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The generation of novel
epialleles in plants: the
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re-shaping the epigenome
Alessio Baldini , Filippo Battaglia and Giorgio Perrella*

Department of Biosciences, Università degli Studi di Milano, Milan, Italy
Chromatin organization is a relevant layer of control of gene expression during

plant development. Chromatin states strictly depend on associated features such

as DNA methylation, histone modifications and histone variants. Thus,

epigenome editing has become of primary interest to alter gene expression

without disrupting genomic sequences. Different tools have been developed to

address this challenge, starting with modular Zinc Finger Proteins (ZFPs) and

Transcription Activator Like Effectors (TALEs). However, the discovery of CRISPR/

Cas9 system and the adaptability of technologies based on enzymatically dead

Cas9 (dCas9) have paved the way towards a reliable and adaptable epigenome

editing in a great variety of organisms. In this review, we will focus on the

application of targeted epigenome editing technologies in plants, summarizing

the most updated advances in this field. The promising results obtained by

altering the expression state of targets involved in flowering time and abiotic

stress resistance are crucial not only for elucidating the molecular interactions

that underly chromatin dynamics, but also for future applications in breeding

programs as an alternative route to genetic manipulation towards the

achievement of higher quality crops particularly in terms of nutritional

properties, yield and tolerance.
KEYWORDS

gene editing, CRISPR/Cas9, zinc finger proteins, TALEs, DNA methylation, histone
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1 Introduction

In eukaryotes, DNA is associated in the nucleus with histone proteins to form a

complex known as chromatin. Histone core octamer is formed by two tetramers consisting

of histones H2A, H2B, H3 and H4, which allows to the DNA to be packed (Luger et al.,

1997). This basic organization later develops in higher-order structures, from larger fibers

to chromosome domains (Schubert et al., 2014). Epigenetic features such as DNA

methylation, histone modifications and histone variants are therefore essential to

compartmentalize and shape chromatin into distinct states (Kharchenko et al., 2010;
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Sequeira-Mendes et al., 2014). Their role in controlling the

packaging of chromatin allows them to regulate the accessibility

of DNA to facilitate the binding of transcription factors, ultimately

leading to a finely tuned regulation of gene expression (Mansisidor

and Risca, 2022). As a first layer of epigenetic control, DNA can be

methylated. Methylation mainly occurs on cytosines, which results

in 5-methylcytosine (5mC), a repressive mark highly employed by

all eukaryotes. In plants, 5mC can be found in all contexts (CG,

CHG and CHH, where H=A, T or C) (Schmitz et al., 2019). DNA

methylation can be maintained or added de novo by the RNA-

dependent DNA methylation (RdDM) pathway (for more

information, see Zhang et al. (Zhang et al., 2018)). In this

pathway, the RNA Polymerase IV (Pol IV) synthesizes single-

stranded RNAs (ssRNAs) specific to the target locus (Onodera

et al., 2005). These ssRNAs are then converted into double-stranded

RNAs (dsRNAs) by RNA-DEPENDENT RNA POLYMERASE 2

(RDR2) (Haag et al., 2012). The resulting dsRNAs are processed by

DICER-LIKE 3 (DCL3) into 24-nucleotide small interfering RNAs

(siRNAs) (Henderson et al., 2006; Loffer et al., 2022). SiRNAs are

then bound by ARGONAUTE proteins 4 and 6 (AGO4/6), forming

a complex capable of recognizing non-coding RNAs (ncRNAs)

synthesized by RNA Polymerase V (Pol V) at the target locus (Duan

et al., 2015). The Pol V-ncRNAs-AGO4/6-siRNAs complex then

recruits DOMAINS REARRANGED METHYLTRANSFERASE

(DRM) 1 and 2, which catalyze methylation on defined loci

(León-Ruiz et al., 2023). Additionally, factors like SAWADEE

HOMEODOMAIN HOMOLOG 1 (SHH1), a histone reader, can

recruit Pol IV to chromatin (Law et al., 2013), while DNA

methylation readers SUVH2 and SUVH9 are responsible for

recruiting Pol V (Johnson et al., 2014).

DNA methylation has been observed to crosstalk with histone

modifications in feedback mechanisms (Cedar and Bergman, 2009).

