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A recognition model for
winter peach fruits based
on improved ResNet and
multi-scale feature fusion
Yan Li*, Chunping Li , Tingting Zhu, Shurong Zhang, Li Liu
and Zhanpeng Guan

Faculty of Megadata and Computing, Guangdong Baiyun University, Guangzhou, China
With the continuous advancement of modern agricultural technologies, the

demand for precision fruit-picking techniques has been increasing. This study

addresses the challenge of accurate recognition and harvesting of winter peaches

by proposing a novel recognition model based on the residual network (ResNet)

architecture—WinterPeachNet—aimed at enhancing the accuracy and efficiency

of winter peach detection, even in resource-constrained environments. The

WinterPeachNet model achieves a comprehensive improvement in network

performance by integrating depthwise separable inverted bottleneck ResNet

(DIBResNet), bidirectional feature pyramid network (BiFPN) structure, GhostConv

module, and the YOLOv11 detection head (v11detect). The DIBResNet module,

based on the ResNet architecture, introduces an inverted bottleneck structure and

depthwise separable convolution technology, enhancing the depth and quality of

feature extraction while effectively reducing the model’s computational

complexity. The GhostConv module further improves detection accuracy by

reducing the number of convolution kernels. Additionally, the BiFPN structure

strengthens the model’s ability to detect objects of different sizes by fusing multi-

scale feature information. The introduction of v11detect further optimizes object

localization accuracy. The results show that the WinterPeachNet model achieves

excellent performance in the winter peach detection task, with P = 0.996, R =

0.996, mAP50 = 0.995, and mAP50-95 = 0.964, demonstrating the model’s

efficiency and accuracy in the winter peach detection task. The high efficiency

of the WinterPeachNet model makes it highly adaptable in resource-constrained

environments, enabling effective object detection at a relatively low

computational cost.
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1 Introduction

In modern agricultural production, fruit harvesting is a critical

process that not only affects the freshness and quality of fruits but

also directly impacts the economic benefits for farmers (Li et al.,

2022b; Wang et al., 2024; Zhang et al., 2024). With the growth of the

global population and changes in consumption patterns, the

demand for higher fruit yield and quality has been steadily

increasing. Traditional manual harvesting methods can no longer

meet the requirements of modern, efficient, and precise agriculture

(Shi et al., 2024b; Soliman et al., 2012). Consequently, automated

and intelligent harvesting technologies have become a key focus of

research in the agricultural field. Among various fruits, peaches are

particularly significant due to their widespread popularity, making

research on peach harvesting techniques highly relevant in

practical applications.

Peach harvesting requires not only high efficiency but also

minimal damage to the fruit during the process to maintain its

freshness and appearance. However, the complex growth

environment of peach trees, the diversity of fruit shapes, and the

richness of color variations pose numerous challenges for

traditional machine vision technologies in peach recognition and

localization (Chaivivatrakul and Dailey, 2014; Cui et al., 2022).

These challenges include, but are not limited to, variations in

lighting conditions, mutual occlusion between fruits and branches

or leaves, and inconsistencies in fruit maturity (Tang et al., 2023).

These factors complicate automated peach harvesting, limiting the

applicability and efficiency of harvesting robots.

In recent years, the development of deep learning technologies,

particularly breakthroughs in convolutional neural networks for image

recognition, has provided new solutions to these challenges (Fan et al.,

2022; Li, 2022; Traore et al., 2018). Object detection algorithms in deep

learning are mainly categorized into two-stage detection algorithms

and single-stage detection algorithms. Two-stage detection algorithms

explicitly propose candidate regions and transform the detection task

into a classification problem for these regions. The R-CNN series (R-

CNN, Fast R-CNN, Faster R-CNN, etc.) are representative examples.

