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Chickpea is highly sensitive to cold stress during its reproductive stages, leading

to significant reductions in potential pod formation due to decreased

reproductive success. This study aimed to investigate the specific responses of

anthers and ovules to cold stress, explore the role of oxidative stress and

antioxidant mechanisms, and understand the relationship between oxidative

stress and reproductive function to enhance our understanding of chickpea

responses to cold stress. Chickpea seeds of contrasting genotypes—cold-

tolerant (ICC 17258, ICC 16349) and cold-sensitive (ICC 15567, GPF 2)—were

sown outdoors in early November under optimal conditions (25.5/15.4°C mean

day/night temperatures). At 50 days after sowing, plants were subjected to 13/7°

C cold stress (12 h light/dark in walk-in growth chambers. Cold stress significantly

increasedmembrane damage and reduced cellular viability in anthers and ovules,

particularly in cold-sensitive (CS) genotypes. Oxidative damage was more

pronounced in anthers, particularly at anthesis (stage 2), as indicated by

elevated malondialdehyde and hydrogen peroxide levels. Cold-tolerant (CT)

genotypes exhibited increased antioxidant activity under stress, especially at

pre-anthesis (stage 1), followed by declines at later stage, although responses

varied by genotype. Anthers exhibited higher overall antioxidants activity than

ovules, while ovules demonstrated notably high catalase activity. Among the

antioxidants studied, ascorbate peroxidase and glutathione reductase were most

prominent in the CT genotype, along with higher levels of ascorbate (AsA) and

glutathione (GSH), highlighting the critical role of the AsA–GSH cycle in

conferring cold tolerance to chickpea. Exogenous supplementation with 1 mM

ascorbate (AsA) and glutathione (GSH) significantly stimulated pollen germination

in cold-stressed plants under in vitro conditions, with a greater effect observed in

CS genotypes. Furthermore, antioxidant activity strongly correlated with key
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reproductive traits such as pollen germination and ovule viability. This study

revealed that the anthers and ovules exhibited distinct responses to cold stress,

with significant genotypic differences across key reproductive stages. These

insights provide a deeper understanding of cold tolerance mechanisms in

chickpea and provide vital clues for breeding strategies to enhance resilience

and reproductive success under cold stress.
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1 Introduction

Cold stress significantly affects plant growth and development,

particularly in tropical-origin crops, by disrupting various

vegetative and reproductive stages (Croser et al., 2003; Clarke

et al., 2004). Chickpea (Cicer arietinum L.), an important legume

crop providing essential proteins and nutrients to millions

worldwide (Bar-El-Dadon et al., 2017), is especially vulnerable to

cold stress during the reproductive phase. This vulnerability often

results in flower and pod abortion, leading to 30–40% yield losses in

cold-sensitive genotypes (Srinivasan et al., 1999; Kiran et al., 2021;

Berger et al., 2023). Exposure to temperatures below 15°C has been

linked to flower abortion and reduced pod production (Nayyar

et al., 2005; Bhandari et al., 2020; Rani et al., 2020; Kaur et al., 2022).

Reproductive development is highly sensitive to cold stress,

affecting both male and female reproductive tissues (Thakur et al.,

2010; Soualiou et al., 2022). In male organs, low temperatures

disrupt tapetum development, delay programmed cell death, and

reduce pollen viability, leading to sterility (Liu et al., 2019; Huang

et al., 2022). Cold stress also interferes with meiosis and

gametogenesis, processes essential for viable pollen production

(Liu et al., 2019). Cold stress affects gynoecium development and

function in female reproductive structures, although this has been

less studied (Albertos et al., 2019). In chickpea, chilling

temperatures during the reproductive phase can cause floral

abortion, reduce pollen viability, inhibit stigma receptivity, and

impair pollen tube growth, resulting in fertilization failure (Clarke

et al., 2004; Kumar et al., 2010; Berger et al., 2012).

The detrimental impacts of cold stress on reproductive

development are not unique to chickpea. Similar impacts have

been documented in other crops, including wheat (Chakrabarti

et al., 2011), rice (Arshad et al., 2017; González-Schain et al., 2019),

and soybean (Gass et al., 1996). For example, low temperatures can

inhibit pollen tube growth and reduce pollen viability, decreasing

pod set (Pacini and Dolferus, 2019) in rice (Oryza sativa; Yamamori

et al., 2021) and chickpea (Rani et al., 2020). Such impacts on

reproductive success have been attributed to disruptions in

carbohydrate metabolism (Kiran et al., 2021) and hormonal
02
imbalances (Nikkhoye-Tanha et al., 2024), further illustrating the

widespread effects of cold stress on plant fertility.

Understanding the physiological mechanisms that govern these

responses in chickpea is critical for developing effective strategies to

mitigate cold stress effects. A major physiological consequence of

cold stress is the excessive accumulation of reactive oxygen species

(ROS), leading to oxidative damage (Garcia-Caparros et al., 2021),

such as lipid peroxidation, protein denaturation, and cellular

dysfunction (Mittler et al., 2022). These effects impair vital

processes such as photosynthesis and respiration, ultimately

reducing plant productivity (Baek and Skinner, 2012; Dreyer and

Dietz, 2018; Soualiou et al., 2022). Studies indicate that cold-

sensitive chickpea genotypes exhibit elevated oxidative stress

markers and reduced fertility when exposed to chilling conditions

(Thakur et al., 2020; Adhikari et al., 2022).

Comparing the oxidative stress responses of anthers and ovules

is particularly important, as these structures serve distinct roles in

reproduction. Anthers are critical for male gamete formation,

whereas ovules are essential for female gamete development.

Previous studies have shown that temperature fluctuations

differentially impact the functionality of male and female

reproductive structures (Albertos et al., 2019; Liu et al., 2019).

Understanding how these structures cope with oxidative damage

under cold stress can provide valuable insights into

chickpea resilience.

Plants have evolved complex antioxidant defense mechanisms

to combat ROS-induced damage during cold stress (Gusain et al.,

2023; Jahed et al., 2023). These mechanisms include enzymatic

antioxidants such as ascorbate peroxidase (APX) and glutathione

reductase (GR) and non-enzymatic antioxidants like ascorbate

(AsA) and reduced glutathione (GSH) that neutralize ROS and

stabilize cellular membranes, preserving pollen and ovule

functionality during critical developmental stages. Despite their

importance, the roles of these antioxidants in protecting

chickpea’s reproductive tissues at different developmental stages,

such as pre-anthesis and anthesis, which remain underexplored.

Evaluating these stages can reveal when reproductive tissues are

most vulnerable to cold-induced damage, which is crucial for
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developing targeted strategies to enhance chickpea cold tolerance

through breeding programs.

Information on the relative sensitivity of anthers and ovules to

cold stress during development, especially in the management of

oxidative stress, is lacking. Therefore, this study was planned to

investigate the effects of cold stress on oxidative damage in

chickpea’s reproductive structures, focusing on anthers and ovules

at pre-anthesis and anthesis stages. By exploring genotypic

differences in oxidative stress management and linking oxidative

stress responses to key reproductive traits, the study aimed to

provide vital insights into enhancing chickpea’s resilience and

fertility under cold conditions.
2 Materials and methods

2.1 Raising of plants and cold
stress treatment

Seeds of contrasting chickpea genotypes—cold-tolerant (ICC

17258 and ICC 16349) and cold-sensitive (ICC 15567 and GPF 2)

were soaked for 12 hours and inoculated with a suitable

Mesorhizobium ciceri sp. culture (2.0 g kg−1 seed) before sowing.