Histone modifications are typically deposited on the N-terminal tail of

histones and are broadly responsible for fine regulation of gene

expression. Among them, histone acetylation is deposited by histone

acetyltransferases (HATs) and removed by histone deacetylases

(HDACs) that can occur on the four core histones on lysine residues

(Shen et al., 2015). While the function of some histone modifications

might change depending on their chromatin context, others tend to

have a specific role. For instance, histone acetylation is primarily related

to gene expression (Lauria and Rossi, 2011). Additionally, histones can

also be methylated. Indeed, methylation of lysine 27 of histone 3

(H3K27me3), works as repressive mark deposited by the multimeric

Polycomb repressive complex 2 (PRC2), whose catalytic subunits

deposit H3K27me3 through their Suv(ar) Enhancer of Zeste,

Trithorax (SET) domain (Kim et al., 2012). The SET domain is

shared by other histone methyltransferases such as KRYPTONITE/

SUPPRESSOR OF VARIEGATION 3–9 HOMOLOG 4 (KYP/

SUVH4). SUVH4 is also responsible for H3K9me2, typically

associated with heterochromatin. Methyl groups are removed by the

histone demethylases belonging to the JumonjiC (JmjC) family of Fe

(II)-dependent and 2-oxoglutarate-dependent dioxygenases (Crevillén,

2020). While these modifications are among the best studied, a detailed

description of the other modifications is given by Candela-Ferre et al.

(Candela-Ferre et al., 2024).
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Recently, epigenetic features are emerging as primary targets to

alter plant responses towards stresses, functioning as a means for

crops to face adverse conditions. Multiple epigenomic editing tools

have been developed so far, and while most of them are well

established on animal cells, reports are now increasing about their

employment in plants. These tools rely primarily on technologies

first developed for targeted genetic modifications, later re-shaped to

edit epigenetic features (Figure 1). Given its simple application,

efficiency and plasticity, Clustered Regularly Interspaced Short

Palindromic Repeats (CRISPR) and CRISPR-associated protein

(Cas) quickly overcame previous epigenome editing tools, which

mainly relied on modified nuclease systems. One of the first systems

employed was based on Zinc Finger proteins (ZFPs), which belong

to a family of transcription factors that contain linear repetitions of

Cys2His2 (C2H2) zinc-finger DNA-binding domains (DBDs)

(Figure 1). In coordinate a zinc ion for a total of 7 to 11 ions per

ZFP (Miller et al., 1985). Each ZF contains 30 amino acids that form

a conserved bba structure, whose a-helix is responsible for

recognizing a triplet of nucleotides (Beerli and Barbas, 2002). The

binding of target sequences is mostly independent from other ZFs,

although some exceptions have been reported (Segal et al., 2003).

These features were therefore considered to design multi-ZF

domains to bind sequences in a first attempt to target specific

sites, starting with engineered Zinc Finger Nucleases (ZFNs), fused

to nuclease domains such as FokI to introduce double strand breaks

and trigger repair mechanisms (Guo et al., 2010). Later applications

replaced nucleases with other catalytic domains, such as Ten-Eleven

Translocation (TET) 5mC oxidases, involved in 5mC removal

(Chen et al., 2014). These experiments suggested ZFs as a valid

starting point for epigenome editing even though this system was

observed to bind a large number of off-target loci on a genome-wide

level (Grimmer et al., 2014).

A second approach for targeting specific sequences employs

Transcription Activator-Like Effectors (TALEs) secreted by the

plant bacteria Xanthomonas oryzae, which normally activates

genes that promote bacterial growth (Boch and Bonas, 2010).

TALEs DBDs consist of a variable number of tandem repeats,

each binding to a specific nucleotide (Jankele and Svoboda, 2014).

The fusion of tandem repeats therefore allows to generate synthetic

TALEs with unique consensus sequences, serving as a scaffold for

functional domains such as nucleases, transcriptional activators or

repressors and epigenetic machineries (Hensel and Kumlehn,

2019). While the modularity of TALEs makes them an easier tool

to engineer compared to ZFs, with commercial kits that also allow

high-throughput TALEs synthesis (Cermak et al., 2011), the high

number of tandem repeats that is required to clone for their

functionality is a challenging obstacle that prevents their extensive

use for targeted editing purposes.

