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Introduction: Detecting plant stress is a critical challenge in agriculture, where

early intervention is essential to enhance crop resilience and maximize yield.

Conventional single-mode approaches often fail to capture the complex

interplay of plant health stressors.

Methods: This review integrates findings from recent advancements in Multi-

Mode Analytics (MMA), which employs spectral imaging, image-based

phenotyping, and adaptive computational techniques. It integrates machine

learning, data fusion, and hyperspectral technologies to improve analytical

accuracy and efficiency.

Results:MMA approaches have shown substantial improvements in the accuracy

and reliability of early interventions. They outperform traditional methods by

effectively capturing complex interactions among various abiotic stressors.

Recent research highlights the benefits of MMA in enhancing predictive

capabilities, which facilitates the development of timely and effective

intervention strategies to boost agricultural productivity.

Discussion: The advantages of MMA over conventional single-mode techniques

are significant, particularly in the detection and management of plant stress in

challenging environments. Integrating advanced analytical methods supports

precision agriculture by enabling proactive responses to stress conditions. These

innovations are pivotal for enhancing food security in terrestrial and space

agriculture, ensuring sustainability and resilience in food production systems.
KEYWORDS

plant stressor, hyperspectral , -mapping indices, stress pattern, multi-
modespectroscopy, -stress pathways, -hyperspectral fluorescence imaging (HFI),
hyperspectral reflectance imaging (HRI)
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1 Introduction

Early prediction of plant stress accurately presents complexity

due to dynamic interactions among spatial and spectral data,

variability in plant responses to environmental stimuli, and

limitations in real-time measurements. Furthermore, Improving

the tolerance of crop species to abiotic stresses that limit plant

growth and productivity is essential for mitigating the emerging

problems of global warming (Anshori et al., 2023). Farmers can

intuitively detect plant stress events by observing several apparent

indicators. For instance, leaf rolling often occurs as plants curl their

leaves to conserve water during drought conditions (Kozlowski,

1968). Color changes, such as yellowing leaves, can signal nutrient

deficiencies (Marschner and Rengel, 2023), while browning might

indicate overwatering or disease (Desai, 2004). Wilting is another

clear sign, as drooping leaves or stems suggest insufficient water

supply (Jones, 2022). Stunted growth can indicate poor soil

conditions or a lack of nutrients, while premature leaf drop often

results from environmental stress, such as extreme temperatures.
Frontiers in Plant Science 02
Monitoring a single pattern of stressful events or indicators

provides an opportunity to mitigate crop failure.

Multi-mode analytics integrates data from multiple detection

modes and spectral bands to model plant stress responses accurately

(Coatsworth et al., 2023). It captures real-time data to distinguish

transient from prolonged stress while detecting early biochemical

shifts in photosynthesis before symptoms appear (Lobos et al., 2021;

Wang et al., 2022). Correcting for overlapping spectral signals, such

as chlorophyll and non-photosynthetic pigments, enhances

accuracy (Miao et al., 2020). Multi-mode systems also track

recurrent stress patterns, distinguishing adaptive responses from

new stressors and identifying concurrent nutrient and water

deficiencies (Li et al., 2024; Iqbal and Munir, 2024). Figure 1

depicts early biotic stress patterns on apples, cherries, grapes,

peaches, peppers, potatoes, squash, and strawberries that can

benefit from Multi-mode analytical stress detection.

Single-mode analytics (e.g., UV, IR, Raman) fail to assess

multiple stressors simultaneously, limiting plant health insights.

Raman spectroscopy detects molecular vibrations but provides
FIGURE 1

Early stress pattern recognition and mapping the correct indices to the events are crucial for accurate and timely intervention. ([Left column:
Bacterial Blight in soybean, top: leaf curling, middle: yellowing, and bottom: structural decay. Shannon, 2021; Hossain, 2023; Tarakanov et al., 2022],
[Middle column: Mosaic Virus in tomato, top: stunted and yellow, middle: mosaic appearance, and bottom: Irregular spots. Wolters, 2021; Zhao,
2021; Osdaghi et al., 2021], [Right column: blight disease in grape, appearance and structural change. Yang 2024]).
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limited physiological data. In contrast, multi-mode analytics

(MMA) integrates hyperspectral reflectance imaging (HRI),

hyperspectral fluorescence imaging (HFI), LiDAR, and Machine

Learning (ML) for enhanced stress detection and mapping (Mu

et al., 2020). This approach enables near-real-time monitoring of

plant responses to biotic and abiotic factors.

—MMA domain includes combinatorial microstate stress

patterns, hyperspectral, statistical, and multi-dimensional eigenvector

data reduction (Gu et al., 2021) such as Principle Component Analysis

(PCA), Partial Least Square Regression, hybrid data fusion,

significantly enhance the accuracy of stress indicators, predict the

root causes of stress events, expedite data processing, and increase crop

yield in terrestrial and space environments.
2 Review methodology and strategy

We searched Web of Science (1956 records) and PubMed (418

records) for studies from 2002 to 2024 using keywords related to

multimodal plant stress analysis. After removing duplicates, 2,368

records remained. We screened 600 abstracts and selected 350 full-

text studies, excluding those focused on single-mode spectroscopy,

non-agricultural stress, or non-spectral imaging. The review

followed the PRISMA framework for transparency and rigor.
3 Plant stress types and responses

3.1 Plants respond to stress

Plants respond to stress through various mechanisms and

response times. Stress types include abiotic factors like drought,

salinity, and heat and biotic factors like pathogens and herbivores

(Zhang et al., 2023). Responses such as stomatal closure and

antioxidant production can be immediate or delayed, like root

e longat ion and leaf absc iss ion. Mechanisms inc lude

morphological changes (e.g., altered root-to-shoot ratio) (Luong

and Loik, 2022), physiological adjustments (e.g., osmoregulation),

biochemical responses (e.g., antioxidant production, hormone

signaling), and molecular changes (e.g., stress-responsive gene

expression) (Seok et al., 2023). Outcomes include tolerance

through physiological adjustments, avoidance via strategies like

stomatal closure, resistance through structural defenses, or escape

by completing the life cycle before stress intensifies. Additionally,

plants may exhibit hormesis, a beneficial response to low stress

levels that enhance growth, development or stress resilience. These

adaptations and responses collectively help plants survive and

thrive in challenging environments.

In contrast, biotic stresses like pathogenic attacks often manifest

over a more extended period, progressing from initial symptoms

such as leaf curling to color changes, wilting, and the appearance of

lesions or spots. The onset of these symptoms can span several days

to weeks, making early detection more challenging. For example,

bacterial leaf streaks in rice are caused by Xanthomonas oryzae pv.

oryzicola, initiates as thin, water-soaked streaks that gradually turn
Frontiers in Plant Science 03
yellowish-brown, with symptoms developing over several days

(Fang et al., 2019). In maize (Zea mays), late wilt disease caused

by Magnaporthiopsis maydis develops late in the growing season,

with symptoms including rapid wilting and plant death, often after

flowering (Degani et al., 2021). These examples underscore the

importance of early detection and tailored management strategies

for different crops and stress types (Hekimhan and Aydoğdu, 2024).