The contrasting chickpea genotypes were selected based on our

preliminary screening studies, which involved evaluating 40

genotypes for reproductive cold tolerance (Pod set) under

controlled environments (13/7°C). The genotypes exhibiting the

most contrasting levels of pod set (high and low) were then selected

for this more detailed study. Five inoculated seeds were planted in

each pot containing 8 kg of a sandy loam and farmyard manure

mixture (3: 1 ratio), enriched with tricalcium phosphate fertilizer

(10 mg kg-¹ soil). Fifteen days after sowing (DAS), plants were

thinned to two per pot. The plants were initially grown outdoors in

November under natural environmental conditions, protected from

bird and animal interference by wire enclosures. Weather

conditions included mean day/night temperatures of 25.5/15.4°C,

1,300–1,500 mmol m-² s-¹ light intensity, and 60–70% relative

humidity (Supplementary Figure S1).

At 50 days after sowing, the plants were transferred to walk-in

growth chambers for controlled treatments. Cold stress was

imposed with a temperature of 13/7°C (12 h light/12 h dark), 600

mmol m-² s-¹ light intensity, and 65–70% relative humidity. The

diurnal temperature gradient was reduced by 1°C per day until

reaching the target temperature, maintained through podding (15

days), and subsequently increased by 2°C per day to attain 30/23°C

(12 h day/night) until maturity. Control plants were kept under

standard environmental conditions (25/15°C) until podding and

then subjected to similar temperature increases to reach 30/23°C

(12 h day/night) until maturity. Anther and ovule samples were

collected at two-time points corresponding to pre-anthesis (5 mm

bud size, flower stage 12; S1) and anthesis (10 mm flower size,

flower stage 18; S2) to assess the effects of continuous cold stress on

reproductive organs, following the developmental staging described
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by Kiran et al. (2019). These samples were analyzed for the traits

described below.
2.2 Electrolyte leakage

Electrolyte leakage (EL), indicative of membrane damage, was

assessed in anthers and ovules. Samples were washed with deionized

water, cut into small pieces, and incubated in 10 mL of deionized water

at 25°C for 12 hours. Initial electrical conductivity (C1) was measured,

followed by heating the tissue at 80°C in a water bath for 10–15

minutes to record the final electrical conductivity (C2). Membrane

damage was calculated as EL%: (C1/C2) × 100 (Kaushal et al., 2013).
2.3 Cellular viability

Cellular viability was assessed using 2,3,5-triphenyl tetrazolium

chloride (TTC), transforming the colorless solution into a dark red

formazan through cellular reduction. Anthers and ovules were

collected and incubated in a solution containing TTC (500 mg per

100 mL) and 50 mM sodium phosphate (pH 7.4) at 25°C in the dark

for 1 hour without agitation. After incubation, the tissues were

extracted twice using 95% ethanol, and the extracts were combined

tomake a final volume of 10mL. Absorbance of the resultant crimson

solution wasmeasured at 530 nm using a spectrophotometer. Cellular

viability was expressed as absorbance per gram of fresh weight

(Steponkus and Lanphear, 1967).
2.4 Malondialdehyde

Malondialdehyde (MDA) content, an indicator of lipid

peroxidation, was quantified by homogenizing fresh tissues in 0.1%

trichloroacetic acid (TCA), centrifuging at 3,360 g for 5 minutes, and

reacting the supernatant with 4 mL thiobarbituric acid (0.5%) in 20%

TCA. The reaction mixture was heated at 95°C for 30 minutes, cooled

in an ice bath, and centrifuged at 3,360 g for 10 minutes (4°C).

Absorbance was measured at 532 nm, and MDA content was

calculated using an extinction coefficient of 155 mM cm−1, reported

as nmol g−1 dry weight (DW) (Heath and Packer, 1968).
2.5 Hydrogen peroxide concentration

The hydrogen peroxide (H2O2) concentration in anthers and

ovules was determined by extracting fresh samples in 5 mL of chilled

80% acetone and filtered usingWhatman filter paper. The filtrate was

mixed with 4 mL of titanium reagent and 5 mL of 25% ammonia

solution, followed by centrifugation at 3,360 g for 10 minutes. The

resulting pellet was dissolved in 1 M H2SO4 before measuring the

optical density at 410 nm. The H2O2 concentration was calculated

using an extinction coefficient of 0.28 mmol cm−1, expressed as

nanomoles per gram of DW (Mukherjee and Choudhuri, 1983).
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2.6 Enzymatic antioxidants

2.6.1 Superoxide dismutase
Superoxide dismutase (SOD) activity was quantified by

extracting fresh tissue in a cold 50 mM phosphate buffer (pH 7.0)

and centrifuging at 3,360 g for 5 minutes (4°C). The reaction

mixture contained 0.1 mL enzyme extract, 50 mM phosphate

buffer (pH 7.8), 13 mM methionine, 25 mM nitroblue tetrazolium

chloride (NBT), and 0.1 mM ethylene diamine tetraacetic acid

(EDTA), making a total volume of 3 mL. To initiate the reaction,

2 mM riboflavin was added before exposing the mixture to a 15 W

fluorescent light for 10 minutes. Absorbance was measured at 560

nm, and SOD activity was recorded and expressed as units per mg

of protein (Dhindsa and Matowe, 1981).

2.6.2 Catalase
The tissue was extracted as per SOD activity using a reaction

mixture comprising 0.1 mL enzyme extract, 50 mM phosphate

buffer (pH 7), and 200 mM H2O2. Optical density was measured at

410 nm over 3 minutes. Catalase activity was calculated using an

extinction coefficient of 40 mM cm−1, expressed as mmol H2O2

decomposed per mg of protein (Teranishi et al., 1974).

2.6.3 Ascorbate peroxidase
Ascorbate peroxidase (APX) activity was measured by adding

0.1 mL enzyme extract to a reaction mixture containing 50 mM

phosphate buffer, 0.5 mM ascorbic acid, and 0.1 mM EDTA, with

H2O2 as the substrate. Catalytic activity was calculated using an

extinction coefficient of 2.8 mM cm−1, expressed as mmol of

oxidized donor decomposed per minute per mg of protein

(Nakano and Asada, 1981).
2.6.4 Glutathione reductase
Glutathione reductase (GR) activity was determined by mixing

0.1 mL of enzyme extract with a reaction mixture containing 1.5 mL

phosphate buffer (0.1 M, pH 7.6), 0.2 mL bovine serum albumin

(BSA), 0.35 mL nicotinamide adenine dinucleotide phosphate

(NADP), and 0.1 mL oxidized glutathione. The reduction in

absorbance was measured at 340 nm over 3 minutes, with GR

activity expressed as mmol of oxidized donor decomposed per

minute per mg of protein (Mavis and Stellwagen, 1968).
2.7 Non-enzymatic antioxidants

2.7.1 Ascorbic acid
Ascorbic acid (AsA) content was determined by extracting fresh

tissue in 6% TCA, followed by centrifugation at 3,649.15 g for 15

minutes. To 4mL of supernatant, 2 mL of 2% dinitrophenylhydrazine

(DNPH) and a drop of 10% thiourea were added. The assay mixture

was heated in a water bath for 15 minutes and cooled to room

temperature. After cooling, 5 mL of cold sulfuric acid was added, and

the optical density was measured at 530 nm. The AsA content was
Frontiers in Plant Science 04
calculated using a standard curve and reported as mg per gram of

DW (Mukherjee and Choudhuri, 1983).

