

lathyris, Hevea brasiliensis, Manihot esculenta, and Mercurialis

annua) and Arabidopsis thaliana were downloaded from

GenBank (Supplementary Table S2). The quality of the

downloaded data was assessed using FastQC (https://

www.bioinformatics.babraham.ac.uk/projects/fastqc/) to identify

low-quality sequences and adapter contamination. Unstable

sequences were subsequently removed with fastp v0.20.0 (Chen

et al., 2018). The filtered data were assembled using Trinity v2.91

(Garber et al., 2011). To reduce redundancy in the assembly results,

CD-HIT was employed. Finally, open reading frames (ORFs) and

predicted coding sequences were identified using TransDecoder

(Li and Godzik, 2006).
2.2 Plastome features and comparative
analyses

2.2.1 Selective pressure analyses
DNAsp5 (Librado and Rozas, 2009) was used to calculate the

Ka/Ks value and non-synonymous substitution, and a Ka/Ks
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heatmap was plotted using ChiPlot (https://www.chiplot.online). A

neutrality test inferred using Tajima’s D was also tested in DNAsp5.

2.2.2 Similarity analyses
Nucleotide diversity index (Pi) was calculated using DNAsp5

(Librado and Rozas, 2009). CPStools (Huang et al., 2024) was used

to evaluate the Pi of the coding and non-coding regions. Then,

hypervariable regions with high Pi values were selected as the

candidate areas for allele-specific barcodes. Using Mallotus japonicus

(JF937588.1), a close relative species in Euphorbiaceae, as a reference,

the plastome similarity of the six species was analyzed using mVISTA

(Frazer et al., 2004) and the Shuffle-LAGAN under the condition of

detecting rearrangements by performing global pairwise alignments of

sequences. A similar analysis was also performed among species from

different clades within the Subfam. Acalyphoideae and the tribe

Ricineae. IRscope (Amiryousefi et al., 2018) was used to compare the

boundaries and contractions or expansions of the plastome inverted

repeat (IR) regions. Circoletto (Chen et al., 2022) was used to conduct

collinearity analysis on the plastomes.

2.2.3 Codon usage analysis
Codonw (Peden, 2000) was used to analyze the third-position

base content (A, T, C, and G) of the codons and calculate the codon

adaptation index (CAI), codon bias index (CBI), effective number of

codons (ENC), and frequency of optimal codons (Fop). The CAI

module in Python was used to compute the relative synonymous

codon usage (RSCU) and the ggplot2 package in R 3.4.1 (https://

www.r-project.org/) was used for data visualization.

2.2.4 Repeat sequences and simple sequence
repeats (SSRs)

First, large segment repetitive sequences (length ≥ 30 bp,

Hamming distance = 3) were annotated using REPuter (Kurtz
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et al., 2001), including forward (F), reverse (R), complement (C),

and palindromic (P) patterns. Then, MISA (Beier et al., 2017) was

used for SSRs analysis.
2.3 Phylogeny and divergence time
estimations

The six plastomes, along with the published plastomes of other

Euphorbiaceae species, were aligned and manually adjusted using

MAFFT (Katoh et al., 2002). A maximum likelihood (ML) tree was

reconstructed in IQ-TREE (Nguyen et al., 2015) using GTR+F+R3

which is the best model selected using IQ-TREE after 1,000

iterations. A Bayesian inference tree (BI) was created in MrBayes

(Huelsenbeck and Ronquist, 2001). After performing the variance

test, the HKY model was selected. We conducted divergence time

estimations using two calibration points. The fossil Hippomanoidea

warmanensis (Crepet and Daghlian, 1982) was assigned to the

origin node of the Subfam. Acalyphoideae, with a minimum time

set at 43 million years ago (Ma) (Anest et al., 2021). Additionally, a

secondary calibration was applied to the divergence time between A.

thaliana and E. lathyris which was set to 108 ± 4.0 Ma (Lu et al.,

2022). FigTree (http://tree.bio.ed.ac.uk/software/figtree/) was used

to visualize all phylogenetic trees.