Table 1 provides classifications of plant stress types and their typical

responses ranging from minutes to hours and days.
3.2 Stress response time

Plants exhibit stress responses that vary in timing and

detectability, depending on the stress type and severity. Stress

responses depend on environmental variability, sensors,

calibration, MMA methods, and sensing devices. Under drought

conditions, physiological changes such as reduced chlorophyll

concentration can occur within days, detectable through

decreased chlorophyll fluorescence in the visible red spectrum

and increased leaf reflectance in the near-infrared (NIR) region.

For instance, studies have shown that chlorophyll fluorescence

parameters can indicate drought stress effects on photosynthesis

and secondary metabolism within a week (Zhang et al., 2018). In

contrast, biotic stresses like pathogenic attacks often manifest over a

more extended period, progressing from initial symptoms such as

leaf curling to color changes, wilting, and the appearance of lesions

or spots. The onset of these symptoms can span several days to

weeks, making early detection more challenging. For example, the

progression of vascular wilt diseases involves a series of symptoms

that develop over time, complicating timely diagnosis (Yadeta and

Thomma, 2013).
3.3 Environmental variability

Environmental variability significantly affects the accuracy of

MMA methods for plant stress detection and response time

assessment. Temperature fluctuations can alter the refractive

indices of optical materials, leading to measurement inaccuracies

in hyperspectral imaging (Wang et al., 2020). Pressure and

humidity changes influence light propagation in multi-mode

fibers, affecting the precision of optical coherence tomography

(Hyvärinen and Oja, 2000). Moreover, environmental factors

modulate plant stress responses, impacting detection times, as

observed in crop drought stress studies (Mertens et al., 2023).

Advances in electronic technology and software development can

enhance the accuracy of MMA, enabling more robust and reliable

plant stress detection (Khonina et al., 2023).
3.4 Early detection

The key features of early stress detection include detecting non-

visible indicators such as altered chlorophyll fluorescence emission,
frontiersin.org
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leaf reflectance/absorption, or thermal signature, often observable

within days of stress onset (Zhang et al., 2018). Figure 2 depicts

some of the visible indicators of plant stresses. Early detection

precedes signs of stress and enables preventive actions like adjusting

irrigation or applying treatments to avoid long-term damage.

Stress-specific patterns, such as drought-induced photosynthesis

reductions or pathogenic attacks’ sequential symptoms, require

tailored detection approaches. By preserving plant health,

minimizing resource use, and improving precision agriculture,

early detection is critical for optimizing productivity (Yadeta and

Thomma, 2013). Figure 3 provides examples of various types of

plant stress. Early detection means predicting plant stress before

visible signs of stress appear.
4 Value of multi-mode analytics

Analytics systematically analyzes plant health, growth, and

stress data to support informed agricultural decisions (Kamilaris
Frontiers in Plant Science 04
et al., 2017). This process collects and interprets data from sensors,

satellite imagery, and laboratory tests to identify patterns that guide

management practices (Sarfraz et al., 2023). It enables early stress

detection, allowing timely interventions (Aina et al., 2024). Lenk

et al. (2007) used multispectral fluorescence and reflectance imaging

to assess leaf-level stress responses, identifying fluorescence

signatures linked to chlorophyll and other pigments. Lang et al.

(1996) demonstrated that fluorescence imaging detects

physiological changes by analyzing red and far-red chlorophyll

fluorescence under drought stress. Leufen et al. (2014) combined

fluorescence indices and reflectance data to differentiate abiotic and

biotic stressors, enhancing stress monitoring precision.

The shift from single-mode to multi-mode approaches has

improved plant stress detection by integrating multiple spectral

bands and detection modes. Thermal imaging enhances water

stress monitoring in almonds, aiding targeted irrigation (Garcıá-

Tejero et al., 2018). Hyperspectral and thermal imaging combined

improve drought stress and transpiration assessments (Mertens et al.,

2023). Chlorophyll fluorescence detects phosphorus deficiency
TABLE 1 Plant stress types and responses.

Classification Stress Type Examples Typical Timing Response
(with References)

Based on
Stress Type

Abiotic Drought, heat, cold, salinity, nutrient deficiency,
light stress, heavy metals.

Drought stress effects, such as reduced chlorophyll
fluorescence and increased NIR reflectance, are
detectable within days (Zhang et al., 2023).

Biotic Pathogens (bacteria, fungi), herbivores (insects,
animals), competition with other plants.

Pathogenic attacks manifest symptoms like leaf
curling, yellowing, and lesions over several days to
weeks (Yadeta and Thomma, 2013).

Based on
Temporal
Response

Immediate Responses Stomatal closure, rapid production of antioxidants,
leaf curling.

Occurs within minutes to hours after the stress onset.

Delayed Responses Root elongation, leaf abscission, synthesis of
protective compounds.

Develops over days to weeks after stress exposure.

Based
on Mechanism

Morphological Increased root-to-shoot ratio, trichome formation,
leaf abscission.

Typically observed within weeks, depending on
stress severity.

Physiological Stomatal regulation, osmoregulation (accumulation
of proline, sugars), reduced photosynthesis rate.

Detected within hours to days after stress onset.

Biochemical Antioxidant production, hormone signaling (ABA,
SA, and JA), secondary metabolites (flavonoids).

Occurs within hours to days, depending on the stress.

Molecular Gene expression changes, heat shock proteins, and
signaling pathway activation (e.g., MAP kinase).

Gene expression changes can be detected within
minutes to hours of stress onset (Von Ziegler
et al., 2022).

Based on Outcome Tolerance Osmotic adjustment, ROS scavenging, heat shock
protein production.

Stress tolerance mechanisms build over days
to weeks.

Avoidance Stomatal closure, dormancy, altered
flowering time.

Avoidance responses can occur within hours to
weeks, depending on the strategy.

Resistance Structural barriers, production of phytoalexins,
jasmonic acid-mediated defense.

Resistance builds over days to weeks after biotic
stress exposure.

Escape Early flowering production before drought. Escape mechanisms depend on developmental
timing, often weeks to months.

Hormesis A Bi-phasic adaptive mechanism occurs when mild
stress induces beneficial adaptations. Low levels of
stress (e.g., mild drought or light stress) stimulate
growth and resilience.

Beneficial hormetic effects can appear within days of
mild stress exposure (Kouda and Iki, 2010).
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(Frydenvang et al., 2015), while AI-assisted fluorescence identifies

nutrient deficiencies (Aleksandrov, 2019). Key multi-mode analytics

features include stress pattern recognition and indicator mapping.