2.7.2 Reduced glutathione
Reduced glutathione (GSH) content was measured by

homogenizing fresh tissue in 2 mL metaphosphoric acid and

centrifuging at 3,650 g for 15 minutes before adding 0.6 mL of

10% sodium citrate to the resulting supernatant (0.9 mL). The

reaction mixture contained 100 mL extract, 100 mL distilled water,

100 mL of 6 mM 5,5-dithio-bis-(2)-nitrobenzoic acid (DTNB), and

700 mL of 0.3 mM NADPH. Finally, 10 mL of GR was added to the

mixture. The optical density was measured at 412 nm, and GSH

content was calculated using a standard curve and expressed as

nmol per gram of DW (Griffith, 1980).
2.8 Floral biology

2.8.1 Pollen germination
Pollen germination was assessed by collecting anthers from

flowers of cold-treated plants and tapping them to release pollen

grains onto slides. The pollen germination was then evaluated in a

growth medium containing 10% sucrose, 990 mM nitrate (pH 6.5),

1,640 mM boric acid, 812 mM magnesium sulfate, and 1,269 mM

calcium nitrate. The percentage of germinated pollen was calculated

(Brewbaker and Kwack, 1963; Shivanna and Rangaswamy, 1992;

Kaushal et al., 2013).

2.8.2 Pollen viability
Pollen viability was assessed by dissecting fully opened and

functional flowers from cold-treated plants to collect anthers. The

anthers were tapped onto a slide, releasing 100–200 pollen grains,

stained with 0.5% acetocarmine, and examined for size, shape, and

color intensity under a microscope. Viability was presented as a

percentage (Kaushal et al., 2013).

2.8.3 Stigma receptivity
Stigma receptivity was evaluated using the esterase test (Mattsson

et al., 1974). Stigmas were collected one day before anthesis and

soaked in a solution containing naphthaleneacetic acid (a-NAA) and
Fast Blue B prepared in phosphate buffer at 37°C for 15 minutes.

Stigma receptivity was assessed by the intensity of the brown color

that developed, rated on a scale from 1 to 5, with 1 indicatingminimal

receptivity and 5 indicating maximum receptivity.

2.8.4 Ovule viability
Ovules were collected from flowers and evaluated for viability

using a TTC reduction assay. They were placed on a glass slide and

treated with 0.5% TTC (prepared from a 1% solution). The slides

were then transferred to a Petri dish containing filter paper

moistened with distilled water and incubated in a chamber at 25°

C for 15 minutes. The resulting red color was rated on a scale from 1

to 5, with 1 indicating minimal receptivity and 5 indicating

maximum receptivity (Kaushal et al., 2013).
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2.8.5 Effect of ascorbate and glutathione on
pollen germination (in vitro)

Pollen grains, collected from control and stressed plants of both

the genotypes, were germinated (as per the method described in

2.8.1.) in a growth medium supplemented with ascorbate or

glutathione (1 mM). The germination percentage was calculated

following the method given in section 2.8.1.
2.9 Experimental design and
statistical analysis

The experiment had a two-factor randomized block design,

including cold-tolerant and cold-sensitive chickpea genotypes

exposed to two distinct treatment conditions. Each genotype was

represented by nine pots (two plants per pot) and three replicates per

treatment. For yield trait measurements, nine pots (three pots in

triplicate) were maintained separately for each treatment. The pots

were rearranged periodically throughout the experiment to reduce

positional effects. We used analysis of variance (ANOVA) with the

stats package version 4.3.0 in R Studio (R Core Team, 2023), gvlma

package to analyze how genotype, treatment, replication, and

genotype-by-treatment interaction affected traits at low

temperatures (Pena and Slate, 2019). Genotypic differences within

each treatment were analyzed using one-way ANOVA followed by

Tukey’s HSD test using package multcompView (Graves et al., 2024).

Treatment differences (cold vs. control) within each genotype were

analyzed using a paired t-test. The packages ggplot2, factoextra, and

factoMineR in R Studio were used to do principal component

analyses (PCAs) (Wickham, 2016; Kassambara and Mundt, 2020;

Lê et al., 2008). To make the Correlation plot, the Corrplot package

version 0.95 in R Studio was used (Wei and Simko, 2017). 2-way

ANOVA results are summarized in Supplementary Table S1.
3 Results

3.1 Membrane damage

Cold stress significantly intensified membrane damage (as

electrolyte leakage) in both anthers and ovules of cold-tolerant

(CT) and cold-sensitive (CS) genotypes relative to control

conditions (Supplementary Figure S2) Specifically, in anthers

Supplementary Figures S2a, b) CT genotypes exhibited a 36%

increase at pre-anthesis and a 48–69% increase at anthesis while

CS genotypes exhibited a 73–76% increase at stage 1, escalating to

147–157% at stage 2. In ovules (Supplementary Figures S2c, d) CT

genotypes increased membrane damage by 17–28% at stage 1 and

31–36% at stage 2, while CS genotypes experienced a 46–53%

increase at stage 1 and 89–115% at stage 2.
3.2 Cellular viability

Cold stress effects on cellular viability varied between

developmental stages (Supplementary Figure S3). At stage 1
Frontiers in Plant Science 05
(Supplementary Figures S3a, c), CT genotypes exhibited a 10–

16% increase in anther viability and a 29–33% increase in ovule

viability compared to controls. In contrast, CS genotypes showed

smaller increases of 7–11% in anthers and 21–26% in ovules. At

stage 2 (Supplementary Figures S3b, d) CT genotypes saw declines

of 10–25% (anthers) and 22–24% (ovules), while CS genotypes had

steeper declines of 25–40% (anthers) and 20–27% (ovules)

compared to controls.
3.3 Malondialdehyde

Relative to controls, cold stress significantly elevated MDA levels

in anthers and ovules of all genotypes, with the most pronounced

effects at stage 2 (Figure 1). In anthers (Figures 1a, b), CT genotypes

increased MDA levels by 68–87% at stage 1 and 81–96% at stage 2,

while CS genotypes experienced greater increases of 65–95% at

stage 1 and 123–154% at stage 2. In ovules (Figures 1c, d), CT

genotypes increased MDA levels by 28–29% at stage 1 and 33–45% at

stage 2, while CS genotypes increased by 46–53% at stage 1 and

93–100% at stage 2.
3.4 Hydrogen peroxide

Cold stress significantly elevated hydrogen peroxide

concentrations in anthers and ovules of all genotypes, with CS

genotypes showing greater susceptibility (Figure 2). In anthers

(Figures 2a, b), CT genotypes increased H2O2 levels by 38–47% at

stage 1 and 52–55% at stage 2, while CS genotypes increased by 50–

59% at stage 1 and 91–106% at stage 2 compared to controls. In

ovules (Figures 2c, d), CT genotypes increased H2O2 levels by 21–

28% at stage 1 and 68–72% at stage 2, while CS genotypes increased

by 64–82% at stage 1 and 104–142% at stage 2.
3.5 Enzymatic antioxidants

3.5.1 Superoxide dismutase
In comparison to controls, cold stress increased SOD activity in

the anthers and ovules of CT genotypes at both developmental

stages, while CS genotypes had variable results (Figure 3). In anthers

(Figures 3a, b), SOD activity increased in CT genotypes by 28–46%

at stage 1 and 15–37% at stage 2, while CS genotypes exhibited

contrasting trends at Stage 1, with one showing a 15% increase and

another a 5% decrease followed by a 33–35% decline at stage 2.

Similarly, in ovules (Figures 3c, d), SOD activity increased in CT

genotypes by 30–48% at stage 1 and 10–19% at stage 2, while in CS

genotypes, there was a decline of 10–15% at stage 1 and a decline of

26–27% at stage 2.
3.5.2 Catalase
Cold stress increased catalase activity in the anthers and ovules

of CT genotypes at both developmental stages, while CS genotypes

had variable results (Figure 4). In anthers (Figures 4a, b), CAT
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activity increased in CT genotypes by 47–52% at stage 1 and 33–

55% at stage 2, while CS genotypes increased by 16–25% at stage 1

but decreased by 15–35% at stage 2. In ovules (Figures 4c, d), CAT

activity increased in CT genotypes by 83–111% at stage 1 and 52–

64% at stage 2, while CS genotypes increased CAT activity by 31–

33% at stage 1 but decreased by 42% at stage 2.