R-CNN extracts candidate regions from an image using selective

search, then uses CNNs to extract features and classify them (Girshick

et al., 2014). While R-CNN achieved breakthroughs in accuracy, its

need to extract features and classify each candidate region individually

resulted in low speed and efficiency (Mijwil et al., 2022). Fast R-CNN

addressed the efficiency issues of R-CNN by introducing ROI pooling

and a multi-task loss function, significantly improving detection speed

and accuracy (Wi et al., 2024). Faster R-CNN further proposed the

region proposal network, which automatically generates region

proposals and shares the feature extraction process with the

detection network, greatly enhancing detection performance and

speed (Ren et al., 2016; Xiao et al., 2020).

Single-stage detection algorithms, on the other hand, skip the

region proposal step and directly transform object detection into a

regression problem, offering the advantages of higher speed and

efficiency (Liu and Dong, 2024; Xiao et al., 2024). Representative

algorithms include the You only look once (YOLO) series (Alif and

Hussain, 2024) and the SSD series (Liu et al., 2016). The YOLO
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series, in particular, has gained wide attention for its end-to-end

efficient detection. From YOLOv1 to YOLOv3, the introduction of

anchor boxes and multi-scale feature fusion significantly improved

the ability to detect small objects. YOLOv4 through YOLOv7

further balanced speed and accuracy and enhanced adaptability to

complex scenarios through cross stage partial structures, path

aggregation networks, and task decoupling mechanisms. The

latest iterations, YOLOv8 through YOLOv11, have focused on

lightweight design, multi-source data fusion, and robustness in

complex scenarios, further improving efficiency and practicality in

real-world applications. The YOLO series algorithms are especially

suitable for scenarios requiring high real-time performance. This

study addresses the challenges of winter peach recognition in

complex environments, such as variations in lighting conditions,

occlusion, and inconsistent levels of stacking. Based on the YOLO

framework, a specialized object detection model for winter peach

detection was designed to enhance the accuracy of fruit localization

for harvesting robots. The YOLO algorithm divides the network

structure into three parts: the backbone, neck, and head networks.

The backbone network is responsible for extracting basic features

from the image, the neck network enhances multi-scale feature

representation through feature fusion, and the head network

completes object classification and localization tasks.

In object detection tasks, the backbone network, as the core

feature extraction module, directly impacts the overall detection

performance. Common backbone networks include visual geometry

group (VGG), residual network (ResNet), the MobileNet series,

EfficientNet, and CSPDarknet. VGG is renowned for its simple

network structure and stacked convolutional layers, offering strong

feature extraction capabilities but with high parameter and

computation costs (Rahman et al., 2024). ResNet introduced

residual structures to effectively mitigate the vanishing gradient

problem, enabling deeper network training with strong feature

representation capabilities and widespread applicability (Islam

et al., 2023; Yang et al., 2024). MobileNet, centered on depthwise

separable convolution (DWConv), significantly reduces parameter

and computational costs, making it a typical example of lightweight

models (Xu et al., 2022). EfficientNet uses a compound scaling

strategy to achieve an excellent balance between model depth,

width, and resolution, though at a higher computational cost (Jin

et al., 2023). CSPDarknet, widely adopted in YOLOv4 and later

versions, optimizes feature learning capability and efficiency

through gradient branching (Jia et al., 2023). After comparison,

we selected ResNet as the backbone network due to its balance

between feature representation capability and computational cost.

Its residual structure not only enhances the stability of network

training but also provides high generalizability, meeting the

requirements of our object detection tasks.

The neck structure is responsible for fusing and enhancing the

multi-scale features extracted by the backbone network, thereby

improving the detection capability for targets of varying sizes.

Common neck structures include feature pyramid network

(FPN), path aggregation network (PANet), and bidirectional

feature pyramid network (BiFPN). FPN enhances the detection of

small objects through a top-down feature fusion mechanism
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(Karthikeyan et al., 2024). PANet builds upon this by adding a

bottom-up path aggregation module, further improving the

representation of multi-scale features (Lawal, 2024). BiFPN

combines weighted feature fusion and bidirectional feature flow

mechanisms, effectively increasing feature utilization and achieving

greater computational efficiency through node weight optimization

(Li et al., 2022a; Zhang et al., 2023). Considering the balance

between feature fusion effectiveness and computational cost, this

study selects BiFPN as the neck structure of the model to fully

exploit multi-scale information while meeting the lightweight

requirements of the model.