-One of the critical features of the multimodal analytical

approach is stress pattern recognition and stress indicator mapping,

which enables early detection and differentiation of biotic and abiotic

stressors (Fiorani and Schurr, 2013). Additionally, it integrates

diverse detection modes—such as hyperspectral reflectance,

fluorescence, and thermal imaging—to capture complementary

information about plant physiology (Mertens et al., 2023). This

approach enhances the sensitivity and specificity of stress detection

by leveraging data from multiple spectral bands (e.g., VIS, NIR,

SWIR) and combining optical and non-optical datasets. Multimodal

analytics also supports advanced ML techniques for refining analysis

and automating processes while addressing practical challenges like

calibration, data management, and cost efficiency (Fiorani and

Schurr, 2013; Jones et al., 2019). Multi-mode Analytics increases

the possibility of Predicting the Root Cause of plant stress. Cross-

modal contribution is another essential feature unavailable in single-

mode analytics, which leads to monitoring errors.
Frontiers in Plant Science 05
4.1 Mapping and pattern recognition

Pattern recognition identifies the sequence of stress indicators,

while mapping quantifies their severity and distribution. For

instance, a typical water stress pattern might involve initial leaf

edge curling, followed by an increase in near-infrared reflectance as

seen in the Normalized Difference Vegetation Index (NDVI), and a

subsequent decrease in Chlorophyll Content Index (CCI) (Zubler

and Yoon, 2020). Mapping these indicators allows researchers to

develop a framework for early water stress detection, which can be

vital in environments where resource limitations or mission

constraints make rapid interventions necessary (Farella et al., 2022).
4.2 Integration

MMA enhances plant stress detection by integrating diverse

sensing methods. Hyperspectral Fluorescence Imaging (HFI)

captures chlorophyll fluorescence, revealing early stress indicators

(Moustaka and Moustakas, 2023). Hyperspectral Reflectance
FIGURE 2

Early detection precedes visible indicators of plant stresses. ((A) drought stress [wang, 2023], (B) nutrient deficiency [Garza-Alonso et al., 2019], (C)
salinity [Peng et al., 2016], (D) heat stress [Bi et al., 2020], (E) pathogen attack [Shafique et al., 2022], (F) pest infection [Li et al., 2024], (G) fungal
infection [Gossner et al., 2021], (H) cold stress [Primo-Capella et al., 2021], and (I) waterlogging [Hong et al., 2024]).
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Imaging (HRI) assesses pigment concentrations and water content,

while thermal imaging detects canopy temperature changes linked

to water stress. LiDAR provides structural data, improving the

interpretation of reflectance and fluorescence signals (Meemken,

Becker-Reshef, et al., 2024). This synergy enhances sensitivity and

specificity, linking physiological responses to structural changes for

comprehensive plant monitoring.
4.3 Enhanced sensitivity and specificity

Multi-HRI offers detailed spectral information by capturing a

wide range of wavelengths that provide insights into various aspects

of plant physiology, including the health of plant pigments, water

content, and cellular structure (Maimaitijiang et al., 2020). This

capability identifies subtle changes that might indicate stress before

visible symptoms become apparent.
4.4 Predicting plant stress root causes

Predicting plant stress root causes relies on ML and multimodal

data fusion (MMDF) to analyze complex datasets and identify

hidden patterns (Li & Zhao, 2022). MMDF integrates diverse data

streams for clearer insights (Bokade et al., 2021). For instance,

correlating NDVI with the Red-Edge Inflection Point (REIP) helps

detect water stress early by linking chlorophyll loss to canopy

impairment (Arief et al., 2023). Similarly, combining the LiDAR-

derived Leaf Area Index (LAI) with the Photochemical Reflectance

Index (PRI) reveals nitrogen deficiency patterns (Lefsky et al.,

2002). Such integrations enhance early and precise stress detection.
4.5 Cross-modal contribution

Chappelle et al. (1992) determined that the contribution of

chlorophyll fluorescence in the Red-NIR (680-750 nm) region of the

reflectance spectra can be as great as 23% of reflectance at 685 nm

and 4% at 740 nm. for soybeans and fluorescence changes in

reflectance have minimal contribution to the “red edge shift”
Frontiers in Plant Science 06
effect. Kim et al. (1993) developed the Ratio Analysis of

Reflectance Spectra (RARS) algorithm to estimate chlorophyll a,

b, and carotenoid concentrations in plant leaves. This process

amplifies the absorption band maxima and minima specific to

each pigment. By comparing the ratio spectrum with the

absorption spectra of pure pigments, they identified inflection

points related to chlorophylls and carotenoids. The RARS

algorithm uses these ratio spectra to establish linear solid

relat ionships between absorption bands and pigment

concentrations, forming the foundation for accurate equations to

estimate these pigment levels in leaves.
5 Photon-leaf interaction

Within the visible spectrum (400-700 nm), chlorophyll absorbs

blue and red light for photosynthesis, while reflected green light

gives leaves their color (Gitelson et al., 2020). Some absorbed energy

is re-emitted as fluorescence, but most drives chemical reactions. In

the NIR region (0.7-1.3 μm), absorption decreases, and internal leaf

structures enhance reflectance, regulating leaf temperature

(Jacquemoud and Ustin, 2001). In the SWIR range (1.3-2.5 μm),

water and biochemical compounds absorb photons, reducing

reflectance and revealing hydration status and biochemical

composition (Ceccato et al., 2001).
5.1 Visible spectrum (VIS: 400-700 nm)

Red, Green, and Blue Reflectance (RGB) offer insights into plant

health. Reflectance in the red band (620-750 nm) assesses

photosynthetic activity because chlorophyll absorbs this band

heavily (Tucker, 1979). High reflectance in the green band (495-

570 nm) typically indicates a healthy, chlorophyll-rich plant, while

low reflectance may suggest stress or disease (Huete et al., 2002).

The blue band (450-495 nm) also relates to chlorophyll absorption

and is an additional plant health indicator. Variations in these

reflectance values are often early indicators of stress before visual

symptoms appear, making VIS a valuable tool for plant monitoring

(Elvidge and Chen, 1995).
FIGURE 3

Block diagram of the systematic approach used to review the topic of multi-mode analytics.
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5.2 NIR (0.7-1.1 µm)

NIR (0.7-1.1 μm) reflects plant structure and water content,

aiding biomass and health estimation (Pohl and Van Genderen,

2016). Red-edge reflectance (680-750 nm) is sensitive to chlorophyll

changes and stress (Krezhova, 2011). High NIR reflectance signals

healthy vegetation, while declines indicate stress (Keshava and

Mustard, 2002). NIR fluorescence detects secondary metabolites

and structural changes, revealing stress responses beyond the visible

spectrum (Kumar et al., 2024).
5.3 Shortwave infrared (SWIR: 1.1–2.5 µm)

The spectrum is essential for assessing plant water content and

structural attributes. Reflectance in this region decreases with

increased leaf water content, making it a reliable indicator for

detecting drought stress and optimizing irrigation (Ceccato et al.,

2001). Additionally, SWIR bands are sensitive to plant biochemical

properties, including lignin and cellulose, providing insights into

plant structure and biomass (Asner, 1998). These features make

SWIR crucial for understanding water use efficiency and evaluating

plant resilience under environmental stress.
5.4 Longwave infrared (LWIR: 8–14 µm)

The Longwave Infrared (LWIR) spectrum focuses on thermal

emissions and canopy temperature directly linked to plant

transpiration and water stress. Elevated canopy temperatures,

observed through LWIR, often signal reduced transpiration due

to water stress or stomatal closure, enabling early detection and

precise irrigation scheduling (Jones et al., 2009). Furthermore,

LWIR data can identify thermal anomalies caused by plant

diseases or pest infestations, offering a non-invasive diagnostic

tool for plant health (Oerke et al., 2014). These capabilities make

LWIR indispensable for monitoring plant-environment

interactions and managing stress-related impacts effectively.