3.5.3 Ascorbate peroxidase
Cold stress increased ascorbate peroxidase activity in the

anthers and ovules of CT genotypes at both developmental

stages, while CS genotypes had variable results (Figure 5). In

anthers (Figure 5a, b), APx activity increased in CT genotypes by

51–80% at stage 1 and 17–39% at stage 2, while CS genotypes

increased by 16–28.2% at stage 1 but decreased by 17–27% at stage

2. In ovules (Figure 5c, d), APx activity in CT genotypes increased

by 34–48% at stage 1 and 15–27% at stage 2, while CS genotypes

increased APx activity by 26–40% at stage 1 but decreased by 8–

17% at stage 2.
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3.5.4 Glutathione reductase
Cold stress increased GR activity in the anthers and ovules of

CT genotypes at both developmental stages, while CS genotypes had

variable results (Figure 6). In anthers (Figures 6a, b), GR activity

increased in CT genotypes by 62–76% at stage 1 and 24–41% at

stage 2, while CS genotypes increased by 22–49% at stage 1 but

decreased by 14–16% at stage 2. In ovules (Figures 6c, d), GR

activity increased in CT genotypes by 26–40% at stage 1 and 24–

36% at stage 2, while CS genotypes increased GR activity by 21–36%

at stage 1 but decreased by 24–26% at stage 2.
3.6 Non-enzymatic antioxidants

3.6.1 Ascorbic acid
In anthers (Figures 7a, b), ascorbic acid (AsA) levels increased

in CT genotypes by 61–65% at stage 1 and 14–16% at stage 2, while

CS genotypes increased by 39–49% at stage 1 but declined by 16–
FIGURE 1

Malondialdehyde (MDA) (a) Anthers-stage 1, (b) Anthers-stage 2, (c) Ovules-stage 1, (d) Ovules-stage 2, under control and cold stress conditions.
CT1: Cold tolerant genotype 1 (ICC 17258); CT2: Cold tolerant genotype 2 (ICC 16349); CS1: Cold sensitive genotype 1 (ICC 15567); CS2: Cold
sensitive genotype 2 (GPF-2). Vertical bars represent standard errors (n=3). Genotypic differences within each treatment were analyzed using one-
way ANOVA followed by Tukey's HSD test. Different lowercase letters (a for control and x, y for cold stress) denote significant differences (p < 0.05)
among genotypes within the same treatment. Treatment differences (Control vs. Cold Stress) within each genotype were analyzed using a paired t-
test. Different uppercase letters (A, B) indicate significant differences (p < 0.05) between treatments within the same genotype, where 'A' is indicated
for the highest value and 'B' is indicated the smallest value.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1545187
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Padhiar et al. 10.3389/fpls.2025.1545187
29% at stage 2. In ovules (Figures 7c, d), AsA levels increased in CT

genotypes by 37–55% at stage 1 and 21–31% at stage 2, while CS

genotypes increased AsA levels by 33–46% at stage 1 but decreased

by 11–14% at stage 2.

3.6.2 Reduced glutathione
In anthers (Figures 8a, b), glutathione (GSH) concentrations

increased in CT genotypes by 59–72% at stage 1 and 27–38% at stage

2, while CS genotypes increased by 25–34.5% at Stage 1, they

exhibited contrasting trends at Stage 2, with one showing an 8%

increase and another an 18% decrease. In ovules (Figures 8c, d), GSH

concentrations in CT genotypes increased by 49–65% at stage 1 and

23–26% at stage 2, while in CS genotypes, it increased by 28–47% at

stage 1 but stage 2 showed decreased by 14% and increase of 7%.
3.7 Reproductive traits

3.7.1 Pollen viability
Cold stress significantly decreased pollen viability at both

developmental stages, particularly in CS genotypes (Figures 9a, b).
Frontiers in Plant Science 07
For CT genotypes, pollen viability decreased by 16–22% at stage 1

and 25–32% at stage 2, while in CS genotypes, it declined by 69–

73% at stage 1 and 76–78% at stage (Supplementary Figure S8).
3.7.2 Pollen germination
Cold stress decreased pollen germination (Figures 10a, b) in the

CT genotypes by 21–24% at stage 1 and 26–30% at stage 2, while in

CS genotypes, it declined by 68–71% at stage 1 and 74–79% at stage

2 (Supplementary Figure S8).
3.7.3 Stigma receptivity
Cold stress decreased stigma receptivity (Figures 11a, b) in the

CT genotypes by 11–21% at stage 1 and 14–24% at stage 2, while CS

genotypes decreased by 32–33% decrease at stage 1 and 54–59% at

stage 2 (Supplementary Figure S8).
3.7.4 Ovule viability
Cold stress decreased ovule viability (Figures 12a, b) in the CT

genotypes by 16–19% at stage 1 and 21–27% at stage 2, while CS
FIGURE 2

Hydrogen peroxide (H2O2) (a) Anthers-stage 1, (b) Anthers-stage 2, (c) Ovules-stage 1, (d) Ovules-stage 2, under control and cold stress conditions.
CT1: Cold tolerant genotype 1 (ICC 17258); CT2: Cold tolerant genotype 2 (ICC 16349); CS1: Cold sensitive genotype 1 (ICC 15567); CS2: Cold
sensitive genotype 2 (GPF-2). Vertical bars represent standard errors (n=3). Genotypic differences within each treatment were analyzed using one-
way ANOVA followed by Tukey's HSD test. Different lowercase letters (a, b, c for control and x, y, z for cold stress) denote significant differences
(p < 0.05) among genotypes within the same treatment. Treatment differences (Control vs. Cold Stress) within each genotype were analyzed using a
paired t-test. Different uppercase letters (A, B) indicate significant differences (p < 0.05) between treatments within the same genotype, where 'A' is
indicated for the highest value and 'B' is indicated the smallest value.
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genotypes decreased it by 31–40% decrease at stage 1 and 59–65% at

stage 2 (Supplementary Figure S8).
3.8 Effects of non-enzymatic antioxidants
on pollen function

Exogenous supplementation with 1 mM ascorbate (AsA) and

glutathione (GSH) significantly stimulated pollen germination

(Figures 13a, b), with pronounced effects in CS genotypes at

both developmental stages. Under control (untreated)

conditions, pollen germination rates were 61–68% in CT

genotypes and 20–22% in CS genotypes at stage 1, and 52–58%

in CT genotypes and 13–15% in CS genotypes at stage 2. Under

cold stress, the AsA supplementation increased pollen

germination rates, especially in CS genotypes, which increased

by 31–41% at stage 1 and 21–29% at stage 2. The GSH

supplementation resulted in greater pollen germination rates

than AsA, particularly in CS genotypes.
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3.9 Yield traits

Cold stress decreased pod set rates to 45–48% in CT genotypes

compared to the control (68–70%) and 10-12% in CS genotypes

compared to the control (62–64%) (Figure 14a). Moreover, cold stress

decreased pod number per plant by 40–42% in CT genotypes and 82–

86% in CS genotypes (Figure 14b) and seed weight per plant by 38–

43% in CT genotypes and 64–79% in CS genotypes (Figure 14c).
3.10 PCA and Pearson correlation matrix:
Anther development stages under
cold stress