Despite efficiently acting as epigenome editors (Siddique et al.,

2013; Gao et al., 2014), TALEs and ZFs-based systems presented

common drawbacks that prevented their extensive use. Most of all,

the relative complexity of synthesizing factors for specific sites

does not allow targeting multiple loci at once, reducing the

multiplexing capabilities of both ZFs and TALEs (Cano-

Rodriguez and Rots, 2016).
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FIGURE 1

Genome and Epigenome editing strategies. (A–C) Depiction of the established gene editing tools in eukaryotes: (A) Zinc Finger Nuclease, comprising
of three to six DNA binding domains fused to a Fok I endonuclease with cutting activity; (B) TALEN (Transcription Activator-Like Effector Nuclease),
generated by fusing TALE effector DNA-binding domains to the endonuclease Fok I; (C) Clustered Regularly Interspaced Short Palindromic Repeats
(CRISPR) Cas9 which targets DNA double strand breaks using a small guide RNA (sgRNA) located within RNA scaffold and Cas9 endonuclease that
makes cuts in the appropriate region. (D–F) Epigenome editing can occur via a modified ZFN fused to a DNA methyltransferases (DNMT) deposited
over target sequences (D); TALE can be combined with histone methyltransferases (HMT) and promote or repress gene expression (E); inactive
(dead) dCas9 coupled with sgRNA can be combined to enzymes such as histone acetyltransferases (HAT) or histone demethylases (HDM) to prompt
acetylation or remove methylation, hence gene regulation (F). (G) Case study of the FWA locus in Arabidopsis, whose DNA methylation (m5C) state
in WT determines flowering initiation. Conversely, fwa plants shows hypomethylation which causes late flowering. (H) DNA methylation can be
restored by ZF fused to m5C reader SUVH2 in fwa; alternatively, FWA DNA epistate is modified via dCas9 with sgRNA associated with a single chain
variable fragment (scFv) that is part of a repetitive protein scaffold known as SunTag. SunTag can recruit several copies of bacterium DNA
methyltransferase MQ1v, m5C binding domain StkyC or human demethylase TET1, leading to FWA hyper or hypomethylation.
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A huge boost in the editing field was prompted by the discovery

of the CRISPR/Cas system, which, eventually replaced the previous

tools based on engineered proteins. The CRISPR system is an

adaptive defense mechanism naturally found in prokaryotes that

protects the cell from bacteriophages and plasmid DNA (Garneau

et al., 2010). This defense mechanism is based on the presence of a

locus CRISPR, consisting of repeats separated by spacers. These

spacers derive from exogenous genetic material that the prokaryotic

cells can recognize and integrate in the CRISPR locus to activate a

targeted degradation upon a second exposure (Barrangou et al.,

2007). Streptococcus pyogenes is the model organism where the

CRISPR system has been widely studied. In this bacterium, a type II

CRISPR mechanism is present, requiring two different RNAs to

properly work: crispr RNA (crRNA), encoded by spacers, and a

small trans-activating crispr RNA (tracrRNA), essential for the

maturation of pre-crRNA to mature crRNA. Pre-crRNA binds to

nuclease Cas9 and matures into crRNA through the activity of

tracrRNA-directed RNAse III, leading the complex towards

exogenous genetic material to degrade by recognizing specific

consensus sequences known as Protospacer Adjacent Motifs

(PAMs) (Charpentier et al., 2015). Later studies led to the

transfer of this system to other prokaryotes to provide defense

towards exogenous nucleic acids (Sapranauskas et al., 2011). The

promising results obtained therefore opened to the possibility of

employing CRISPR/Cas as a tool to target endogenous genomic

material in the host cell by designing proper guide (g)RNAs. Indeed,

the breaks on the DNA caused by the Cas9 activate the repair

machinery in the cell, thereby introducing mutations. In this

context, experiments led on bacteria and human cells

demonstrated its versatility and its efficiency, even by targeting

multiple loci at the same time via multiple gRNAs (Jiang et al., 2013;

Mali et al., 2013). Furthermore, the introduction of targeted double

strand breaks in the host DNA can also lead to repair errors or

homologous recombination to trigger gene knock-out and

homology-based insertions (Hsu et al., 2014), supporting the role

of CRISPR/Cas9 as an efficient golden standard system for genome

editing in all organisms. Later refinement of this tool resulted in its

further enhancement, introducing the possibility of using single

guide RNA (sgRNA) and targeting an increasing variety of PAMs

(Swarts and Jinek, 2018) Based on this premise, CRISPR/Cas9

system has been repurposed to expand its function, due on its

unprecedented versatility for other forms of targeted editing.