Table 2 lists the Reflectance detection mode and their function

across multiple spectral bands.
6 Stress Indicators In Different
Spectral Bands

6.1 Hyperspectral fluorescence imaging

Indices (Table 3) correlate fluorescence emission of chlorophyll

or Xanthophyl within one or more spectral bands. Table 3 provides

a partial list of indices related to chlorophyll pigments in a plant.

Each index quantifies certain aspects of plant health. Chlorophyll a

(Chl a) converts light energy into chemical energy and plays a role

in the Calvin cycle and redox signaling pathways during stress
Frontiers in Plant Science 07
(Foyer and Shigeoka, 2011). Chlorophyll b (Chl b) maximizes light

absorption and adjusts to varying light conditions (Bennett, 1983).

Beta-carotene acts as an antioxidant, stabilizing membranes and

protecting against oxidative stress. Xanthophylls are involved in

photoprotection and regulating energy dissipation (Quaas et al.,

2015). Chl a serves as the primary pigment for converting light

energy into chemical energy during photosynthesis, while Chl b

works in tandem to widen the absorption spectrum (Bennett, 1983).
6.2 Hyperspectral reflectance imaging

Hyperspectral Reflectance Imaging (HRI) indices track plant stress

by analyzing changes in absorption and reflectance patterns. Reduced

chlorophyll levels alter these patterns, signaling stress. Water in leaves

absorbs light in the Shortwave Infrared (SWIR) region (1.1–2.5 μm),

making SWIR crucial for detecting dehydration and drought stress

(Ceccato et al., 2001). Leaf cellular structure, including mesophyll

thickness and air spaces, scatters light in the Near Infrared (NIR)

region (0.7–1.3 μm), where minimal absorption enhances reflectance,

revealing biomass and structural integrity (Jacquemoud et al., 2009).

Non-pigment components like lignin and cellulose influence SWIR

reflectance, providing insights into plant structure and maturity.

Table 4 Lists HRI modes, indices, and their corresponding stress

analysis functions.
6.3 Red edge shift in the VIS band

Red Edge Shift in the VIS Band (Figure 4) refers to the alteration

in the wavelength of the peak reflectance in the red-edge region of

the electromagnetic spectrum (approximately 680-750 nm). Red

Edge detects vegetative stress earlier in the plant growth cycle. As

plants experience stress, chlorophyll concentration often declines,

leading to decreased light absorption in the red region (around 680

nm) and increased reflectance at longer wavelengths. The shift

toward the infrared part of the spectrum (700 nm and beyond)

indicates changes in plant health, biochemical composition, and

physiological status (Tucker, 1979). The first derivative of the

reflectance spectrum enhances the detection of subtle shifts by

highlighting peaks and inflection points, making it easier to observe

changes in plant health and stress responses.
6.4 Longwave infrared, LWIR (8 -14 µm)

LWIT measures plant thermal emission to assess canopy and

leaf temperatures. Elevated temperatures indicate stress conditions,

such as reduced transpiration due to water deficit (Farella et al.,

2022). TIR can identify specific areas of a crop affected by drought

stress, enabling targeted irrigation practices that optimize water use

efficiency by revealing localized heat patterns. Table 5 depicts

standard thermal and LIDAR indices.
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6.5 LIDAR (0.7–1.55 µm)

LIDAR (0.7–1.55 μm) uses NIR laser pulses to generate high-

resolution 3D plant data by measuring pulse return times. This

method estimates key parameters like Leaf Area Index (LAI) and

Leaf Tilt Index (LTI), which indicate plant health and productivity.

LAI, representing leaf area per ground unit, reflects photosynthetic

capacity, influencing growth, transpiration, and soil moisture

dynamics (Chen and Cihlar, 1995). It regulates energy balance,

affecting absorption, reflection, and climate modeling. LTI
Frontiers in Plant Science 08
quantifies leaf orientation, refining photosynthetic modeling and

improving water use efficiency and stress response estimations

(Hopkinson et al., 2013).
7 Multi-mode analytical methods

Multi-mode analytical methods integrate diverse tools like

Dimensionality Reduction (e.g., PCA, PLSR) to extract meaningful

patterns from complex datasets. Combining hyperspectral analysis,
TABLE 2 Reflectance detection mode across multiple spectral bands.

SPECTRAL
RANGE FUNCTION (*) REFERENCES

Visible Spectrum
(VIS: 400-700 nm)

(↑) Red Reflectance (620-750 nm): indicates lower chlorophyll content.
(↑) Green Reflectance (495-570 nm): suggests a healthy, chlorophyll-rich plant;
(↓) reflectance may indicate stress or disease.
(↑)(↓) Blue Reflectance (450-495 nm): This is related to chlorophyll absorption and is an additional plant health
indicator.
(↓) Chlorophyll Fluorescence (around 685 nm and 740 nm): signals stress from water scarcity or
nutrient deficiencies.

Lichtenthaler et al., 2005

Near-Infrared
(NIR: 7-1.100 μm)

(↑) NIR Reflectance 700-1100 nm: Healthy vegetation, such as healthy plants, reflects more NIR light due to its
dense cellular composition.
(↓) Red-Edge Reflectance (680-750 nm): can signify plant stress, often due to water deficit or disease. Susceptible
to changes in chlorophyll concentration
(↑)(↓) NIR Fluorescence (700-800 nm): Can reveal leaf structure or internal water content alterations indicative of
plant health.

Gitelson et al., 1994;
Blackford, 2010

Short-Wave Infrared
(SWIR: 1.1-2.5 nm μm)

(↑)(↓) SWIR Reflectance 1000-2500 nm: Assess water content and biochemical composition in plants, including
substances like lignin and cellulose
(↑) SWIR Fluorescence: May indicate stress-related changes in cell wall structure or biochemical composition.

Jackson et al., 2022

Thermal Infrared
(TIR: 8-14 μm)

LWIR

TIR Emission: Elevated temperatures often indicate plant stress, particularly from water deficit or reduced
transpiration. TIR data is critical for assessing plant stress, especially under environmental Stress conditions.

Mertens et al., 2023

LiDAR
(0.7 -1.55 μm)

LiDAR (700-1550 nm) (↑) Canopy Height: Increases in canopy height indicate healthy growth and structural
integrity. (↓) Leaf Area Index (LAI): Decreases in LAI may signal plant stress or reduced growth. (↑)(↓) Leaf Tilt
Index (LTI): Changes in leaf orientation can reveal adaptive responses to stressors such as light availability or
water deficit.

Lefsky et al., 2002
* (↓), (Decreased Reflectance; (↑), Increased Reflectance).
TABLE 3 Stress indices due to HFI on chlorophyll pigments.

LABEL STRESS INDEX EXPLANATION

Chlorophyll Fluorescence Ratio
CFR =

F685
F740

Measures the ratio of fluorescence emissions at 685 nm and 740 nm to assess
photosynthetic efficiency.

Photochemical Reflectance Index
PRI =

F531 − F570
F531 + F570

Carotenoid responds to light stress, calculated from 531 nm and 570 nm fluorescence emissions.

Chlorophyll Content Index
CCI =

F750 − F705
F750 + F705

Estimates chlorophyll content using emissions at 750 nm and 705 nm to reflect plant health.

Xanthophyll Index
XI =  

F550 − F520
F550 + F520

To estimate xanthophyll activity by comparing fluorescence emissions at 550 nm and 520 nm,
indicating stress responses and photoprotection.