In the transcriptome data, orthologous genes were identified

using the Blast function in Orthofinder v2.5.4 (Emms and Kelly,

2019). These orthologous genes were then clustered to form

orthogroups, and gene trees were constructed for each gene

family. Subsequently, the gene trees were merged into a species

tree using a concatenation method. A total of 192 single-copy

orthologous genes were aligned and modified using trimAl v1.4

(Capella-Gutiérrez et al., 2009). Gaps were removed to ensure that

the filtered sequences accounted for no less than 70% of the original
FIGURE 1

Comparison of morphological characteristics among different genera of the tribe Ricineae. (A) Speranskia cantonensis, (B) Discocleidion rufescens
(female plant), (C) Ricinus communis.
frontiersin.org

https://www.chiplot.online
https://www.r-project.org/
https://www.r-project.org/
http://tree.bio.ed.ac.uk/software/figtree/
https://doi.org/10.3389/fpls.2025.1544247
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Liu et al. 10.3389/fpls.2025.1544247
sequences. A ML phylogenetic tree was reconstructed using RAxML

v8.2.12 (Stamatakis, 2014) with the PROTGAMMAJTT model.

Divergence times between A. thaliana and E. lathyris (108 ± 4.0

Ma) and between E. lathyris and J. curcas (62 ± 1.0 Ma) obtained

from the TimeTree (http://www.timetree.org) were used as two

secondary calibrations in the MCMCtree method implemented in

the PAML v4.0 (Yang, 2007).
2.4 Morphological analysis

The morphological traits of the three genera (Ricinus,

Discocleidion, and Speranskia), along with their easily confused

taxa, were analyzed through a combination of field observations,

collection of live specimens and herbarium samples, and

morphological descriptions were sourced from FOC.
3 Results

3.1 Transcriptome features

The transcriptome assembly contig N50 of the six species within

the tribe Ricineae ranged from 1,506 bp (D. rufescens) to 2,489 bp

(S. tuberculata), with an average contig length of 802 bp (D.

rufescens) to 1,923 bp (R. communis). A total of 50,513 genes (S.

cantonensis) to 78,048 genes (D. ulmifolium) were detected, and the

GC content varied between 38.17% (S. cantonensis) and 40.01% (R.

communis). The completeness ranged from 93% for D. rufescens to

95.5% for R. communis, with an average of 95.9% (Supplementary

Table S3), indicating high assembly completeness.
3.2 Plastome features and comparative
analyses

The plastomes of the five newly sequenced species were all

typical circular quadripartite structure (Figure 2) and the length

ranged from 167,327 bp to 190,093 bp. The GC content ranged

from 31.02% to 34.93% (Supplementary Table S4). All the species

contained 131 genes except S. yunnanensis, which had 130 genes

(loss of the trnK-UUU gene) (Supplementary Table S5).

Positive values for Tajima’s D (0.43) and Ka/Ks values which

were ranging from 0.78 (between D. ulmifolium and R. communis)

to 1.09 (between D. rufescens and D. ulmifolium) (Supplementary

Figure S1) were calculated. The DNAsp5 showed 7,150

polymorphic sites, 7,438 mutations, and a Pi value of 0.02 for the

six species. To further identify the regions with high variation, Pi

analysis was performed on coding and non-coding regions. The

results showed that there were 25 genes with a Pi value greater than

0.02 in the coding region (the highest value was located in matK,

Pi=0.033) (Supplementary Figure S2B). In addition, there were 45

regions with a Pi value greater than 0.02 in the non-coding region
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(the highest value was located in accD-psaI, Pi=0.128)

(Supplementary Figure S2A). The variations were mainly located

in the large single copy (LSC) region, and there was a large gap

between 90k and 93k, where the sequence similarity was less than

50%. The small single copy (SSC) region had the least variations,

and most of the variations existed in the non-coding region

(Supplementary Figure S3A). In the Subfam. Acalyphoideae, the

sequence similarity in the 0–9k region was less than 50%, and the

overall sequence similarity was relatively low (Supplementary

Figure S3B). This indicated that the plastome of the tribe Ricineae

is highly conserved and has undergone significant differentiation

from its closely related groups. The IR region did not show

significant contractions or expansions, and the boundary region

was relatively conservative (Figure 3). The collinearity analysis

indicated the six species showed high level of similarity and a

good collinear relationship (Supplementary Figure S4).

