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An enhanced lightweight
model for apple leaf disease
detection in complex
orchard environments
Ge Wang1, Wenjie Sang1*, Fangqian Xu1, Yuteng Gao1,
Yue Han1 and Qiang Liu2

1College of Intelligent Equipment, Shandong University of Science and Technology, Taian, China,
2Technology Department, Shandong Xinhua'an Information Technology Co., Ltd., Qingdao, China
Automated detection of apple leaf diseases is crucial for predicting and

preventing losses and for enhancing apple yields. However, in complex natural

environments, factors such as light variations, shading from branches and leaves,

and overlapping disease spots often result in reduced accuracy in detecting apple

diseases. To address the challenges of detecting small-target diseases on apple

leaves in complex backgrounds and difficulty in mobile deployment, we propose

an enhanced lightweight model, ELM-YOLOv8n.To mitigate the high

consumption of computational resources in real-time deployment of existing

models, we integrate the Fasternet Block into the C2f of the backbone network

and neck network, effectively reducing the parameter count and the

computational load of the model. In order to enhance the network’s anti-

interference ability in complex backgrounds and its capacity to differentiate

between similar diseases, we incorporate an Efficient Multi-Scale Attention

(EMA) within the deep structure of the network for in-depth feature extraction.

Additionally, we design a detail-enhanced shared convolutional scaling detection

head (DESCS-DH) to enable the model to effectively capture edge information of

diseases and address issues such as poor performance in object detection across

different scales. Finally, we employ the NWD loss function to replace the CIoU

loss function, allowing the model to locate and identify small targets more

accurately and further enhance its robustness, thereby facilitating rapid and

precise identification of apple leaf diseases. Experimental results demonstrate

ELM-YOLOv8n’s effectiveness, achieving 94.0% of F1 value and 96.7% of mAP50

value—a significant improvement over YOLOv8n. Furthermore, the parameter

count and computational load are reduced by 44.8% and 39.5%, respectively. The

ELM-YOLOv8n model is better suited for deployment on mobile devices while

maintaining high accuracy.
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1 Introduction

As one of the most widely cultivated fruits globally, the annual

production of apples significantly influences the agricultural

economy and the global food supply chain (Wani and Mishra,

2022). As the largest producer of apples worldwide, China

contributes 40.5 million tons annually, representing 46.7% of the

global production (Liu et al., 2024b). However, the yield and quality

of apples are affected by a variety of diseases, such as Rust, Grey

Spot, Powdery Mildew, and Scab, which not only reduce the quality

of fruits, but also directly lead to a decrease in yield. Therefore,

accurate and timely identification and detection of leaf diseases is

crucial during apple cultivation. This can assist farmers in more

effectively controlling the spread of diseases, thereby maintaining

apple quality and production levels, and ultimately achieving both

economic and environmental benefits. Traditional identification of

crop diseases primarily depends on the expertise of agricultural

specialists and visual assessment. This method is inefficient and

limited by the expert’s knowledge and experience, which is prone to

misjudgment and omission. With the development of computer

technology, machine learning has started to find application in the

recognition of crop diseases (Ramesh et al., 2018). However,

traditional feature extraction algorithms usually need to rely on

manual design and domain expertise to select and construct

features. Compared to traditional machine learning methods,

deep learning methods can automatically learn and extract

features, reducing the workload of manual feature engineering

and exhibiting better performance when dealing with large-scale

data. In 2020, Li et al. (2020) introduced a finely-tuned GoogLeNet

model, which was fine-tuned to improve over the state-of-the-art

method by 6.22%.In 2021, Soujanya and Jabez (2021) proposed a

technique based on improved AlexNet that can successfully classify

38 different classes of healthy and diseased plants, and the best

accuracy of this method is 96.5%.In 2022, Wei et al. (2022)

proposed a multi-scale feature fusion based network model for

accurate identification and classification of crop pests and diseases,

the classification accuracy reached 98.2%.In 2023, Islam et al. (2023)

used ResNet50 migration learning model as the core for

distinguishing between healthy and infected leaves and classifying

current disease types, providing an even higher accuracy of 98.98%.