The PCA Supplementary Figures S4a, S5a, and Supplementary

Table S2 for another development under cold stress revealed that

the first two components (PC1 and PC2) account for 97.79% of the

total variation at stage 1 and 98.16% at stage 2. Specifically, PC1

contributed 83.1% of the variance at stage 1 and 92.8% at stage 2,
FIGURE 3

Superoxide dismutase (SOD) (a) Anthers-stage 1, (b) Anthers-stage 2, (c) Ovules-stage 1, (d) Ovules-stage 2, under control and cold stress
conditions. CT1: Cold tolerant genotype 1 (ICC 17258); CT2: Cold tolerant genotype 2 (ICC 16349); CS1: Cold sensitive genotype 1 (ICC 15567); CS2:
Cold sensitive genotype 2 (GPF-2). Vertical bars represent standard errors (n=3). Genotypic differences within each treatment were analyzed using
one-way ANOVA followed by Tukey's HSD test. Different lowercase letters (a for control and x, y, z for cold stress) denote significant differences
(p < 0.05) among genotypes within the same treatment. Treatment differences (Control vs. Cold Stress) within each genotype were analyzed using a
paired t-test. Different uppercase letters (A, B) indicate significant differences (p < 0.05) between treatments within the same genotype, where 'A' is
indicated for the highest value and 'B' is indicated for the smallest value.
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while PC2 contributed 14.7% at stage 1 and 5.39% at stage 2. PC1

positively correlated with variables such as SOD, CAT, APX, AsA,

pollen viability, and pollen germination. In contrast, PC1 negatively

correlated with EL, MDA, and H2O2. Conversely, oxidative stress

indicators such as MDA and H2O2 negatively correlated with

reproductive traits, which were more pronounced in CS

genotypes, and antioxidant enzymes (e.g., SOD and APX) and

non-enzymatic antioxidants (e.g., GSH), which were dominant in

CT genotypes.

The PCA results also demonstrated that cellular viability had a

weak correlation with yield traits at stage 1 but was closer to yield

traits at stage 2. The contribution of each variable was represented

by a color spectrum ranging from blue (low contribution) to orange

(high contribution). Variables such as MDA, H2O2, EL, PG, and

SOD showed significant contributions, marked by intense

orange hues.

The Pearson correlation matrix (Supplementary Figures S4b,

S5b) further corroborated these findings, with strong positive

correlations among oxidative stress markers (H2O2, MDA, and

EL). Additionally, a strong positive correlation occurred between

enzymatic and non-enzymatic antioxidants and between cellular

viability and GR activity.
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3.11 PCA and Pearson correlation matrix:
Ovule development stages under
cold stress

The PCA analysis (Supplementary Figures S6a, S7a;

Supplementary Table S3) for ovule development under cold stress

indicated that PC1 and PC2 collectively accounted for a substantial

proportion of the variance. At stage 1, PC1 contributed 69.5% of the

total variance, while PC2 accounted for 25.9%, together explaining

95.4% of the variance. Similarly, at stage 2, PC1 and PC2 explained

91.47% and 7.08%, respectively, totaling 98.56%. Key variables such

as MDA, EL, CAT, APX, and stigma receptivity contributed

significantly along PC-1, underscoring their critical role in

differentiating genotypes at various developmental stages. A

positive association between yield traits and antioxidant activity

suggests that enhancing antioxidant defenses can help mitigate

oxidative damage, preserving ovule function during critical

reproductive stages. Antioxidants such as APX and GR

demonstrated stronger associations with yield traits at stage 2,

highlighting their increasing importance as the reproductive stage

progresses. The contribution levels of variables were represented by

a color gradient, with warmer colors (orange and red) indicating
FIGURE 4

Catalase (Cat) (a) Anthers-stage 1, (b) Anthers-stage 2, (c) Ovules-stage 1, (d) Ovules-stage 2, under control and cold stress conditions. CT1: Cold
tolerant genotype 1 (ICC 17258); CT2: Cold tolerant genotype 2 (ICC 16349); CS1: Cold sensitive genotype 1 (ICC 15567); CS2: Cold sensitive
genotype 2 (GPF-2). Vertical bars represent standard errors (n=3). Genotypic differences within each treatment were analyzed using one-way
ANOVA followed by Tukey's HSD test. Different lowercase letters (a for control and x, y, z for cold stress) denote significant differences (p < 0.05)
among genotypes within the same treatment. Treatment differences (Control vs. Cold Stress) within each genotype were analyzed using a paired t-
test. Different uppercase letters (A, B) indicate significant differences (p < 0.05) between treatments within the same genotype, where 'A' is indicated
for the highest value and 'B' is indicated the smallest value.
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higher contributions from variables like MDA, APX, CAT, GSH,

and SOD.

The Pearson correlation matrix (Supplementary Figures S6b,

S7b) revealed strong positive correlations between the oxidative

stress markers (H2O2 and MDA) and EL. Conversely, these

variables negatively correlated with SOD, CAT, APX, GR, GSH,

stigma receptivity, and ovule viability, suggesting opposing

responses. Additionally, enzymatic and non-enzymatic

antioxidants showed strong positive correlations between floral

biology traits such as stigma receptivity and ovule viability.
4 Discussion

Cold stress profoundly impacts the reproductive stage of

chickpea, leading to significant losses in flowers and pods (Croser

et al., 2003; Clarke et al., 2004) due to disruptions in pollen

germination, pollen tube growth, fertilization, and pod set

(Srinivasan et al., 1999; Kiran et al., 2021; Kaur et al., 2022).
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While cold-induced damage to reproductive components has

been attributed to multiple factors (Nayyar et al., 2005; Rani

et al., 2020; Zeitelhofer et al., 2022), few studies have examined

oxidative stress as a key contributor. This study systematically

evaluated the relative sensitivity of anthers and ovules in chickpea

genotypes to cold stress, focusing on oxidative damage at the pre-

anthesis and anthesis stages. Employing two cold-tolerant (CT) and

two cold-sensitive (CS) genotypes, the research highlights the

differential responses of these reproductive structures under

prolonged cold stress and provides insight into oxidative damage

mechanisms and their correlation with reproductive function.
4.1 Impacts of cold stress on cellular
function and ROS

Membrane injury, assessed through electrolyte leakage,

increased significantly under cold stress in both anthers and

ovules, consistent with findings where cold stress compromised
FIGURE 5

Ascorbate peroxidase (APX) (a) Anthers-stage 1, (b) Anthers-stage 2, (c) Ovules-stage 1, (d) Ovules-stage 2, under control and cold stress conditions.
CT1: Cold tolerant genotype 1 (ICC 17258); CT2: Cold tolerant genotype 2 (ICC 16349); CS1: Cold sensitive genotype 1 (ICC 15567); CS2: Cold
sensitive genotype 2 (GPF-2). Vertical bars represent standard errors (n=3). Genotypic differences within each treatment were analyzed using one-
way ANOVA followed by Tukey's HSD test. Different lowercase letters (a for control and x, y for cold stress) denote significant differences (p < 0.05)
among genotypes within the same treatment. Treatment differences (Control vs. Cold Stress) within each genotype were analyzed using a paired t-
test. Different uppercase letters (A, B) indicate significant differences (p < 0.05) between treatments within the same genotype, where 'A' is indicated
for the highest value and 'B' is indicated the smallest value.
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membrane structure and functional integrity in chickpea (Mir et al.,

2021), wheat (Jan et al., 2023), and rice (Li et al., 2022) through

reduced membrane fluidity (Alonso et al., 1997) and increased ion

leakage (Campos et al., 2003). Oxidative damage caused by lipid

peroxidation exacerbated this damage, as indicated by elevated

MDA levels (Chakraborty et al., 2023).