The detection head in single-stage object detection networks is a

critical module that directly performs object classification and

bounding box regression. Its structure significantly affects

detection precision and efficiency. Anchor-free detection heads

provide a more direct and flexible approach to object detection by

reducing dependency on predefined anchor boxes. This approach

offers clear advantages in terms of detection speed and adaptability.

Anchor-free detection heads predict the bounding boxes of objects

directly from image features instead of relying on a predefined set of

anchor boxes, simplifying the detection process and reducing

computational complexity (Xu et al., 2024; Zhao et al., 2023). The

latest YOLOv11 detection head (v11detect) employs an anchor-free

design and incorporates DWConv, improving processing speed

while maintaining high precision (He et al., 2024). Consequently,

this study adopts the v11detect as the detection head structure.

To improve the efficiency of automated winter peach

recognition, this study developed a winter peach recognition and

monitoring model, WinterPeachNet, based on an improved ResNet

architecture. The model aims to achieve efficient and accurate

recognition of winter peaches by optimizing the network

structure. The core backbone network of the model is based on

the depthwise separable inverted bottleneck ResNet (DIBResNet)

structure, with the BiFPN architecture and GhostConv module

introduced in the neck network. The head network utilizes the

v11detect structure. Through these improvements, the model is

designed to meet the real-time and accuracy requirements for

automated winter peach recognition, providing an efficient and

reliable technological solution for winter peach harvesting. This, in

turn, contributes to the development and application of automation

technology in winter peach harvesting.
2 Materials and methods

2.1 Dataset construction

In this study, the iQoo 12 smartphone was used to collect winter

peach data. The device features a multi-camera setup, with the main

camera offering a 50-megapixel resolution and supporting optical

image stabilization, enabling it to accurately capture detailed images

and color information. Additionally, the device’s advanced image

processing technology optimizes image quality, ensuring the

accuracy and reliability of the data. The data collection site is
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located in an orchard in Luoyang, Henan Province, China. The

data was collected on October 6, 2024. The image resolution is 3072

× 3072. To enhance the diversity of the dataset and improve the

model’s generalization ability, advanced data augmentation

techniques were employed, including but not limited to image

rotation, scaling, and color adjustment to simulate various

environmental conditions and lighting changes. Furthermore, to

ensure precise and consistent data annotation, LabelImg was

selected as the annotation tool. Its user-friendly interface and

efficient annotation workflow greatly facilitated accurate labeling.

The final dataset used for training consists of 1,250 images, which

cover a variety of scenarios, including different lighting conditions,

branch and leaf occlusion, and fruit stacking, providing diverse

feature information. The dataset was split into training, testing, and

validation sets in an 8:1:1 ratio, with 877, 187, and 186 images in

each set, respectively. Figure 1 presents a sample of the winter peach

images included in the dataset.
2.2 Construction of the winter peach
detection model

2.2.1 DIBResNet
In this study, the ResNet was adopted as the core architecture

for image recognition. By introducing a residual learning

mechanism, ResNet effectively addresses the vanishing gradient

problem in deep network training, making it feasible to construct

deeper network structures. This network comprises a series of

residual blocks, each containing multiple convolutional layers and

a residual connection. The residual connection allows the input to

bypass one or more layers and be added to the output, facilitating

the learning of residual mappings. This design not only mitigates

the vanishing gradient issue but also enhances training efficiency

(Shan et al., 2024). However, as the network depth increases, ResNet

exhibits certain limitations in terms of lightweight design and

efficiency. Specifically, ResNet’s primary drawbacks include high

computational complexity, redundant parameters, and insufficient

lightweight optimization. The computational cost of standard

convolution operations in ResNet is significant, particularly in

intermediate and deeper modules. For a feature map with input

dimensions H �W � Cin, the computational complexity of

standard convolution is given by Equation 1:

FLOPs = H �W � Cin � Cout � K2 (1)

where K represents the kernel size, and as the input and output

channel counts (Cin and Cout) increase, computational complexity

escalates rapidly. ResNet, in its pursuit of enhanced model

expressiveness, typically stacks multiple standard convolution

layers within its modules, resulting in a high parameter count and

making deployment on memory-constrained devices challenging.