In 2024, Faisal et al. (2024) proposed a method based on deep CNN

architecture to recognize and classify cotton weeds efficiently and

the proposed model achieved 98.3% accuracy which is better than

other models. Although these studies have achieved satisfactory

accuracy rates when dealing with the task of classifying a single disease

image with a simple background, however, the performance may still

be insufficient in real-world applications when faced with more

complex and varied scenarios, as well as in mobile deployments.

Faced with real-time detection in complex environments, object

detection algorithms (Ren et al., 2016; Liu et al., 2016; Redmon,

2016) show greater advantages. Sun et al. (2021) proposed a

lightweight CNN model, MEAN-SSD, which can be deployed on

mobile devices for real-time detection of apple leaf diseases. Khan

et al. (2022) proposed a two-stage real-time detection system for

apple leaf diseases based on Xception and Faster-RCNN-based two-

stage real-time apple disease detection system, which achieved an
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overall classification accuracy of 88%. Zhang et al. (2023b) designed

BCTNet network for accurate apple leaf disease detection, which

solved the problems of unconstrained environmental factor

interference and low detection accuracy caused by significant

changes in the target scale of apple leaf disease detection. Lv and

Su (2024) proposed YOLOV5-CBAM-C3TR for apple leaf disease

detection, which showed strong recognition ability in identifying

similar diseases, and is expected to promote the further

development of disease detection technology. Chang and Lai

(2024) integrated a lightweight convolutional neural network

architecture, RegNetY-400MF, with a transfer learning technique,

which not only improves the accuracy of potato leaf disease

detection, but also reduces the computational and storage

requirements. Liu et al. (2024a) proposed MCDCNet to extract

more reliable apple leaf disease features with various scales and

geometries, which effectively improved the discriminative ability of

the network. However, the reduction of model parameters and

computational load may lead to the decrease of accuracy, how to

strike a balance between lightness and accuracy is a hot research

topic nowadays (Yan et al., 2024).

In summary, although the crop disease recognition method based

on Convolutional Neural Networks (CNN) solves the problem of

inefficiency of traditional machine vision recognition, there are still

problems such as high model complexity and low accuracy of small

target disease recognition under complex background. To address

these challenges, this study introduces a lightweight detection model

for identifying apple leaf diseases against complex backgrounds. First,

the Fasternet module is integrated to decrease the number of

parameters and computational load of the model; second, an

Efficient Multi-Scale Attention (EMA) is incorporated to improve

the feature extraction ability of the network for small target diseases as

well as the differentiation ability for similar diseases; then, the DESCS-

DH detection head is designed to optimize themodel’s effectiveness in

the face ofmulti-scale target detection. Finally, theNWD loss function

is employed to improve the model’s precision in localizing and

identifying small targets, thereby enhancing the model’s robustness

and facilitating rapid and accurate identification of apple leaf diseases.
2 Related works

With the development of artificial intelligence technology,

machine learning and deep learning have been widely used in the

field of automatic crop disease detection. The following is a brief

overview of these two methods.
2.1 Machine learning methods

This approach first requires the extraction of disease features

from collected plant images, which are subsequently used to train

machine learning models that typically require more domain

knowledge and human intervention to select and optimize

features. In 2022, Harakannanavar et al. (2022) developed an

algorithm based on machine learning and image processing to

automatically detect tomato leaf disease. SVM, KNN, and CNN
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were used to classify features, and the accuracy of the three methods

used was 88%, 97%, and 99.6%, respectively. In 2023, Gaikwad and

Musande (Gaikwad and Musande, 2023) developed an advanced

crop disease prediction technique using cetalatran-optimization

algorithm, deep KNN, and relief algorithm, the accuracy reached

91.879%. Ahmed and Yadav (2023) developed a crop disease

prediction model using back propagation ANN, SVM, GLCM,

and k-mean algorithm, the accuracy reached 99%.
2.2 Deep learning methods

Deep learning methods, such as convolutional neural networks

(CNN), can learn features directly from the original imagewithout the

need for a complex feature extraction process. At present, the research

on deep learning in the field of plant disease diagnosis is developing

rapidly, which provides strong technical support for agricultural

production. Many researchers use famous CNN architectures such

as AlexNet, VGG, GoogLeNet, and ResNet for disease classification.