Fv=FmRatio
(Maxwell and Johnson, 2000)

Fv=Fm =
Fv
Fm

Indicate photosystem II efficiency and overall plant health.

Non-photochemical quenching)
(Demmig-Adams, 1990) NPQ =

Fm − F}
m

F}
m

Measure the proportion of light absorbed by chlorophyll, dissipated as heat.
Fm: Maximum fluorescence yield of a dark-adapted sample.
Fm’: Maximum fluorescence yield of a light-adapted sample.

Fluorescence Index (FI)
(Zarco-Tejada et al., 2012)

FI =
F690
F520

Quantify plant health by comparing fluorescence at specific bands.
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data fusion, and ML techniques enhances stress detection by

identifying subtle changes in plant health. These methods detect

stressful events earlier, recognize stress patterns, and provide

actionable insights for precision agriculture and ecosystem

management, improving plant resilience and productivity.
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7.1 Dimensionality reduction

Dimensionality Reduction (Table 6) simplifies datasets by

reducing variables while preserving essential information. These

methods identify maximum variation in stress indicators, aiding in
FIGURE 4

Stress within Visual (Blue, Green, Red) bands (upper left); Red Edge transition within Visible Near Infrared bands (lower middle); Red Edge (upper
right) first derivative to enhance detection sensitivity (Horler et al., 1986; Filella et al., 1992).
TABLE 4 HRI indices provide pathways for stress analysis.

MODE LABEL STRESS INDEX [Note] PURPOSE

Reflectance (VIS) Normalized Difference
Vegetation Index (NDVI)

NDVI =
(NIR − RED)
(NIR + RED)

Assesses vegetation health by comparing near-infrared and
red reflectance (Rouse et al., 1974)

Visible Atmosphere Resistant
Index (VARI)

VARI =
(GREEN − RED)

(GREEN + RED − BLUE)
Evaluates vegetation health while minimizing atmospheric
effects.
(Gitelson et al., 2003)

Chlorophyll Content Index (CCI)
CCI =

(RED − BLUE)
(RED + BLUE)

Estimates chlorophyll content based on visible spectrum
reflectance.
(Gitelson et al., 2003)

Normalized Difference Water
Index (NDWI)

NDWI =
(NIR − SWIR)
(NIR + SWIR)

Measures plant water content by comparing NIR and
SWIR reflectance (Gao, 1996)

Normalized Difference
Vegetation Index

NDVI =
(NIR − RED)
(NIR + RED)

General vegetation health and biomass estimation.
(Rouse et al., 1974)

Reflectance (SWIR) Normalized Difference
Water Index

NDWI =
(NIR − SWIR)
(NIR + SWIR)

To evaluate vegetation water content.
(Gao, 1996)

Reflectance (Red-Edge) Red-Edge Vegetation
Index (REVI)

REVI =
(NIR − REDedge)

(NIR + REDedge)

Quantify sensitivity to chlorophyll content and plant
health in the red-edge region (Krezhova, 2011)

Reflectance (Red-Edge) Red-Edge Chlorophyll Index
(CIred-edge)

CIred−edge =
NIR

REDedge
− 1

Focuses on chlorophyll content by comparing reflectance
in NIR to red-edge reflectance (Gitelson et al., 2003)
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trend detection and mitigating overfitting. Many rely on eigenvalues

and eigenvectors to transform data into a new space. PCA captures

variance through principal components (Van der Maaten et al.,

2009), while LDA maximizes class separability (Lu et al., 2011).

PLSR models latent variable relationships, and CCA uncovers

dataset correlations. ICA separates mixed signals (Hyvärinen and

Oja, 2000), while nonlinear methods like t-SNE and UMAP

maintain neighborhood structures for visualization.
7.2 Data fusion

Data Fusion (Table 7) highlights data fusion as a method for

integrating spatial, spectral, and temporal data to enhance plant

stress analysis. Spatial data from LiDAR captures canopy structure,

including leaf orientation and density, influencing light interception

(Berger et al., 2022). Spectral data from hyperspectral imaging

detects biochemical changes, such as pigment and water content
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variations. Temporal data from repeated measurements tracks

stress progression and recovery. ML models integrate these

dimensions, linking spectral reflectance (chlorophyll content)

with spatial anomalies (canopy gaps) and temporal trends

(drought stress), improving detection accuracy (Sagi et al., 2020).
7.3 Variability in spectral data interpretation

Variability in spectral data interpretation across different

environments arises from atmospheric conditions, soil composition,

and plant phenotypes, affecting measurement consistency. Differences

in light intensity and angle influence reflectance values, requiring

adaptive (dynamic correction) calibration techniques to ensure

accuracy (Xie et al., 2023). Additionally, spectral shifts due to

environmental stressors necessitate robust ML/AI models to account

for regional variations and improve data reliability (Hilbert, 2016).

MMA devices address these challenges by integrating multiple spectral

bands, combining reflectance, fluorescence, and LiDAR data to cross-

validate results, and applying AI-driven correction algorithms to

enhance consistency across diverse conditions.

Levels of Data Fusion. Data fusion is typically categorized into

three levels: low-level, mid-level, and high-level fusion, each defined

by the stage at which data integration occurs and the type of

information processed (Table 8).
7.4 Hyperspectral imaging

The hyperspectral analysis represents a crucial subset of multi-

mode analysis, distinguished by its comprehensive examination of

plant health through essential elements: spectral, spatial, and

temporal. Integrating ML algorithms with image data sets enables

precise spectral-spatial-temporal disease identification, facilitating

timely detection, predictive modeling, and effective disease

management (Razzaq et al., 2024). The term “hyperspectral”

derives from the method’s ability to capture and analyze many
TABLE 5 LWIR and LiDAR indices.

Mode Label Stress Indicator [Note] Purpose

LIDAR LIDAR Height Index, H H= Height To Assess plant height and canopy
structure. Direct measurement of plant
height (Lefsky et al., 2002)

LIDAR Leaf Area Index (LAI)
LAI =

Total Area
Ground Area

Estimates leaf area index to assess plant
growth and biomass. Based on canopy
height and density metrics (Lefsky
et al., 1999)

LIDAR Leaf Tilt Index
(LTI)

LTI =
FLeaf − FReference
FLeaf + FReference

Calculates the tilt of leaves to correct
distortion in reflectance measurements.;
FLeaf  = fluorescence emitted by the leaf,
FReference  = fluorescence emitted by a
Reference sample
(Farooq et al., 2020)

Thermal (TIR) Vegetation Temperature Condition
Index (VTCI)

VTCI =
(LST − LSTmin)

(LSTmax − LSTmin)
To evaluate plant stress based on
thermal emissions (Wan, 2002). LST  =
Land Surface Temperature,
TABLE 6 Classification of dimensionality reduction methods.

Classification Description

Principal
Component Analysis

It uses eigenvalues and eigenvectors to identify
directions of maximum variance.

Linear
Discriminant Analysis

Maximizes class separability by finding linear
combinations of features.

Partial Least
Squares Regression

Identifies latent variables that explain variance in
independent and dependent variables.

Canonical
Correlation Analysis

Uncovers relationships between two datasets
using eigendecomposition.