Dead Cas9 is a Cas9 deprived of its DNA cleavage domain

developed by Qi et al. (Qi et al., 2013). It was first used as a tool to

repress gene expression by targeting gene promoters to hinder RNA

polymerase occupancy and reduce its activity, ultimately leading to

expression interference without altering genomic sequences. Later

applications of this tool employed dCas9 fused to different catalytic

domains including the endonuclease FokI for more efficient genetic

manipulation (Saifaldeen et al., 2020) but also combined with DNA

demethylases for the removal of DNA methyl groups (Wang et al.,

2022), expanding the CRISPR/Cas9 system for epigenome

manipulation (Figure 1). However, the first attempts at

epigenomic editing with this system, which consisted of dCas9

fused with a single catalytic domain, did not result in effective
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editing, hence later work aimed at improving its efficiency (Pflueger

et al., 2018). An ameliorated dCas9-derived strategy relies on

additional proteins or domains interacting with the dCas9 system

to recruit multiple copies of the effector. Such a case is used in

dCas9- Emesvirus zinderi, commonly known as MS2 systems, where

two loops in the sgRNA allow the recruitment of four MS2

bacteriophage coat proteins fused to effectors, increasing their

modulating effects (Lee et al., 2019). The currently most used

tool, however, is the SunTag system. SunTag is a protein-tagging

system originally developed by Tanenbaum et al. (2014) that

consists of 24 repeated General Control Nondepressible 4

(GCN4) moieties, originally linked by 5-aminoacid peptides and

later optimized with 22-aminoacid linkers (Morita et al., 2023). First

used for GFP-mediated protein detection, its structure allows to

recruit multiple proteins fused with anti-GCN4 antibodies (scFv)

on the GCN4 tail: the fusion of SunTag with dCas9 can therefore be

used to recruit specific proteins in proximity to targeted DNA loci,

directing their epigenetic activity towards selected genes. The

SunTag-based system was also employed contextually to nucleases

present in other CRISPR systems, most notably CRISPR from

Prevotella and Francisella1 (Cpf1), a nuclease that naturally

requires a single RNA guide and different PAMs in comparison

to Cas9 (Swarts and Jinek, 2018). While the dCpf1 system has been

used rarely up until now, the selection of an editing tool with

different PAMs could both broaden the potential target sequences

and reduce the number of off-targets.

Although CRISPR systems are abundantly used, recent work

suggests a potential activity of Cas proteins in preventing other

endogenous factors to properly access chromatin, resulting, for

instance, in locally reduced epigenetic marks that do not directly

depend on the active domains fused to the Cas protein (Oberkofler

and Bäurle, 2022). Their remarkable versatility and multiplexing

capability, however, makes them still the most prominently used

editing tool.

The aim of this review is to describe all the currently available

epigenome editing systems for plants epigenome. While more

detailed reviews are available to compare these tools (see Wang

and Yamaguchi, 2024) (Wang and Yamaguchi, 2024), this work

aims to provide a brief overview of the results achieved this far in

plants and the potential future direction for crop improvement.
2 Targeted epigenomic modifications
in plants

Epigenetic mechanisms are extremely important for a proper

control of transcription, especially in plants, which, as sessile

organisms, must finely tune their responses with their

surroundings, to reshape their responses accordingly. As for ZFs-

based technology, only few reports have shown its application to edit

plant organisms. However, with the advent of CRISPR/dCas systems,

a general increase in plant editing and the possibility to perform

epigenome editing was observed in Arabidopsis thaliana (hereafter

Arabidopsis) as well as in some crop species, with the aim to target

different epigenetic marks on a few model loci (See Table 1).
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2.1 DNA methylation

Among the first attempts at epigenome editing, it is worth

mentioning the recruitment of the m5C reader SUVH2 on the

FLOWERING LOCUS WAGENINEN (FWA) locus to dissect the

mechanism of RdDM (Soppe et al., 2000; Wang et al., 2023). In

plants, such recruitment of RNA Pol V to target loci is directed by

SUVH2. To prove this interaction, Johnson and collaborators

(Johnson et al., 2014) used a ZF-SUVH2 system to induce the

methylation of fwa-4 epiallele. FWA is a repressor of flowering

transition, and the gene appears to be repressed due to its heavy

methylation state in wild type plants. Conversely, the fwa-4 epiallele

is not methylated and a late flowering phenotype is displayed in

Arabidopsis mutants (Soppe et al., 2000; Ikeda et al., 2007)