Codon bias analysis showed that the CAI, CBI, Fop, and ENC

ranged from 0.136 to 0.154, -0.166 to -0.109, 0.312 to 0.347, and

53.37 to 55.28, respectively (Supplementary Table S6). RSCU

analysis revealed 61 synonymous codons (Supplementary Figure

S5). Among the 31 codons with an RSCU value greater than one, 26

of them ended with A\T, while 24 of the 28 codons with an RSCU

value smaller than one ended with G\C (Supplementary Table S6).

Long repetitive sequences with a length ≥ 30 bp and similarity >

90% between two copies were detected. In total, 1,253 long repetitive

sequences were detected including 42–60 F repeats (34%), 21–36 R

repeats (18%), 0–10 C repeats (4.8%), and 4–28 P repeats (63.2%)

(Supplementary Figure S6). A total of 1,130 SSRs were found,

including 60–91 single base repeats, 21–70 double base repeats, 5–

70 triple base repeats, 19–62 quadruple base repeats, 4–37 quintuple

base repeats, and 0–4 sextuple bases repeat sequences. S. tuberculata

had the largest number of SSRs (n = 291), while R. communis had the

smallest number of SSRs (n=144) (Supplementary Figure S7).
3.3 Phylogeny and divergence times

In the phylogenetic trees reconstructed by plastomes, three

subfamilies, Subfam. Crotonoideae, Subfam. Euphorbioideae, and

Subfam. Acalyphoideae (Sun et al., 2016), were revealed in both the

ML and BI phylogenetic trees of Euphorbiaceae (Figure 4). The three

genera formed a well supported (PP > 0.95) monophyletic lineage,

which showed Discocleidion and Ricinus was the most closely related

in the Subfam. Acalyphoideae in both trees. In the ML tree

reconstructed using transcriptome data, the same monophyletic

lineage that illustrates the same intergeneric and interspecific

relationships was shown. All clades in the monophyletic lineage

were well resolved (PP > 0.95, and bootstrap support, BS, > 90) in

all the reconstructed phylogenetic trees.

Dating analysis indicated the crown age of the monophyletic

lineage consisting of the three genera was estimated during the

Oligocene-Miocene (27.92 and 32.96 Ma estimated by the plastome

and transcriptome data, respectively) (Figure 5). The two East Asian
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endemic genera, Speranskia and Discocleidion, diversified in the late

Miocene (12.69 or 11.46 Ma) and the Pliocene-Pleistocene (2.47 or

3.58 Ma), respectively.
3.4 Morphological analysis

In the FOC (Li, 1990), Speranskia is classified into the tribe.

Chrozophoreae based on the presence or absence of petals in female

flowers, while Discocleidion and Ricinus are classified into tribe

Acalypheae, with a relatively simple classification criterion.

However, through observations of specimens and living plants,

and review of relevant materials, this study found that species

belonging to these three genera share similar characteristics,

including alternate leaves with serrated edges, terminal racemose

or paniculate inflorescences with 3–5 calyx lobes arranged in a

valvate manner, the absence of sterile pistils, a tricarpellary ovary

with one ovule in each of the three chambers, and three bifid styles

splitting into two lobes reaching the middle or almost to the base.
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Therefore, morphological evidence supports the classification of

these three genera as being closely related.

The species in the tribe Ricineae exhibit significant

morphological variations. To facilitate their identification, this

study developed a dichotomous key based on traits such as

monoecy/dioecy, leaf morphology, and floral characteristics.