Independent
Component Analysis

Separates mixed signals into statistically
independent components.

t-SNE Preserves neighborhood structures for data
visualization in nonlinear relationships.

UMAP Captures complex nonlinear relationships for
visualization or analysis.
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contiguous spectral bands across various wavelengths, allowing for

detailed characterization of plant responses to multiple stressors

(Gao et al., 2020).

Spectral analysis enhances plant stress detection through

specific spectral indices, unmixing methods, and matching

techniques. The NDVI is well-known for its effectiveness in

assessing overall vegetation health and stress levels by exploiting

the differences between near-infrared and red reflectance (Rouse

et al., 1974). The PRI is sensitive to changes in carotenoid pigments

linked to photosynthetic stress, while the Red-Edge Position (REP)

indicates shifts in chlorophyll content and health (Gitelson et al.,

2003; Zarco-Tejada et al., 2012). Spectral unmixing methods like the

Fractional Cover Index (FCI) estimate the proportions of varying

vegetation components within pixels. At the same time, the Spectral

Angle Mapper (SAM) score quantifies the similarity between pixel

and reference spectra to highlight specific stress indicators (Lowe

et al., 2017).

Temporal analysis monitors plant health and detects stress by

evaluating changes in spectral data over time, mainly about specific

phenological events. This method employs time-series indices such

as the Vegetation Condition Index (VCI) and the Normalized

Difference Moisture Index to track vegetation’s dynamic

responses to environmental changes and stressors. For example,

VCI compares current NDVI values against historical data to assess
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relative stress levels and identify stress onset and progression (Friedl

and Brodley, 1997).

Spatial analysis examines the spatial patterns and relationships

within remote sensing images. Techniques like Object-Based Image

Analysis allow researchers to segment imagery into meaningful

objects, such as leaves or plant canopies, to analyze their spatial

characteristics and assess vegetation health (Kureel et al., 2022). The

VFI quantifies the proportion of vegetation within image segments,

enabling accurate assessments of vegetation cover and identification

of stress areas (Pettorelli et al., 2018).
8 Machine learning

ML is a subset of AI that enables computer systems to learn

from data and improve their performance on specific tasks without

explicit programming. This approach utilizes algorithms and

statistical models to identify patterns within data, allowing

systems to make predictions or decisions based on new input

(Ratner, 2017). Shahoveisi et al. (2023) reported using image

processing and transfer learning for rust detection, evaluating the

performance of four different pre-trained CNN models: Xception,

ResNet50, EfficientNetB4, and MobileNet. Furthermore, adaptive

phenotyping, such as IBP, can utilize ML/AI to integrate high-
TABLE 7 Data fusion techniques in plant stress analysis.

Aspect Description Examples

Data Sources
Combines multiple sensing modalities for stress analysis.
(Berger et al., 2022)

Hyperspectral imaging, thermal infrared, LiDAR, chlorophyll
fluorescence,
and soil moisture sensors.

Fusion Techniques
Integrates data at different levels to enhance insights.
(Sagi et al., 2020)

Feature-Level Fusion: Combines spectral indices and temperature data.
Decision-Level Fusion: Analyzes and then integrates results from
different sensors.

Machine Learning
Utilizes advanced models for processing and analysis of fused
datasets.
(Meng et al., 2020)

Random Forests, Artificial Neural Networks, Support
Vector Machines.

Spectral and
Temporal Fusion

Fuses data from different spectral bands over time for
comprehensive analysis.
(Gunatilaka and Baertlein, 2001; Shen et al., 2016)

Spectral Fusion: Integrates visible, NIR, and SWIR bands.
Temporal Fusion: Monitors stress progression across time.
TABLE 8 Data fusion levels.

Fusion
Level

Description Example Reference

Low-
Level
Fusion

Combines raw data from multiple sensors to produce new raw data, enhancing
the quality and completeness of the information.

Merging data from multiple cameras to improve
image resolution.

Klein, 2004

Mid-
Level
Fusion

Integrates features or patterns extracted from raw data to interpret meaningful
characteristics from multiple sources.

Combining spectral and textural features from
remote sensing data for land cover classification.

Smolinska
et al., 2019

High-
Level
Fusion

Combines decisions or interpretations from multiple sources to make final
decisions or predictions by integrating outputs from multiple systems.

Merging diagnostic results from different medical
imaging systems.

Hall and
Llinas, 1997
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throughput imaging, automation, and data analytics to assess plant

stress responses across growth stages (Anshori et al., 2023).
8.1 Edge computing

Edge computing processes data at the network’s edge, enabling

real-time analysis and decision-making (Shi et al., 2023). It reduces

latency, lowers bandwidth costs, enhances security by processing data

locally, and improves system reliability and scalability (Wijesinghe and

Kariyawasam, 2024). In space applications, edge devices process data

on space stations or lunar bases, enabling immediate environmental

adjustments without relying on Earth-based transmission (Dudukovich

et al., 2022). In precision agriculture, edge computing supports drones

and sensors for real-time plant health and soil monitoring, optimizing

resource use and management (Lee et al., 2024).
8.2 Standardizing MMA methods

Standardizing MMA methods remains challenging due to many

interdependent factors. Environmental variations, including

temperature, pressure, light, and humidity, directly influence stress

responses, requiring adaptable analytical approaches (Bocklitz et al.,

2020). Hardware discrepancies in accuracy and robustness introduce

variability, making standardization difficult (Pérez-Patricio et al.,

2024). Researchers select analytical and data reduction techniques,

such as principal component analysis and eigenvector methods,

based on application-specific needs, complicating uniform

standardization (Olivieri et al., 2006). MMA integrates multiple

bands, modes, and indices, requiring flexible frameworks to handle

complex datasets. Application-specific spectral signatures further

complicate standardization—normalizing melanin absorption in

tissues differs from analyzing scattering effects in plants for early

stress detection. Mapping and pattern recognition techniques vary

across applications, demanding customized analytical models (Pérez-

Patricio et al., 2024). Cross-mode variable contributions shift based

on medium properties and sample populations, requiring unique

calibration strategies (Bocklitz et al., 2020). Hardware and software

components, including device calibration and firmware, dictate

sensitivity and responsivity, further preventing universal standards.

Image processing techniques rely on specific hardware and software

configurations, necessitating tailored filtering, masking, and

normalization for each application. While general calibration

protocols, such as white or dark normalization, noise reduction,

and baseline correction, apply broadly, MMA requires flexible,

context-specific protocols (Ajuzieogu, 2017). to reproduce

consistent results with field data.
9 Findings and results

This review identifies multi-mode analytics as a transformative

approach to plant stress assessment, integrating hyperspectroscopy,
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time-frequency analysis, and advanced techniques for precise detection.

Unlike single-mode methods, multi-mode analytics maps stress

patterns across spectral bands, enabling earlier and more accurate

identification of stress and its root causes. Predicting plant stress

remains complex due to spatial, spectral, and physiological

interactions. While farmers rely on visual cues like wilting, multi-

mode analytics scientifically detects early stress by combining optical,

structural, and temporal data.