Through a ZF-SUVH2 system, the methylation state was

restored in fwa-4 mutants and transformed plants showed an

acceleration in flowering time when compared to fwa-4 single

mutants. This methylation effect was maintained trans-

generationally and bisulphite sequencing confirmed the

methylation state of the locus for three generations. However,

despite the DNA methylation events, the ZF-SUVH2 complex

was not detected on FWA Chromatin immunoprecipitation,

indicating a very dynamic process (Ikeda et al., 2007; Johnson

et al., 2014). Alternatively, Ichino and collaborators (Ichino et al.,

2021) targeted the fwa-4 gene using a zinc finger (ZF) protein to

evaluate the repressor activity of SILENZIO (SLN). SLN was

identified through the study of two methyl CpG binding domain

(MBD) proteins, MBD5 and MBD6. Plants transformed with ZF-

SLN exhibited downregulation of fwa-4, even in the absence of

methylation (Ichino et al., 2021). However, this approach also

resulted in the downregulation of off-targets, highlighting the

strong repressor activity of SLN but also the limited specificity

of ZF.

A ZF-based system was also used to recruit human Ten Eleven

Translocation (TET)1 DNA demethylase to FWA and CACTA1

transposon (Gallego-Bartolomé et al., 2018). This resulted in an

increased FWA expression and late flowering, a phenotype

maintained across generations, even when the transgene was lost.

Demethylation was also shown to be highly specific to the FWA

locus without off-targets. In contrast, targeting the heavily

methylated CACTA1 transposon, located in heterochromatic

genome regions, produced different results. Indeed, CACTA1

demethylation was not sustained across generations in the

absence of the transgene. While transgenic plants showed

increased expression of CACTA1, this effect was lost after

outcrossing the construct. Additionally, ZF-CACTA1-TET1

plants exhibited reduced global DNA methylation, highlighting

differential methylation dynamics between loci. The study also

employed a SunTag-dCas9 system to target the same loci. For

FWA, results mirrored those obtained with the ZF system.

However, for CACTA1 demethylation occurred without the global

effect observed with ZF, with genome-wide methylation levels

resembling those of wild-type plant (Gallego-Bartolomé et al., 2018)

The promising results achieved using the ZF system have been

applied to further investigate the RdDM pathway. By employing a

combination of RdDM pathway mutants and an unmethylated fwa-
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4 epiallele, Gallego-Bartolomé and collaborators (Gallego-

Bartolomé et al., 2019) elucidated the hierarchical relationships

among the various components of the pathway. A notable example

of this work involves the use of Pol IV fused with ZF in fwa-4 plants,

which induced early flowering and methylation of the target locus.

Furthermore, mutant plants for the histone reader SHH1 also

showed methylation of the fwa-4 epiallele when transformed with

the ZF-Pol IV construct. Similarly, methylation of fwa-4 was

observed in different mutants for siRNAs production, dcl2, dcl3,

and dcl4, when transformed with ZF-Pol IV. In contrast,

methylation was not triggered in rdr2 mutants, highlighting the

essential role of RDR2 in this process. The results obtained with the

ZF system prompted the use of another epigenome editing tool to

modify the methylation state of the FWA allele. Thus, the dCas9-

SunTag system on the Arabidopsis fwa-4 mutant was targeted with

the Nicotiana tabacum DNA methyltransferase enzyme (NtDRM)

(Papikian et al., 2019). To induce the methylation of fwa-4, three

different gRNAs were designed to recruit the system on the FWA

locus. This led to the effective methylation in fwa-4 seedlings and

the phenotype was reverted as previously described. However, at

least two generations containing dCas9-SunTag-NtDRM were

required to induce a transgenerational effect for maintaining

methylation on the targeted locus and early flowering phenotype.

Despite the successful methylation of the target locus, many off-

targets were detected as well as a general increase of DNA

methylation at the whole genome level (Papikian et al., 2019).

Even if this tool has been proven to be a powerful epigenome editor,

off-target methylation should be further investigated to understand

how to re-direct the methylation.