Cold stress significantly impacts cellular viability in chickpea’s

reproductive structures, primarily through impaired mitochondrial

respiration. Mitochondria are central to energy production, with

their functionality critical for maintaining ATP levels, supporting

antioxidant defenses, and facilitating metabolic processes that

mitigate oxidative damage to reproductive tissues (Rani et al.,

2021). Cold stress disrupts mitochondrial function, reducing

energy availability and weakening the cell’s ability to counteract

oxidative damage (Heidarvand et al., 2017). This decline in cellular

viability directly impacts reproductive processes such as pollen tube

growth and fertilization, which require adequate energy supply and

metabolic stability (De Storme and Geelen, 2014). The relationship

between mitochondrial function and oxidative stress is particularly

relevant during reproductive development (Karami-Moalem et al.,
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2018). Excessive ROS accumulation under cold stress can

overwhelm antioxidant defenses, leading to oxidative damage to

cellular components, including lipids, proteins, and nucleic acids,

further compromising cellular viability and reproductive success

(Karami-Moalem et al., 2018).

Cold stress increased MDA and H2O2 levels in the anthers and

ovules of CT and CS genotypes. Under cold conditions, ROS

accumulation leads to lipid peroxidation (increased MDA),

reflecting cellular damage (Morales and Munné-Bosch, 2019).

This accumulation of MDA is detrimental to cellular integrity,

disrupting membrane structure and function, leading to increased

EL and compromised cellular homeostasis in chickpea (Kazemi

Shahandashti et al., 2013). Consequently, elevated MDA levels

impair vital physiological processes, including reproductive

functions, ultimately affecting plant health and yield (Huang

et al., 2022). Elevated H2O2 levels in cold-stressed chickpea plants

can disrupt cellular processes by damaging membranes and

proteins (Dreyer and Dietz, 2018; Smirnoff and Arnaud, 2019),

leading to impaired physiological functions that adversely affect

pollen viability and ovule integrity (Nayyar et al., 2005;
FIGURE 6

Glutathione reductase (GR) (a) Anthers-stage 1, (b) Anthers-stage 2, (c) Ovules-stage 1, (d) Ovules-stage 2, under control and cold stress conditions.
CT1: Cold tolerant genotype 1 (ICC 17258); CT2: Cold tolerant genotype 2 (ICC 16349); CS1: Cold sensitive genotype 1 (ICC 15567); CS2: Cold
sensitive genotype 2 (GPF-2). Vertical bars represent standard errors (n=3). Genotypic differences within each treatment were analyzed using one-
way ANOVA followed by Tukey's HSD test. Different lowercase letters (a, b for control and x, y, z for cold stress) denote significant differences
(p < 0.05) among genotypes within the same treatment. Treatment differences (Control vs. Cold Stress) within each genotype were analyzed using a
paired t-test. Different uppercase letters (A, B) indicate significant differences (p < 0.05) between treatments within the same genotype, where 'A' is
indicated for the highest value and 'B' is indicated the smallest value.
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Hasanuzzaman et al., 2019; Xie et al., 2022). Oxidative damage is

particularly detrimental to reproductive structures, as it can hinder

fertilization and reduce overall reproductive success, affecting crop

yields under cold stress conditions (Soualiou et al., 2022). This

study’s observed increase in MDA and H2O2 levels under cold stress

may have significantly impacted membrane damage and cellular

viability in chickpea genotypes (de Dios Alché, 2019), adversely

affecting cellular function and reproductive structures.
4.2 Differential response of anthers and
ovules in contrasting chickpea genotypes

This study revealed significant differences in membrane damage

(as measured by EL) between reproductive structures under cold

stress, with significantly more EL in anthers than ovules, suggesting

that the higher metabolic activity associated with pollen production

makes themmore susceptible to cold-induced damage (Zhang et al.,

2020). The CS genotypes experienced more pronounced increases

in EL in both reproductive structures, particularly in anthers,

indicating heightened physiological stress. In contrast, CT

genotypes exhibited less membrane damage, reflecting a more
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robust physiological response that supports reproductive function

under cold stress. These findings are consistent with earlier reports

on wheat (Javidi et al., 2022), rice (Rativa et al., 2020), and tomato

(Liu et al., 2012), where CT genotypes showed greater membrane

stability under cold stress. Increased membrane damage in the

anthers and ovules of CS genotypes likely compromises cellular

integrity and viability, which are critical for reproductive success.

Previous studies have reported significantly better cellular viability

in CT genotypes than in CS genotypes in chickpea (Mir et al., 2021;

Javidi et al., 2022), rice (Rativa et al., 2020), and potato (Angmo

et al., 2023). Anthers showed higher oxidative damage than ovules,

as evidenced by elevated ROS levels across developmental stages,

especially in CS genotypes. Similar observations have been made in

other studies, where cold stress had more severe consequences for

male reproductive tissues, resulting in increased pollen abortion

rates and reduced fertility compared to female tissues (Zinn et al.,

2010; De Storme and Geelen, 2014; Albertos et al., 2019). Excessive

oxidative stress can trigger programmed cell death in microspores

and ovules, reducing fertility and seed set (De Storme and Geelen,

2014; Huang et al., 2022).

The greater susceptibility of anthers to cold-induced damage

compared to ovules may stem from various factors. Anthers are
FIGURE 7

Ascorbic acid (ASA) (a) Anthers-stage 1, (b) Anthers-stage 2, (c) Ovules-stage 1, (d) Ovules- stage 2, under control and cold stress conditions. CT1:
Cold tolerant genotype 1 (ICC 17258); CT2: Cold tolerant genotype 2 (ICC 16349); CS1: Cold sensitive genotype 1 (ICC 15567); CS2: Cold sensitive
genotype 2 (GPF-2). Vertical bars represent standard errors (n=3). Genotypic differences within each treatment were analyzed using one-way
ANOVA followed by Tukey's HSD test. Different lowercase letters (a for control and x, y, z for cold stress) denote significant differences (p <0.05)
among genotypes within the same treatment. Treatment differences (Control vs. Cold Stress) within each genotype were analyzed using a paired
t-test. Different uppercase letters (A, B) indicate significant differences (p < 0.05) between treatments within the same genotype, where 'A' is
indicated for the highest value and 'B' is indicated the smallest value.
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often more exposed than female reproductive structures during

critical developmental stages, increasing their vulnerability to

environmental stressors, including cold temperatures (Zinn et al.,

2010; Hedhly, 2011). Cold stress can disrupt anther meiosis, tapetal

development, microsporogenesis, and key physiological processes

such as hormone balance and sugar transport, impairing pollen

development (Zhang et al., 2022; Liu et al., 2024). This disruption

often leads to pollen sterility due to impaired nutrient supply and

altered programmed cell death in the tapetum (Huang et al., 2022;

Zhang et al., 2021). In contrast, ovules are situated within the ovary,

offering some protection from external environmental stress.

However, cold stress can still affect ovule development and

function (Albertos et al., 2019; Rani et al., 2020). Additionally,

differences in developmental stages between male and female

components may influence their sensitivity to stress (Hedhly, 2011).

Our findings also revealed that while anthers and ovules possess

mechanisms to mitigate oxidative stress under cold conditions, their

antioxidant responses differ. Anthers had higher activities of specific

enzymes, such as SOD, APX, and GR, along with elevated levels of

AsA and GSH, suggesting the crucial role of the ascorbate-

glutathione cycle (Foyer and Kunert, 2024). Conversely, ovules

exhibited higher CAT activity at both developmental stages. The
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ascorbate-glutathione (AsA-GSH) cycle plays a crucial role in

protecting reproductive tissues from oxidative stress, particularly

under cold conditions, by maintaining cellular redox homeostasis

and detoxifying hydrogen peroxide (H2O2). This cycle operates in key

cellular compartments, including chloroplasts, mitochondria, cytosol,

and peroxisomes, where it mitigates oxidative damage caused by

excessive reactive oxygen species (ROS). The coordinated action of

these enzymes (APX and GR) within the AsA-GSH cycle effectively

detoxifies H2O2 and maintains a high ratio of reduced AsA and GSH,

which are critical for protecting cellular components from oxidative

damage (Li et al., 2010; Hasanuzzaman et al., 2019). Similar

protective mechanisms have been observed in cold-tolerant (CT)

genotypes of wheat (Janda et al., 1999) and potato (Angmo et al.,

2023), where enhanced AsA-GSH cycle activity was associated with

better performance under cold stress.