To address these limitations, we propose an improved version—

DIBResNet—designed to significantly reduce computational

complexity and parameter count while enhancing model
frontiersin.org
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performance. DIBResNet replaces standard convolution operations

with DWConv. DWConv consists of two operations: depthwise

convolution and pointwise convolution. Depthwise convolution

applies a single convolution kernel to each input channel without

mixing information between channels, while pointwise convolution

performs channel fusion using 1×1 convolutions (Li et al., 2024; Qiu

et al., 2024). The computational complexity of depthwise

convolution, pointwise convolution, and DWConv is given by

Equations 2-4:

FLOPsDW = H �W � Cin � K2 (2)

FLOPsPW = H �W � Cin � Cout (3)

FLOPsDS = FLOPsDW + FLOPsPW (4)

Compared to standard convolution, DWConv reduces

computational complexity by approximately 1=Cout + 1=K2 times.

Additionally, DIBResNet adopts an inverted bottleneck

structure, which enhances feature representation by expanding

and then compressing the number of channels. In this structure,

the number of channels is first expanded by a factor of e (expansion

factor) using pointwise convolution, then features are extracted

through depthwise convolution, and finally the channels are
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reduced to the target number via another pointwise convolution

(Shi et al., 2024a). The formula of the inverted bottleneck structure

is presented in Equation 5:

y = f2(f1(x)) (5)

where f1 represents the expansion operation and f2 represents

the compression operation.

For the activation function, we use the Hard-Swish function,

whose computational formulation is given by Equation 6:

Hard�Swish(x) = x ·
ReLU6(x + 3)

6
(6)

Compared to ReLU and Swish, Hard-Swish offers higher

computational efficiency on hardware while maintaining excellent

non-linear representation capabilities.

By balancing feature extraction and computational load, the

inverted bottleneck structure and DWConv effectively reduce

computational redundancy. The proposed DIBResNet module

consists of two components: DIBResNetBlock and DIBResNetLayer.

The DIBResNetBlock employs the inverted bottleneck structure,

replacing standard convolution with DWConv and incorporating

residual connections, its structure is shown in Figure 2, and the

formula is provided in Equation 7:
FIGURE 1

Sample images of winter peaches.
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y = Hard�Swish(f3(f2(f1(x))) + xshortcut) (7)

where f1, f2, f3 represent pointwise convolution, depthwise

convolution, and pointwise convolution, respectively.

The DIBResNetLayer stacks multiple DIBResNetBlocks as

needed to achieve deep feature extraction. Its structure is

illustrated in the Figure 3. These improvements allow DIBResNet

to significantly reduce computational complexity and parameter

count compared to ResNet, while maintaining high accuracy in

tasks such as classification and object detection. This makes it

particularly suitable for resource-constrained scenarios, including

edge devices and mobile applications.
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2.2.2 BiFPN

BiFPN is an efficient multi-scale feature fusion module designed

to enhance the representation of multi-scale features in deep

learning models. Compared to traditional FPN and PANet,

BiFPN optimizes feature fusion pathways and computational

efficiency. Its core innovation lies in the introduction of learnable

feature fusion weights, which dynamically adjust the contributions

of different feature maps, enabling the network to aggregate multi-

scale information more intelligently (Yu et al., 2024). Additionally,

BiFPN employs a simplified bidirectional feature fusion pathway

that effectively combines high-level semantic information with low-
FIGURE 3

Structural diagram of the DIBResNetLayer.
FIGURE 2

Structural diagram of the DIBResNetBlock.
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level detail features. This ensures that key features are captured at all

resolutions (Xin et al., 2024). To further enhance computational

efficiency, BiFPN applies DWConv after feature fusion, significantly

reducing parameter count and computational cost, making it

suitable for resource-constrained environments. BiFPN also

optimizes network topology by removing redundant edges and

nodes, retaining only essential information flow pathways. This

reduces computational redundancy while maintaining robust

feature representation capabilities. Thanks to these advancements,

BiFPN has become a highly efficient module for tasks such as object

detection and semantic segmentation, setting a new benchmark for

multi-scale feature fusion by balancing computational efficiency

and performance. Its structure is illustrated in the Figure 4.