The FWA epiallele was targeted with greater specificity using a

dCas9-SunTag system fused to the bacterial methyltransferase MQ1

from Mollicutes spiroplasma (Figure 1) (Ghoshal et al., 2021).

Arabidopsis plants transformed with the dCas9-SunTag-MQ1

system exhibited an early flowering phenotype as early as the T1

generation, which was accompanied by reduced fwa-4 expression

and increased methylation at the locus. Notably, these transformed

plants showed a limited increase in genome-wide DNA

methylation. The same phenotypic and molecular changes

observed in the T1 generation persisted in the T2 generation and

in progeny that had segregated away the transgene. In the same

study, the FWA epiallele was also targeted using a dCas9-MQ1

system. Unlike the SunTag approach, T1 plants did not exhibit early

flowering; however, a slight increase in DNA methylation at the

target locus was observed, with no significant changes in genome-

wide DNA (Ghoshal et al., 2021). Accordingly, T2 plants displayed

increased DNA methylation levels at the FWA epiallele, which were

associated with the induction of early flowering. Notably, these

effects were sustained in plants even after the transgene was

segregated out (Ghoshal et al., 2021). These findings confirmed

the heritability of DNA methylation changes at the FWA locus and

demonstrated the high specificity of the SunTag system, likely

attributed to its ability to recruit a higher number of effectors to

the target gene.

FWA was studied also to dissect the function of the previously

mentioned MBD5/6 proteins (Boone et al., 2023). In particular, the

StkyC domain of MBD6 was fused with a dCas9-SunTag system
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and recruited on the fwa unmethylated epiallele. Transformed

plants displayed early flowering phenotype and downregulation of

fwa. However, DNA methylation levels were not reported (Boone

et al., 2023).

Epigenome editing has been applied not only to flowering genes

and transposons but also to the gene encoding the enzyme granule-

bound starch synthase 1 (GBSS1). In this case a Cas12j2 system,

originally discovered in huge phages and with a size about half of

the traditional Cas, was fused to the human DNAmethyltransferase

enzyme DNMT3A/L. The transformation of rice protoplasts with

the system led to reduced gene expression by methylating GBSS1

promoter region (Liu et al., 2022; Liu et al., 2024).

Similarly, the dCpf1-SunTag system was employed to

demethylate the FWA locus and the CACTA1 transposon by

recruiting TET1 (Zheng and He, 2023). While the phenotype of

the treated plants was not assessed, the methylation level of these

loci was reported to decrease (Zheng and He, 2023), hinting at this

system as an alternative and effective approach for targeted

epigenetic manipulation.

The SunTag-dCas9-TET1 system was also applied in Oryza

sativa to target the FERTILIZATION-INDEPENDENT

ENDOSPERM1 (FIE1) that induces a dwarf phenotype in rice

when active (Tang et al., 2022). Indeed, a significant decrease of

methylation was detected, correlated with an increase of FIE1

mRNA, in line with the dwarf phenotype of the plants. A

genome-wide DNA methylation analysis was performed in T2

plants, and a general lower methylation level was detected

compared to the wild type. Overall, rice plants inherited a dwarf

phenotype and de-methylation of FIE1 in the absence of the

transgene (Tang et al., 2022).
2.2 Histone methylation

Histone methylation was edited through a dCas9 system to

recruit on FLOWERING LOCUS T (FT) the KRYPTONITE (KYP)

enzyme in Arabidopsis. Generally, ft mutants show a late flowering

phenotype while the over-expressing plants have an early flowering

phenotype (Turck et al., 2008). Wild-type plants transformed with

the construct dCas9-MS2-KYP displayed a late flowering phenotype

in the T1 generation, in line with the expected effects of H3K9 di-

methylation on gene expression. Interestingly, the same phenotype

of the T1 was displayed in the T2. Surprisingly, H3K9 methylation

on the FT locus was not detected in T3. Flowering time was not

assessed in T3 (Lee et al., 2019).