Correlations between reproductive traits and antioxidant

activity showed strong positive associations with APX, GR, AsA,

and GSH in anthers and ovules, especially at stage 2, highlighting

their importance in sustaining reproductive function. The variation

in antioxidant responses reflects the distinct physiological roles of

anthers and ovules in reproduction. Anthers maintain pollen

viability and fertilization, while ovules concentrate on their
FIGURE 8

Reduced glutathione (GSH) (a) Anthers-stage 1, (b) Anthers-stage 2, (c) Ovules-stage 1, (d) Ovules-stage 2, under control and cold stress conditions.
CT1: Cold tolerant genotype 1 (ICC 17258); CT2: Cold tolerant genotype 2 (ICC 16349); CS1: Cold sensitive genotype 1 (ICC 15567); CS2: Cold
sensitive genotype 2 (GPF-2). Vertical bars represent standard errors (n=3). Genotypic differences within each treatment were analyzed using one-
way ANOVA followed by Tukey's HSD test. Different lowercase letters (a, b, c for control and x, y, z for cold stress) denote significant differences
(p<0.05) among genotypes within the same treatment. Treatment differences (Control vs. Cold Stress) within each genotype were analyzed using a
paired t-test. Different uppercase letters (A, B) indicate significant differences (p < 0.05) between treatments within the same genotype, where 'A' is
indicated for the highest value and 'B' is indicated the smallest value.
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development and maturation (Thakur et al., 2010; Zinn et al., 2010).

Despite higher antioxidant levels in anthers under stress, ovules can

also effectively manage oxidative stress (Ali and Muday, 2024). Both

structures have evolved complementary mechanisms to address

oxidative challenges, underscoring their interconnected roles in

ensuring reproductive success (Ali and Muday, 2024). Exogenous

antioxidants such as AsA and GSH effectively reduced the negative

impacts of cold stress on pollen germination, especially in the more
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vulnerable CS genotypes. These results suggest the potential of

antioxidant treatments to improve reproductive success in chickpea

under adverse conditions. Similar effects have been observed in

tomato (Elkelish et al., 2020; Gul et al., 2022), tea (Fu et al., 2023),

and bell pepper (Yao et al., 2021), where exogenous applications of

AsA and GSH reduced oxidative damage.

Analysis of contrasting genotypes further highlighted that CT

genotypes exhibited stronger antioxidant defenses in both anthers
FIGURE 9

Pollen viability (PV) under control and cold stress conditions at two developmental stages (a) stage 1 and (b) stage 2. CT1: Cold tolerant genotype 1
(ICC 17258); CT2: Cold tolerant genotype 2 (ICC 16349); CS1: Cold sensitive genotype 1 (ICC 15567); CS2: Cold sensitive genotype 2 (GPF-2).
Vertical bars represent standard errors (n=3). Genotypic differences within each treatment were analyzed using one-way ANOVA followed by Tukey's
HSD test. Different lowercase letters (a, b for control and x, y for cold stress) denote significant differences (p < 0.05) among genotypes within the
same treatment. Treatment differences (Control vs. Cold Stress) within each genotype were analyzed using a paired t-test. Different uppercase
letters (A, B) indicate significant differences (p < 0.05) between treatments within the same genotype, where 'A' is indicated for the highest value and
'B' is indicated the smallest value.
FIGURE 10

Pollen germination (PG), under control and cold stress conditions at two developmental stages (a) stage 1 and (b) stage 2. CT1: Cold tolerant
genotype 1 (ICC 17258); CT2: Cold tolerant genotype 2 (ICC 16349); CS1: Cold sensitive genotype 1 (ICC 15567); CS2: Cold sensitive genotype 2
(GPF-2). Vertical bars represent standard errors (n=3). Genotypic differences within each treatment were analyzed using one- way ANOVA followed
by Tukey's HSD test. Different lowercase letters (a, b for control and x, y for cold stress) denote significant differences (p < 0.05) among genotypes
within the same treatment. Treatment differences (Control vs. Cold Stress) within each genotype were analyzed using a paired t-test. Different
uppercase letters (A, B) indicate significant differences (p < 0.05) between treatments within the same genotype, where 'A' is indicated for the highest
value and 'B' is indicated the smallest value.
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and ovules, whereas CS genotypes suffered significant oxidative

damage. The superior AsA-GSH cycle efficiency in CT genotypes

enables them to maintain pollen viability, prevent premature tapetal

cell death, and support ovule integrity under stress, whereas cold-

sensitive (CS) genotypes suffer greater oxidative damage due to
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weaker antioxidant defenses. These findings align with previous

studies that reported superior antioxidant mechanisms in CT

genotypes of rice (de Freitas et al., 2019), sweet potato (de Araújo

et al., 2021), soybean (Hussain et al., 2023), and barley (Valizadeh-

Kamran et al., 2018). The enhanced antioxidative capacity of CT
FIGURE 11

Stigma receptivity (SR), under control and cold stress conditions at two developmental stages (a) stage 1 and (b) stage 2. CT1: Cold tolerant
genotype 1 (ICC 17258); CT2: Cold tolerant genotype 2 (ICC 16349); CS1: Cold sensitive genotype 1 (ICC 15567); CS2: Cold sensitive genotype 2
(GPF-2). Vertical bars represent standard errors (n=3). Genotypic differences within each treatment were analyzed using one-way ANOVA followed
by Tukey's HSD test. Different lowercase letters (a, b for control and x, y for cold stress) denote significant differences (p < 0.05) among genotypes
within the same treatment. Treatment differences (Control vs. Cold Stress) within each genotype were analyzed using a paired t- test. Different
uppercase letters (A, B) indicate significant differences (p < 0.05) between treatments within the same genotype, where 'A' is indicated for the highest
and 'B' is for the smallest value.
FIGURE 12

Ovule viability (OV) under control and cold stress conditions at two developmental stages (a) stage 1 and (b) stage 2. CT1: Cold tolerant genotype 1
(ICC 17258); CT2: Cold tolerant genotype 2 (ICC 16349); CS1: Cold sensitive genotype 1 (ICC 15567); CS2: Cold sensitive genotype 2 (GPF-2).
Vertical bars represent standard errors (n=3). Genotypic differences within each treatment were analyzed using one-way ANOVA followed by Tukey's
HSD test. Different lowercase letters (a, b for control and x, y for cold stress) denote significant differences (p < 0.05) among genotypes within the
same treatment. Treatment differences (Control vs. Cold Stress) within each genotype were analyzed using a paired t- test. Different uppercase
letters (A, B) indicate significant differences (p < 0.05) between treatments within the same genotype, where 'A' is indicated for the highest and 'B' is
indicated the smallest value.
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genotypes likely reflects evolutionary adaptations to mitigate

oxidative stress caused by low temperatures (Mishra et al., 2023).
4.3 Variations across developmental stages