2.2.3 GhostConv
GhostConv is a lightweight convolutional operation designed to

reduce computational costs while preserving the model’s expressive

capacity by generating redundant feature maps from a smaller

subset of primary features. Traditional convolution operations

compute complete feature maps, resulting in high computational

overhead. GhostConv addresses this issue by first using standard

convolution to generate a limited number of primary feature maps,
Frontiers in Plant Science 06
and then applying pointwise convolution to generate additional

“redundant” features, thereby reducing computational cost (Zhou

et al., 2024). The implementation process consists of two steps: first,

standard convolution is used to generate a smaller set of primary

feature maps; then, a set of simple linear transformations is applied

to produce additional feature maps (Bao et al., 2024). This design

significantly reduces computational complexity. The formula for

GhostConv is presented in Equation 8, and its structure is

illustrated in Figure 5. By leveraging this approach, GhostConv

can maintain model performance while drastically reducing

computational cost, making it an essential module in lightweight

network design.

Y = ½Fconv(X); Fcheap(Fconv(X))� (8)

where Fconv denotes standard convolution, Fcheap represents

cheap feature generation operations, and [] indicates the

concatenation of feature maps.

2.2.4 Detection head
This study adopts the v11detect as the head component of the

WinterPeachNet model due to its remarkable advantages in object

detection tasks. The v11detect inherits key characteristics of the
FIGURE 5

Diagram of the GhostConv structure.
FIGURE 4

Structure of the BiFPN.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1545216
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Li et al. 10.3389/fpls.2025.1545216
YOLO series while introducing significant improvements and

optimizations. The head features decoupled convolutional

branches: one branch predicts bounding box regression, and the

other focuses on class prediction. This design allows the model to

more accurately predict both bounding boxes and classes by

enabling each branch to specialize in its specific task. In the

v11detect, the convolutional layers for detection and classification

are decoupled. The channel count for the feature map in the

regression branch is 4×regmax, where regmax denotes the

maximum number of predicted bounding boxes. For the

classification branch, the channel count corresponds to the

number of object classes. Additionally, v11detect employs

DWConv in the classification branch, replacing standard

convolution to reduce computational cost and improve efficiency.
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These technical advancements enable the v11detect to achieve high

efficiency and accuracy in object detection, providing fast yet

precise predictions. The structure of v11detect is shown in Figure 6.

2.2.5 WinterPeachNet model
To develop an efficient detection model for winter peach

recognition, this study designed a novel recognition model called

WinterPeachNet based on the YOLO framework. The backbone

network of WinterPeachNet is based on the ResNet architecture

and utilizes the DIBResNet structure, which includes

DIBResNetBlock and DIBResNetLayer. A DIBResNetLayer consists

of multiple DIBResNetBlocks. The DIBResNetBlock employs an

inverted bottleneck structure and replaces traditional convolutional

operations with DWConv to enhance feature extraction efficiency.
FIGURE 6

Diagram of the v11detect structure.
FIGURE 7

Overall structure of the WinterPeachNet model.
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This structure first extracts features using DWConv and then fuses

the features through pointwise convolution. To address the vanishing

gradient problem in deep network training, residual connections are

incorporated into the DIBResNetBlock, enabling the network to

directly learn residual mappings and facilitating the effective

training of deeper layers. In the neck network, the WinterPeachNet

model incorporates the BiFPN structure and GhostConv module.