—This review highlights several key insights that address the

questions posed at the outset. Conventional single-mode

spectroscopy often fails to capture the multifaceted nature of

plant stress by concentrating primarily on isolated indicators,

such as reflectance or temperature alone. For example, single-

mode approaches may not simultaneously detect complex stress

interactions involving drought, salinity, and temperature, as each

stressor affects different biochemical pathways. In contrast, the

integrated approach of multi-mode analytics significantly

enhances accuracy in stress detection by allowing simultaneous

assessment of multiple physiological parameters. This multifaceted

approach provides a comprehensive overview of plant responses,

thus addressing the limitations of single-mode techniques (Table 9).

ML and AI training begins with establishing ground truth—in this

case, tested and verified mappings and patterns to identify plant

health anomalies and stress events or pathways. This foundation

can accurately predict stress and potential root causes using

multiple indices from different spectral bands and detection

modalities (Gómez-Chova et al., 2015).

In response to the advantages of multi-mode spectroscopy

(Table 10), this review details how combining techniques like HRI,

HFI, and Light LiDAR allows for a more thorough examination of

plant physiological responses. Each mode has distinct advantages:

HRI reveals detailed spectral changes, HFI detects early shifts in

photosynthetic activity, and LiDAR captures structural data like leaf

orientation. Integrating these methods improves the detection of

subtle health indicators, such as chlorophyll content changes or

metabolite fluctuations, enabling the early identification of stress

that might otherwise go unnoticed.

The review further addresses how advanced analytical methods

can enhance predictive capabilities in stress detection. ML and data

fusion are valuable in processing complex datasets from multimodal

systems, uncovering patterns and correlations that inform predictions

about stress causes. For instance, ML algorithms can link FTIR

spectroscopy data to physiological stress, offering more profound

insights into how molecular changes correlate with stress responses.

Finally, integrating time and frequency domain analysis allows

models to capture dynamic, cyclical stress patterns impacting plant

health, such as temperature or irrigation cycles. These advanced

analytical techniques contribute to a real-time, adaptive approach

that improves timely interventions. Based on these findings, the

review recommends a coordinated effort toward developing

precision multimodal devices to bridge current research gaps,

emphasizing that integrated analytical techniques are essential for

advancing sustainable agricultural practices in terrestrial and

space environments.
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TABLE 9 Limitations of single mode analytics for plant stress assessment.

Parameter Limitation Reference

Integration of Stressors Single-mode spectroscopy often fails to assess multiple stressors simultaneously, leading to an incomplete
understanding of plant health.

Atkinson and Urwin, 2012

Focus on
Isolated Symptoms

Typically, it concentrates on isolated symptoms rather than providing a comprehensive understanding of
underlying stress factors.

Zarco-Tejada et al., 2012

Time-Consuming Single-mode methods are time-consuming, requiring extensive sample preparation and manual calibration. AlSuwaidi et al., 2018

Sensitivity
to Variability

Single-mode analytics needs to effectively account for environmental variability, leading to inaccuracies in
stress detection.

Rahimikhoob et al., 2024

Inability to
Capture Dynamics

Lacks the capability to monitor dynamic changes in plant stress conditions effectively since dynamic changes
require more than one variable

Emami and Martıńez-
Muñoz, 2023

Holistic Assessment It provides data on specific spectral regions but needs a holistic plant health assessment. Wang et al., 2022

Calibration Challenges Requires complex calibration processes to ensure accuracy in differing environmental contexts. Meyer, 2023

Limited Indicators Concentrating on a few physical or chemical indicators may miss critical metabolites and stress-related
physiological responses.

Jorge et al., 2016

Data Interpretation Requires specialized knowledge for data interpretation, presenting barriers for growers and practitioners with
limited technical expertise.

Sarfraz et al., 2023

Maintenance
Requirements

It Requires ongoing maintenance and calibration, posing additional operational challenges. Liu et al., 2019

Spatial Limitations Single-mode systems often need more spatial resolution to evaluate plant canopy structure effectively. Maimaitijiang et al., 2020

Temporal Resolution It provides limited temporal data, hindering the ability to monitor changes over time effectively (the frequency at
which data is collected over time).

Atluri et al., 2018

Environmental
Sensitivity

Single-mode instruments may be prone to interference from ambient light conditions, affecting
measurement accuracy.

Bartula, 2009

Specificity Low specificity in identifying stressors, sometimes leading to false positives or negatives in stress assessment. Martinelli et al., 2015

Sample Homogeneity Assumes sample homogeneity, potentially skewing results if variations exist within the sample. Ferrari et al., 2004
F
rontiers in Plant Science
 13
TABLE 10 Multi-mode analytics methods in plant stress assessment.

Method Description Reference

HRI
Providing insights into plant health, including pigment status, water content, and cellular structures. Reflectance
mode can be part of any spectral band.

Maimaitijiang
et al., 2020

HFI
It focuses on the fluorescence emitted by chlorophyll and other pigments, enabling the detection of changes in
photosynthetic activity and early stress indicators.

Pérez-Bueno
et al., 2019

LIDAR
It uses laser pulses to measure distances to plant structures, evaluating canopy architecture, leaf orientation, and
stress-related structural changes.

Chen, 2013

Thermal Infrared Imaging
Measures thermal emissions from plants to assess leaf and canopy temperatures, offering insights into water stress
and transpiration efficiency.

Farella et al., 2022

Data Fusion
It integrates data from multiple sources (e.g., spectral, spatial) to provide a comprehensive view of plant health and
improve stress detection accuracy.

Walsh et al., 2024

Machine Learning
Applies algorithms to analyze complex datasets, enhancing the predictive capabilities for identifying stress and
developing intervention strategies.

Gómez-Chova
et al., 2015

Microstate Analysis
It focuses on a plant’s detailed physiological states, allowing for the identification of early stress signs through the
assessment of multiple indicators.

Tomkins et al., 2021

Statistical Methods
Utilizes various statistical techniques to analyze spectral data and extract meaningful patterns related to plant
stress conditions.

Nayak et al., 2018

RARS
RARS algorithm uses ratio spectra to establish linear relationships between absorption bands and pigment
concentrations and determines the contribution of chlorophyll a,b, and carotenoid in reflectance spectra

Chappelle et al,
1992; Kim
et al., 1993

Dimensionality Reduction Utilizes eigenvalues and eigenvectors from PCA to analyze complex datasets, helping to identify patterns that reveal
the root causes of plant stress, thereby informing targeted interventions.

Nayak et al., 2018
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9.1 Enhanced monitoring

Integrating MMA datasets with sophisticated analytical

techniques (Kour et al., 2024) enhances precision farming. These

methods promote agricultural sustainability, especially in long-

duration space missions, as they significantly mitigate the risks of

crop failure. Technologies like hyperspectral imaging, ML, and

advanced sensors promote precise crop health monitoring, allowing

early detection of stress and nutrient deficiencies for timely

interventions (Gao et al., 2020). This level of precision enhances

resource efficiency, which is essential for sustainability in space.