Comparing oxidative responses between stage 1 (pre-anthesis)

and stage 2 (anthesis) revealed greater oxidative damage at stage 2,

despite stage 1 being considered more sensitive to cold stress (Huang

et al., 2022). During stage 1, the initial sensitivity to cold triggered

cellular damage and oxidative stress responses. However, stage 2 was

characterized by cumulative oxidative damage likely due to prolonged

cold exposure. As ROS production escalates during this stage,

antioxidant defenses in both anthers and ovules become

overwhelmed. This depletion of antioxidant reserves (observed in

the current study) renders reproductive structures less capable of

mitigating oxidative damage at stage 2. Stage 2 coincides with

anthesis, a critical period for fertilization and seed set, which makes

reproductive structures particularly sensitive to cold stress (Imin

et al., 2004; Kiran et al., 2021; Huang et al., 2022). ROS

accumulation during anthesis disrupts cellular functions through

lipid peroxidation and other damaging processes in anthers and

associated components, suggesting that, while stage 1 initiates

oxidative stress responses, the inability of CS genotypes to sustain

antioxidant defenses into stage 2 is a key factor in the observed

oxidative damage. Physiological changes during anthesis, including

increased metabolic activity required for pollen tube growth and

ovule maturation, further exacerbate the effects of cold stress,
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generating additional ROS and compounding oxidative stress

(Zhou and Dresselhaus, 2023). Previous studies have reported that

short-term and long-term exposure to cold stress, which relate to

stage 1 and stage 2, respectively in the present study, differentially

impact oxidative stress and antioxidant responses in plants. During

short-term cold stress, plants experience a rapid increase in reactive

oxygen species (ROS) due to the disruption of electron transport

chains in the chloroplasts and mitochondria (Gill and Tuteja, 2010).

This transient ROS burst can act as a signaling molecule to activate

defense mechanisms, including the upregulation of antioxidant

enzymes such as superoxide dismutase (SOD), catalase (CAT), and

peroxidase (POD) (Prasad et al., 1994). However, if cold stress

persists into long-term exposure, the sustained overproduction of

ROS overwhelms the antioxidant system, leading to oxidative damage

such as lipid peroxidation, protein oxidation, and DNA damage

(Arabidopsis; Szalai et al., 1996; Sangwan et al., 2002; Chinnusamy

et al., 2007). To mitigate this, plants enhance their antioxidant

capacity by increasing the activity of enzymes such as ascorbate

peroxidase (APX) and glutathione reductase (GR), as well as by

accumulating non-enzymatic antioxidants such as ascorbic acid,

glutathione, and proline (Kaur and Asthir, 2015). Cold-tolerant

species, such as winter wheat and Arabidopsis, exhibit more robust

antioxidant responses compared to sensitive species, enabling them to

better withstand prolonged cold stress (Janda et al., 1999;

Chinnusamy et al., 2007). Thus, while short-term exposure to cold

stress primarily triggers signaling pathways, long-term exposure

necessitates a sustained antioxidant response to prevent cellular

damage and ensure survival. The interplay of these factors
FIGURE 13

Pollen germination under control conditions and after ascorbic acid (ASA) and reduced glutathione (GSH) treatment at two developmental stages (a)
Stage 1, (b) Stage 2, CT1: Cold tolerant genotype 1 (ICC 17258); CT2: Cold tolerant genotype 2 (ICC 16349); CS1: Cold sensitive genotype 1 (ICC
15567); CS2: Cold sensitive genotype 2 (GPF-2). Vertical bars represent standard errors (n=3). Genotypic differences within each treatment were
analyzed using one-way ANOVA followed by Tukey's HSD test. Different lowercase letters (a, b, c for control, x, y, z for AsA, and p, q, r for GSH)
denote significant differences (p < 0.05) among genotypes within the same treatment. Treatment differences (Control vs. Cold Stress) within each
genotype were analyzed using a paired t-test. Different uppercase letters (A–C) indicate significant differences (p < 0.05) between treatments within
the same genotype, where 'A' indicated for the highest value followed by 'B' and 'C' for the smallest value.
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emphasizes the importance of understanding the prolonged

responses to cold stress. Targeted strategies to enhance antioxidant

defenses during anthesis couldmitigate the vulnerabilities of chickpea

reproductive structures during this critical phase.

The PCA of anthers and ovules under cold stress revealed

distinct oxidative stress responses, highlighting their unique roles in

reproductive success. Both structures exhibited increased oxidative

stress, as indicated by elevated ROS markers (MDA and H2O2).

However, anthers demonstrated a more pronounced negative

correlation between yield traits and oxidative stress markers,

underscoring the greater vulnerability to oxidative damage, which

can severely impair pollen viability. Although ovules also experience

oxidative stress, their antioxidant mechanisms appear to confer

greater resilience. The PCA results suggest that antioxidants, such

as SOD, CAT, APX, and GR, are critical for both anthers and

ovules, with the ascorbate-glutathione pathway potentially playing a

vital role (see above). In anthers, higher antioxidant activity

positively correlated with reproductive traits, highlighting the

importance of antioxidants in sustaining pollen development.

Conversely, while antioxidants support reproductive success in

ovules, their correlation with yield traits appears weaker than in

anthers. Notably, the variance explained by the principal

components suggests distinct developmental trajectories of
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anthers and ovules under cold stress, reinforcing the need for

stage- and structure-specific approaches to managing oxidative

stress in chickpea to ensure reproductive success under cold stress.
5 Conclusion

This study demonstrated that anthers and ovules exhibit

differential responses to oxidative damage induced by cold stress

across the two flower developmental stages. Particularly, anthers

displayed greater susceptibility to oxidative damage than ovules,

predominantly at anthesis stage. Although both genotypes

employed similar reactive oxygen species (ROS) detoxification

strategies, the cold-tolerant genotypes demonstrated a superior

capacity for ROS management across both the stages, unlike the

cold-sensitive genotypes. Among the antioxidants examined,

ascorbate peroxidase and glutathione reductase were the most

prominent in the cold-tolerant genotypes, accompanied by

elevated levels of ascorbate and glutathione in anthers, whereas

ovules showed greater expression of catalase. This enhanced ROS

regulation improved reproductive function, ultimately leading to

enhanced yield traits in the cold-tolerant genotypes. These findings

emphasize the importance of elucidating the differential responses
FIGURE 14

(a) Pod set, (b) Pod number per plant, and (c) Seed weight per plant under control and cold stress conditions. CT1: Cold tolerant genotype 1 (ICC
17258); CT2: Cold tolerant genotype 2 (ICC 16349); CS1: Cold sensitive genotype 1 (ICC 15567); CS2: Cold sensitive genotype 2 (GPF-2). Vertical
bars represent standard errors (n=3). Genotypic differences within each treatment were analyzed using one-way ANOVA followed by Tukey's HSD
test. Different lowercase letters (a, b for control and x, y for cold stress) denote significant differences (p < 0.05) among genotypes within the same
treatment. Treatment differences (Control vs. Cold Stress) within each genotype were analyzed using a paired t- test. Different uppercase letters
(A, B) indicate significant differences (p < 0.05) between treatments within the same genotype, where 'A' is indicated for the highest and 'B' is for the
smallest value.
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of reproductive structures to cold stress to guide the development of

cold-resilient chickpea cultivars. Given the observed importance of

ascorbate and glutathione in cold-tolerant chickpea genotypes,

future studies should evaluate the effectiveness of exogenous

application of these antioxidants under realistic field conditions to

enhance reproductive cold tolerance. Additionally, further studies

should focus on identifying key genes, proteins, and signaling

pathways involved in superior ROS management in cold-tolerant

genotypes. Understanding these molecular mechanisms could

provide targeted strategies for breeding and biotechnological

interventions to improve chickpea resilience to cold stress.
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de Araújo, N. O., de Sousa Santos, M. N., de Araujo, F. F., Véras, M. L. M., de Jesus
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