BiFPN constructs a bidirectional feature pyramid using top-down

and bottom-up information flows, aiding the model in capturing

target features at different scales. The GhostConv module increases

the depth of convolution by generating virtual convolutional kernels,

enhancing feature extraction capability while maintaining

computational efficiency. Finally, the model’s head network

employs the v11detect, which provides fast and accurate object

detection. It processes images in real time and outputs both the

locations and classes of the targets. This structural design allows the

WinterPeachNet model to excel in winter peach target recognition

tasks. It achieves efficient and accurate object detection, offering a

novel technological solution for the field of agricultural automation.

The overall structure of WinterPeachNet is shown in Figure 7.
2.3 Evaluation metrics

To evaluate the performance of various models in the task of

winter peach object recognition, this study employed precision (P),

recall (R), mean average precision (mAP50), and extended mean

average precision (mAP50-95) as quantifiable metrics. P measures

the proportion of predicted positive samples that are true positives,

reflecting the accuracy of the model’s predictions. R measures the

proportion of actual positive samples correctly predicted by the

model. mAP50 represents the mean average precision at an

intersection over union (IoU) threshold of 0.5. IoU is a metric for

quantifying the overlap between the predicted and ground-truth

bounding boxes, ranging from 0 to 1, with higher values indicating

greater overlap. mAP50-95 evaluates the model’s performance

across multiple IoU thresholds ranging from 0.5 to 0.95,

providing a more comprehensive perspective on detection

performance at varying overlap levels. The calculation methods

for the evaluation metrics are presented in Equations 9-12:
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P =
TP

TP + FP
(9)

R =
TP

TP + FN
(10)

mAP50 =
1
mo

m

i=1
APi (11)

mAP50−95 =
1
mo

m

i=1

1
10o

10

j=1
APi,j (12)

where TP is the number of true positives, FP is the number of

false positives, FN is the number of false negatives, APi represents

the average precision for class i at an IoU threshold of 0.5, APi,j
represents the average precision for class i at IoU threshold of 0:5 +

0:05� (j − 1).
3 Results

3.1 Experimental environment

The experiments were conducted on an Ubuntu 20.04 operating

system with Python 3.10 as the programming language and CUDA

version 11.8. The deep learning framework employed was PyTorch

2.1.1. The hardware setup included an Intel(R) Xeon(R) Gold 5318Y

CPU with a clock speed of 2.10 GHz, an NVIDIA A16 GPU, and 15

GB of memory. In terms of experimental parameter settings, this

study adopted the default parameter configuration of the YOLO

model. The number of iterations was set to 200, with a batch size of

16. Both the initial and final learning rates were set to 0.01.

Additionally, the momentum was set to 0.937, the weight decay

coefficient to 0.0005, and the number of warm-up epochs to 3.0. The

warm-up momentum was set to 0.8, and the warm-up bias learning

rate was set to 0.1. This parameter configuration was chosen based on

a comprehensive consideration of model performance and training

efficiency, allowing the model to quickly converge in the early stages

of training and achieve good performance, thus providing a solid

foundation for the experimental research.
TABLE 1 Precision results of the ablation study.

DIBResNet GhostConv BiFPN v11Detect P R mAP50 mAP50-95 Parameters (M) GFLOPs

– – – – 0.989 0.978 0.994 0.931 1.722 42.7

✓ – – – 0.996 0.984 0.995 0.946 1.097 27.7

✓ ✓ – – 0.992 0.989 0.995 0.946 1.095 27.6

✓ – ✓ – 0.996 0.981 0.995 0.951 1.104 27.9

✓ – – ✓ 0.980 0.989 0.994 0.951 1.089 27.4

✓ ✓ ✓ 0.996 0.985 0.995 0.953 1.102 27.8

✓ ✓ ✓ ✓ 0.996 0.996 0.995 0.964 1.094 27.5
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3.2 Ablation study

Building upon the ResNet architecture, this study proposed an

improved model—WinterPeachNet—to enhance the accuracy of

winter peach recognition and detection. WinterPeachNet

incorporates the DIBResNet structure in the backbone network,

integrates the BiFPN structure and GhostConv module in the neck

network, and uses the v11detect as the head component to achieve

superior recognition performance. The precision results of the

ablation study are presented in Table 1.