Based on these findings, the review recommends the adoption

of multimodal analytics (Table 10) for devices that integrate

different sensing spectral bands and modalities. This approach

will bridge research gaps and promote sustainable agricultural

practices by enhancing the understanding of plants’ intricate

chemical and physiological responses to stressors. Overall, the

findings reinforce the transition from traditional single-mode

methods towards a more holistic, multimodal strategy that

adequately addresses the complexities of plant health challenges.
9.2 Challenges in multi-mode analytics

Multi-mode analytics (MMA) provides a cost-effective

alternative to expensive methods like X-ray or Raman

spectroscopy for plant stress analysis. These systems lower

operational costs and simplify technology integration (Meyer,

2023). However, implementation challenges persist, particularly in

sensor calibration, cost, and data processing. High-resolution data

can cause information overload, complicating actionable insights

(Hilbert, 2016). Additionally, maintaining and calibrating sensitive

sensors requires technical expertise, which is often scarce in

agricultural regions, adding to operational costs (Liu et al., 2019).

The affordability of MMA remains a barrier for small-scale farmers,

who may lack access to advanced software and trained personnel.

Furthermore, data processing demands significant computational

resources, potentially limiting adoption in regions with inadequate

infrastructure. Environmental variability also affects measurement

accuracy, necessitating frequent recalibrations and adaptive models

to maintain reliability. To succeed in high-output and small-scale

farming, MMA must address cost-effectiveness, ease of use, and

scalable data solutions.
9.3 Future works

MMA ensure crop viability in extraterrestrial and terrestrial

settings, where meticulous resource management becomes essential

(Maity and Saxena, 2024). During prolonged space missions, space

crews can effectively manage water and nutrient cycles to sustain life

and crop productivity. The capability to foresee and mitigate stress

factors—such as water shortages, nutrient deficiencies, and
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environmental challenges—directly contributes to protecting plant

health and fulfilling the overarching objectives of long-term human

space exploration and habitation. The demand for -devices

integrating HFI, HRI, LiDAR, thermal imaging, ML/AI, data

Fusion, IBP, time and frequency domain, eigenvectors, and

microstate analysis is surging in agricultural (vertical and

horizontal farming, horticulture, micro crop plantation) and food

industry applications. Multimodal analytics is a Meta-framework,

which is pivotal for assessingmeat freshness, detecting adulteration in

poultry and fish, verifying the purity of olive oil, and identifying

pathogens in various food products (Artavia et al., 2021). Their

capability for precise, non-destructive testing delivers crucial data that

greatly enhances product safety, quality control, and traceability

(Vasefi et al., 2018). In terrestrial and space agriculture, these tools

are indispensable for monitoring plant health and detecting early

signs of disease, sustaining crop yield and quality. In the food sector,

they can authenticate product contents, spot adulterants, ensure

compliance with safety standards, safeguard consumer health, and

support ethical trade practices (Li et al., 2019).
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Detecting vegetation leaf water content using reflectance in the optical domain. Remote
Sens. Environ. 77, 22–33. doi: 10.1016/S0034-4257(01)00191-2

Chappelle, E. W., Kim, M. S., and McMurtrey, J. E. III (1992). Ratio analysis of
reflectance spectra (RARS): an algorithm for the remote estimation of the
concentrations of chlorophyll a, chlorophyll b, and carotenoids in soybean leaves.
Remote Sens. Environ. 39, 239–247. doi: 10.1016/0034-4257(92)90089-3

Chen, J. M. (2013). “Remote sensing of leaf area index of vegetation covers,” in
Remote Sensing of Natural Resources (CRC Press, Boca Raton, FL, USA), 375–398.

Chen, J. M., and Cihlar, J. (1995). Plant canopy gap-size analysis theory for
improving optical measurements of leaf-area index. Appl. optics 34, 6211–6222.
doi: 10.1364/AO.34.006211

Coatsworth, P., Gonzalez-Macia, L., Collins, A. S. P., Bozkurt, T., and Güder, F.
(2023). Continuous monitoring of chemical signals in plants under stress. Nat. Rev.
Chem. 7, 7–25. doi: 10.1038/s41570-022-00443-0
Demmig-Adams, B. (1990). Carotenoids and photoprotection in plants: a role for the
xanthophyll zeaxanthin. Biochim. Biophys. Acta (BBA)-Bioenergetics 1020, 1–24.
doi: 10.1016/0005-2728(90)90088-L

Desai, B. B. (2004). Seeds Handbook: Processing and storage (CRC press).

Dudukovich, R., Gormley, D., Kancharla, S., Wagner, K., Short, R., Brooks, D., et al.
(2022). Toward the development of a multi-agent cognitive networking system for the
lunar Environment. IEEE J. Radio Frequency Identification 6, 269–283. doi: 10.1109/
JRFID.2022.3162952

Elvidge, C. D., and Chen, Z. (1995). Comparison of broad-band and narrow-band
red and near-infrared vegetation indices. Remote Sens. Environ. 54, 38–48. doi: 10.1016/
0034-4257(95)00132-K

Emami, S., and Martıńez-Muñoz, G. (2023). A gradient boosting approach for
training convolutional and deep neural networks. IEEE Open J. Signal Process. 4, 313–
321. doi: 10.1109/OJSP.2023.3279011

Fang, Y., Wang, H., Liu, X., Xin, D., Rao, Y., and Zhu, B. (2019). Transcriptome
analysis of Xanthomonas oryzae pv. oryzicola exposed to H2O2 reveals horizontal gene
transfer contributes to its oxidative stress response. PloS One 14, e0218844.

Farella, M. M., Fisher, J. B., Jiao, W., Key, K. B., and Barnes, M. L. (2022). Thermal
remote sensing for plant ecology from leaf to globe. J. Ecol. 110, 1996–2014.
doi: 10.1111/1365-2745.13957

Farooq, T. H., Yan, W., Chen, X., Shakoor, A., Rashid, M. H. U., Gilani, M. M., et al.
(2020). Dynamics of canopy development of Cunninghamia lanceolata mid-age
plantation in relation to foliar nitrogen and soil quality influenced by stand density.
Global Ecol. Conserv. 24, e01209. doi: 10.1016/j.gecco.2020.e01209

Ferrari, M., Mottola, L., and Quaresima, V. (2004). Principles, techniques, and
limitations of near-infrared spectroscopy. Can. J. Appl. Physiol. 29, 463–487.
doi: 10.1139/h04-031

Fiorani, F., and Schurr, U. (2013). Future scenarios for plant phenotyping. Annu.
Rev. Plant Biol. 64, 267–291. doi: 10.1146/annurev-arplant-050312-120137

Foyer, C. H., and Shigeoka, S. (2011). Understanding oxidative stress and antioxidant
functions to enhance photosynthesis. Plant Physiol. 155, 93–100. doi: 10.1104/
pp.110.166181

Friedl, M. A., and Brodley, C. E. (1997). Decision tree classification of land cover
from remotely sensed data. Remote Sens. Environ. 61, 399–409. doi: 10.1016/S0034-
4257(97)00049-7

Frydenvang, J., et al. (2015). Sensitive detection of phosphorus deficiency in plants
using chlorophyll a fluorescence. Plant Physiol. 169, 353–361. doi: 10.1104/pp.15.00823

Gao, B. C. (1996). NDWI—A normalized difference water index for remote sensing
of vegetation liquid water from space. Remote Sens. Environ. 58, 257–266. doi: 10.1016/
S0034-4257(96)00067-3

Gao, Z., Luo, Z., Zhang, W., Lv, Z., and Xu, Y. (2020). Deep learning application in
plant stress imaging: a review. AgriEngineering 2, 29. doi: 10.3390/
agriengineering2030029
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