Morphology can be used to distinguish the three genera of the

tribe Ricineae well.
1. Flowers dioecious…………………………………………2

1. Flowers monoecious………………………………………3

2. Twigs, leaves, and inflorescences densely covered with white

or pale yellow long soft hairs; fruits hairy……D. rufescens

2. Plant glabrous except for young shoots; fruits

glabrous………………………………………D. ulmifolium

3. Male flowers without petals, leaf blade palmately 7-11-

lobed…………………………………………..R. communis

3. Male flowers with petals, undivided leaves………………4
FIGURE 2

Plastome of a newly sequenced species of the tribe Ricineae. This map has four rings. Looking outward from the center, the first circle indicates
forward and backward repeats connected by red and green arcs, respectively. The next circle is a tandem repetition marked with a short bar. The
third circle is the sequence of microsatellites identified by MISA. The fourth circle was drawn using drawGenemap and represents the gene structure
on the plastid. These genes are colored according to their functional class.
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FIGURE 3

Structural variations in the plastomes of species in the tribe Ricineae and other species in the Euphorbiaceae. Genes transcribed forward are shown
above, whereas genes transcribed reversely are shown below. Gene lengths in the corresponding regions are displayed above the boxes of gene
names. The four grey lines denote the junction sites of LSC/IRb, SSC/IRb, SSC/IRa, and LSC/IRa, respectively. SSC, small single copy, IR, inverted
repeats, LSC, large single copy.
FIGURE 4

Phylogenetic trees of Euphorbiaceae reconstructed using maximum likelihood (ML) and Bayesian inference (BI) through plastomes. Bootstrap
support (BS) values inferior to 100% and posterior probability to 1 are shown.
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Fron
4. Female flowers with petals; petioles short, less than 5 mm

long, fruits with tubercular protuberances….S. tuberculata

4. Female flowers without petals; petioles longer than 7 mm...5

5. Leaf tips acute or acuminate, margins with rounded or

obtuse teeth; fruits with distinct tubercular protuberances…

……………………………...S. cantonensis

5. Leaf tips caudate-acuminate or caudate, margins with

sharp teeth or serrations; fruits without tubercular

protuberances………………………………..S. yunnanensis
4 Discussion

4.1 Intergeneric and interspecific
relationships in the tribe Ricineae

Although Speranskia, and Discocleidion are likely closely related

genera to Ricinus, the intergeneric relationship of the tribe Ricineae

is inconsistent using different genes (Sun et al., 2016; Zhou et al.,

2017; Zuntini et al., 2024). The intergeneric relationship was

reassessed through the phylogenomic analyses of plastome and

transcriptome, supplemented by a morphological investigation, in

this study.

The monophyletic lineage (Ricinus , Speranskia , and

Discocleidion) revealed by previous molecular studies (Sun et al.,

2016; Zhou et al., 2017) through DNA sequence fragments were

further consistently verified using different genomic data (the

plastome and transcriptome) using different methods (BI and

ML) for phylogenetic tree reconstructions. The same intergeneric

and interspecific relationships of the lineage are also well supported

(PP > 0.95 and BS > 90). Speranskia form a clade that is sister to the

clade including Ricinus and Discocleidion, and in Speranskia, S.

tuberculata and S. cantonensis are most closely related sister species.
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Based on the phylogenetic evidence and morphological similarities,

such as alternate leaves with serrated edges, racemose or paniculate

inflorescences that are terminal, and so on, we propose the most

closely related genera of Ricinus are Speranskia and Discocleidion.

Furthermore, in Euphorbiaceae, both the ML and BI trees

reconstructed through plastome support the classification of three

subfamilies, Crotonoideae, Euphorbioideae, and Acalyphoideae.

Due to the plasticity of morphological characteristics and parallel

evolution, the morphological classification of Euphorbiaceae

primarily relies on a limited number of traits such as seed surface

features (Frajman and Schönswetter, 2011). Furthermore, the

chromosome number also poses significant challenges for effective

classification (Hans, 1973). Therefore, conflicts between

morphological classification and phylogenetic analyses are relatively

common in Euphorbiaceae. For example, Dimorphocalyx and

Tritaxis are classified under Trigonostemon based on morphological

features (Webster, 2014), but molecular phylogenetic analysis shows

they form an independent monophyletic group, differing from

traditional classifications. Molecular evidence indicates that

Euphorbia tuckeyana is a sister group to sect. Aphyllis (Barres et al.,

2011), but it is still included in subsect. Macaronesicae based on

morphological similarities (Riina et al., 2013).