Targeted removal of H3K4 methylation was performed through

a dCas9-based system in fusion with the catalytic domain of JMJ18

to target the heat stress-responsive ASCORBATE PEROXIDASE 2

(APX2) gene (Oberkofler and Bäurle, 2022). This locus was

observed to be primed in response to heat stress, showing an

enhanced H3K4me3 enrichment upon a second exposure to high

temperatures (Oberkofler and Bäurle, 2022). The employment of

dCas9-JMJ18, however, resulted in an overall decrease in H3K4me3

suggesting epigenome editing as a tool to alter priming stress

mechanisms (Oberkofler and Bäurle, 2022).
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An additional application of dCas9-based tools to promote

targeted demethylation relied on the C-terminal (JMJC) domain

from JMJ13, an Arabidopsis H3K27me3 demethylase. This dCas9-

JMJC system was used by Fal and collaborators to evict H3K27me3

from CUP SHAPED COTYLEDONS 3 (CUC3), a gene involved in

shoot apical meristem initiation and maintenance. Lines with

hypomethylated CUC3 showed an enhanced and ectopic

expression of the gene. This change was reflected by the observed

phenotype, as mutant plants showed multiple stems arising from

rosettes and shorter meristems (Fal et al., 2024).
2.3 Histone acetylation

The dCas9-MS2-effector system was employed to recruit the

human acetyltransferase p300 to the FT locus in Arabidopsis. In the

T1 generation transformed with the MS2-p300 construct, plants

exhibited an early flowering phenotype, consistent with gene

expression changes associated with H3K27 acetylation (Lee et al.,

2019). However, in the T2 generation, this phenotype was not

observed, suggesting possible epigenetic resetting or instability

across generations. Although FT expression levels were

comparable to those of wild-type plants, an increase in H3K27

acetylation was still observed in generation T3 (Lee et al., 2019).

Further investigations are requested to determine possible

counteracting effects to the deposition of histone acetylation.

In another study, the ABA-responsive element binding protein 1

(AREB1/ABF2), encoding a critical regulator of drought stress

response, was targeted by fusing directly dCas9 with the Histone

Acetyl Transferase 1 (HAT1) (Roca Paixão et al., 2019). Notably,

dCas9-HAT1-transformed plants showed enhanced survival under

both mild and severe drought stress conditions compared to wild-

type plants. This transformation also led to increased AREB1

expression, although histone acetylation at the AREB1 locus was

not investigated, and, therefore, indirect effects cannot be excluded

(Roca Paixão et al., 2019).
3 Conclusions and future perspectives

With the increasing number of tools developed in gene editing

technologies, it will soon be possible to generate and introduce novel

epi-alleles in innovative crop-breeding programs. This also comprises

spontaneous epimutations identified in crop wild relatives that can be

considered as a new source of variability with additional value to

phenotypic diversity, including improving tolerance to abiotic and

biotic stresses. However, the biology underpinning plant development

and growth is highly variable, therefore it remains complex to address

the relationships between the effect mediated by the epigenome tools

and the putative ameliorated features.

Whilst these tools can be used to increase our understanding of

the function of a specific epigenetic modification (e.g. DNA

methylation, histone methylation or acetylation) over a defined

set of genes, there are several challenges that still need to be

addressed. Among them, reducing the number of off-targets
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effects and improving transgenerational stability are imperative.

Thus, the design of novel dCas variants (e.g. enhanced dCas12),

synthetically reintroduced histone variants and the expansion of

guide RNA design tools represent promising strategies to further

improve the system. Nevertheless, it remains important to consider

the impact that biotic and abiotic stress could have on the epigenetic

landscape and how they can affect the outcome of epigenome

editing. Indeed, they could generate a priming effect that could be

carried on by the offspring. Together with that, expanding the epi-

tools with the implementation of other histone modifications such

as ubiquitination or phosphorylation, will add more depth into

mechanisms such as DNA repair and increase the chances to

generate novel recombination hotspots. Furthermore, the

evidence that some of these changes behave in a transgenerational

manner opens to the possibility to accelerate breeding programs

and to bypass genetic transformation.

To achieve these tasks, multidisciplinary strategies are required,

involving not only geneticists and breeders, but also experts in

mathematics, synthetic biology and biotechnology. Indeed,

combining epigenome editing with computational tools and

advanced delivery systems or nucleosome turnover already

developed and assessed in bacteria and mammals will further

enhance the generation of plant epialleles. Additionally, a

comprehensive approach will also allow to clarify ethical concerns

regarding epigenome editing, by offering solutions such as

traceability and unambiguous risk and safety assessments.

Altogether a cohesive and integrative work remains the key to

harness the full potential behind the new generation of gene editing

in plants.
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