The unmodified model has already shown high accuracy in the

winter peach object recognition task, with P = 0.989, R = 0.978,

mAP50 = 0.994, and mAP50-95 = 0.931. When using DIBResNet as

the backbone network, the model’s performance significantly

improved, with R increasing by 0.614%, while the number of

parameters and GFLOPs were reduced by 36.289% and 35.129%,
Frontiers in Plant Science 09
respectively. Furthermore, this study analyzed the impact of the

GhostConv module, BiFPN structure, and v11detect on the model’s

performance. The inclusion of the GhostConv module resulted in a

1.125% improvement in R. The integration of the BiFPN structure

positively contributed to the model’s recognition accuracy,

increasing R by 0.307% and mAP50-95 by 2.148%. Additionally,

the application of v11Detect also improved the model’s recognition

accuracy, boosting R by 1.125% and mAP50-95 by 2.148%. Notably,

despite the improvements made by GhostConv, BiFPN, and

v11Detect, these modules did not significantly increase the

model’s computational complexity.

When both GhostConv and BiFPN were integrated, the model’s

P and R reached 0.996 and 0.985, respectively. mAP50 remained at

0.995, while mAP50-95 increased to 0.953, further proving the

importance of the collaborative work of multiple components in

improving model performance. Finally, by integrating GhostConv,
TABLE 2 Results of the comparative study of different models.

Model P R mAP50 mAP50-95 Parameters (M) GFLOPs

YOLOv8s 0.992 0.978 0.994 0.937 11.126 28.4

YOLOv9s 0.999 0.974 0.994 0.941 7.167 26.7

YOLOv10s 0.973 0.955 0.990 0.941 8.036 24.4

YOLOv11s 0.981 0.985 0.994 0.934 10.711 26.4

WinterPeachNet 0.996 0.996 0.995 0.964 10.937 27.5
FIGURE 8

Comparison of detection outcomes for different models.
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BiFPN, and v11Detect on top of DIBResNet, the model’s P and R

both reached 0.996, with mAP50 at 0.995. Compared to the

unmodified model, mAP50-95 increased by 3.545%, and the

number of parameters and GFLOPs decreased by 36.492% and

35.597%, respectively. Ablation experiments demonstrate that the

WinterPeachNet model, by combining DIBResNet, BiFPN,

GhostConv, and v11Detect, significantly improves the recognition

accuracy of winter peaches. These improvements not only enhance

the model’s P and R but also result in a notable increase in average

precision across different IoU thresholds.
3.3 Comparative study of different models

This study compared the performance of WinterPeachNet with

several mainstream YOLO series models. The precision comparison

results are summarized in Table 2, and detection outcomes for

different models are illustrated in Figure 8. The results show that

WinterPeachNet exhibits significant advantages in precision

metrics. It achieved mAP50 = 0.995 and mAP50-95 = 0.964,

demonstrating high accuracy in winter peach detection tasks.

WinterPeachNet also performed exceptionally well in P and R,

both reaching 0.996. This indicates that the model can accurately

identify the majority of winter peaches while maintaining a low false

positive rate. Although WinterPeachNet has a relatively high

parameter count (10.937 M) and computational complexity

(GFLOPs = 27.5), its superior accuracy justifies the additional

computational resources.

By comparison, other YOLO series models, while more

lightweight in terms of parameter count and computational

complexity, exhibited lower precision. YOLOv8s performs slightly

lower than WinterPeachNet in R, with a value of 0.978, while its

mAP50 is nearly the same as WinterPeachNet. YOLOv9s and

YOLOv10s show slightly lower R, with reductions of 2.209% and

4.117%, respectively, but their mAP50 values are close to that of

WinterPeachNet, indicating that they are still competitive in terms

of recognition accuracy. YOLOv11s achieves a R of 0.985, but in

terms of P and mAP50-95, it still lags behind WinterPeachNet.