The crown age of the tribe is estimated to be Oligocene-

Miocene, similar to Yuan et al. (2022) who showed the

coalescence of the tribe at 26.43 Ma based on nuclear genomes,

which is likely correlated to the origin of the East Asian monsoon

(Ye et al., 2022). Afterward, the diversification of the two East Asian

endemic genera is likely correlated with intensification of the

monsoon, mountain uplift during the Miocene-Pliocene

(Speranskia) (Xing and Ree, 2017), and glacial-interglacial

alternations, accompanied by sea level changes during the

Pleistocene (Discocleidion) (Qiu et al., 2011). Speranskia is likely

originated in southwest China (S. yunnanensis) and the other two

species diverge due to Pleistocene climatic changes (Qiu et al., 2011).
FIGURE 5

Divergence time estimation of the tribe Ricineae through plastome (a) or transcriptome (b) data. The fossil calibrations are labeled as blue asterisk
and three secondary calibration points are labeled as red asterisk. Ma, million years ago.
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4.2 Structure of plastome and comparative
analyses

The plastome sizes of the species in the tribe Ricineae range

from 163,161 (R. communis) to 190,093 bp (S. tuberculata), all of

which have a typical circular quartet structure. S. tuberculata has

the longest genome size in the tribe Ricineae, which may mainly due

to expansions of the non-coding region of LSC and a higher number

of SSRs (quadruple and quintuple base SSRs). The IR regions show

no significant variations (Braukmann et al., 2013).

SSRs play a crucial role in stabilizing genomes and rearranging

genomic sequences, thereby rendering the plastome highly

favorable for use as a molecular marker in phylogenetic analysis

(Vieira et al., 2014; Yang et al., 2013). This study detects 144–291

SSRs in the six species of the tribe Ricineae, which is generally

higher than other species within the Euphorbiaceae. Among the

dinucleotide SSRs, AT is found to be the most abundant in the

sequenced and compared plastomes, similar to the previously

reported genomes (Khan et al., 2020, Khan et al., 2017). The Pi of

the tribe Ricineae (Pi=0.02) is relatively high compared to other

Euphorbiaceae species (Lee et al., 2024; Wang et al., 2024), and

regions with high diversity such as matK, ndhF, psbT, rpl20, and

rpl32 are potential areas for designing DNA barcodes and allele-

specific primers.

Since the selective pressure on the third base of codons is

relatively weaker compared to the first and second bases, a

comparison of the base composition of the third base of codons is

important (Zhang et al., 2018). The probability of A/T as the third

base composition in the tribe Ricineae ranges from 82.1% to 88.9%,

and among the high-frequency codons with an RSCU greater than

one (Supplementary Figure S5), the probability of ending with A/T

is 83.9%, which is consistent with previous studies on codon bias in

related species of Euphorbiaceae (Novembre, 2002; Wang et al.,

2020). Prior research has shown that mutation pressure and natural

selection are the primary factors influencing codon bias (Sharp

et al., 2010). However, combining the conclusions of Wang et al.

(2020) regarding codon bias in other species of Euphorbiaceae and

the fact that the ka/ks ratio is close to one, it can be inferred that

natural selection is the main factor influencing codon usage bias in

the tribe Ricineae. The relatively low level of the codon bias suggests

that the natural selection pressure on chloroplast genes in these

species is relatively small. A positive value in Tajima’s D test also

indicates a tendency toward population contraction.
5 Conclusion

The intergeneric and interspecific relationships of the tribe

Ricineae are reassessed through a combination of different genomic

and morphological data. The tribe fromed a well-supported

monophyletic lineage and Discocleidion is the closest affiliate to

Ricinus, providing a genetic base for future comparative genomic

studies. The similarities and dissimilarities of the plastomes in the
Frontiers in Plant Science 08
tribe provide further information for the phylogentic investigation of

Euphorbiaceae. Phylogeny reconstruction of closely related genera

through different genomes provides a case study for solving the

complications of Euphorbiaceae taxonomy.
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