In conclusion, WinterPeachNet outperformed other YOLO

series models in precision, demonstrating a clear advantage for

high-accuracy object detection tasks. While its parameter count and

computational complexity are higher, WinterPeachNet is better

suited for applications requiring high recognition precision.
4 Discussion

This study presents WinterPeachNet, a novel recognition model

for winter peach object detection. Built on the ResNet architecture,

the model introduces innovations through the integration of the

DIBResNet backbone, BiFPN module, GhostConv module, and the

v11detect, enhancing the backbone, neck, and head networks.

Ablation and comparative experiments validate the effectiveness

and superiority of WinterPeachNet.
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The results of the ablation experiments reveal the positive

impact of each module on the model’s performance. The

DIBResNetBlock in the DIBResNet structure, based on inverted

bottleneck architecture and DWConv, and incorporating residual

connections, plays a key role in improving the model’s P and R. This

improvement can be attributed to the reduced computational load

of DWConv while capturing features more effectively, and residual

connections that alleviate the gradient vanishing problem in deep

networks, thus enhancing feature extraction depth and quality. This

design significantly improves the applicability of WinterPeachNet

in resource-constrained environments. The GhostConv module

optimizes the model’s computational efficiency by reducing the

number of convolution kernels while maintaining feature extraction

capabilities. The BiFPN module, through multi-scale feature fusion,

enhances the model’s ability to detect objects of different sizes,

improving both R and mAP50-95. The introduction of v11detect,

built upon the YOLOv8 detection head, integrates DWConv,

making boundary box predictions more precise, as verified in the

ablation experiments. Furthermore, the results show that the

BiFPN, GhostConv, and v11detect modules do not significantly

impact the model’s parameter count or GFLOPs, meaning they

improve performance without adding extra computational burden

—a critical consideration for resource-limited environments.

In comparison with YOLO series models, although

WinterPeachNet performs slightly lower than YOLOv9s in P, it

surpasses other YOLO models in all other metrics. In terms of

computational cost, WinterPeachNet has fewer parameters and

GFLOPs than YOLOv8s, but slightly more than YOLOv9s,

YOLOv10s, and YOLOv11s. While not the lightest model,

WinterPeachNet’s higher detection accuracy provides a significant

advantage in practical applications. By optimizing the network

structure and integrating efficient modules, WinterPeachNet

achieves high performance in the winter peach detection task.

The innovation and optimization of the modules allow the model

to maintain high detection accuracy while keeping computational

complexity and parameter count relatively low.

Despite its excellent performance in winter peach detection, the

generalization ability of the WinterPeachNet model has not been

fully validated in other similar fruit or broader object detection

tasks. Moreover, the current model design primarily relies on deep

learning architecture improvements, and its robustness to issues

such as lighting changes and occlusion in complex environments

still needs further enhancement. Future research will focus on

further optimizing the model structure to improve its

generalization and robustness, and validating its performance

across a wider range of datasets and application scenarios.
5 Conclusion

In this study, we designed and implemented WinterPeachNet, a

ResNet-based recognition model tailored for winter peach object

detection. By introducing the DIBResNet, BiFPN module,

GhostConv module, and v11Detect, this study comprehensively
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improved the backbone, neck, and head networks of the model.

Experimental results demonstrate that WinterPeachNet achieves

outstanding performance in winter peach detection, with P = 0.996,

R = 0.996, mAP50 = 0.995, and mAP50-95 = 0.964, outperforming

several mainstream YOLO-series models. The introduction of

DIBResNet significantly improved the depth and quality of feature

extraction, effectively reducing the model’s computational

complexity. The combined use of the GhostConv and BiFPN

modules enhanced the model’s feature extraction capabilities,

leading to further improvements in detection accuracy. The

inclusion of v11Detect optimized the accuracy of object

localization, reducing false positives and false negatives, and played

a crucial role in enhancing the overall performance of the model.

The proposed WinterPeachNet model achieves high-precision,

low-cost detection of winter peaches. Future research will focus on

further optimizing the model’s structure to enhance its object

detection capabilities in more complex scenarios. Additionally,

the integration of WinterPeachNet with other deep learning

technologies will be explored to further improve its performance

and efficiency.
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