Anim-Ayeko et al. (2023) proposed a ResNet9 model that detects the

blight disease in both potato and tomato leaf images for farmers to

leverage, the model achieved 99.25% accuracy. Reddy et al. (2023)

proposed a customized PDICNetmodel for crop disease identification

and classification, with an accuracy and F1-score of 99.73% and

99.78%, respectively, for PlantVillage dataset. Current models based

on disease classification have reached a high accuracy.

To further localizewhere the disease is located, two-stagedetection

algorithms and single-stage detection algorithms have been applied to

disease detection, such as Faster R-CNN, YOLO, and SSD. We chose

advanced object detection models for apple leaf disease detection and

analyzed them in comparison with our model in comprehensive

aspects. As shown in Table 1, for dataset selection, we synthesized

the two most commonly used publicly available apple disease datasets

to ensure diversity of data sources. In terms of disease types, we chose a

wider range of disease types, selecting six of themost common ones. In

terms of research methodology, we not only pay attention to the

improvement of model performance, but also focus on the resource

consumption of the model. In addition to improving the traditional

feature extractionmodule,wealsoproposedaDetail-EnhancedShared

Convolutional Scaling Detection Head, so that the model can more

accurately capture the subtle features of the disease when facingmulti-

scale targets. The model we developed not only achieves excellent

accuracy, with a mAP50 of 96.7%, but also optimizes the number of

model parameters and the amount of computation, effectively

alleviating the problem of resource consumption. In terms of the

adaptability of application scenarios, our model is able to cope with

complex field environments, showing good practicality and flexibility.
3 Materials and methods

3.1 Dataset construction

Theexperimentaldatasetswere sourced fromthepubliclyavailable

datasets plant-pathology-2021-fgvc8 and AppleLeaf9.Both datasets
Frontiers in Plant Science 03
contain a large number of high-quality images of apple leaf diseases,

from which six leaf diseases were selected for labeling, namely Rust,

Scab, Grey Spot, Frog Eye Leaf Spot, PowderyMildew, and Alternaria

Blotch, with more than 90% of the images collected in the orchard

environments. These six diseases are prevalent on apple leaves,

resulting in significant detrimental effects on agricultural

productivity, and they are representative in terms of symptom

presentation, covering different lesion types such as spotting,

powdering, and rusting. There are differences in the difficulty of

recognizing different diseases. For instance, rust is typically more

easily recognizable by the model because of its distinctive color and

shape feature, whereas Alternaria Blotch and Frog Eye Leaf Spot

impose greater demands on the model’s discriminatory capabilities

due to their more similar lesion characteristics.

A total of 2,203 images were labeled using an online platform,

Make Sense. The small target box is used to label Rust, Grey Spot, Frog

Eye Leaf Spot, and Alternaria Blotch. For Scab and Powdery Mildew,

whichdevelop throughout the leaf, the entire leaf is labeled.Thedataset

was augmented through data enhancement techniques. To prevent

both the original and enhanced images fromappearing simultaneously

in the training and validation sets, the original images were initially

divided into training, validation, and test sets in a ratio of about

8:1:1.Our model requires a large amount of data to capture the subtle

differences between different diseases, and this ratio ensures that the

model has enough data for training and the right amount of data for

validation and testing. Subsequently, the images and labels were

augmented using five techniques: horizontal flipping, vertical

flipping, translation, contrast adjustment, and brightness

adjustment, the new dataset obtained is named Apple-Leaf1.An

example of the enhancement methods is illustrated in Figure 1. The

numbers and sources of the images are presented in Table 2.
3.2 Methodology

3.2.1 Fasternet module
In order to design lighter and faster networks, many researchers

have generally focused on reducing the total amount of floating-

point operations (FLOPs) (Menghani, 2023; Zeng et al., 2022;

Zhong et al., 2022). However, merely reducing FLOPs does not

invariably result in the desired reduction in delay. The underlying

reason lies in the inefficiency of the actual floating-point operations

per second (FLOPS) performed. Chen et al. (2023) designed a new

convolution (PConv), which is able to significantly reduce

unnecessary computations and memory accesses while extracting

spatial features through a subtle design, thus significantly

improving the computational efficiency. Based on this, the

FasterNet family was further developed, as shown in Figure 2,

which is a new set of neural network architectures.

In this study, we integrate the Faster Block into the backbone

and neck to obtain C2f-Faster, which reduces the number of

parameters and computational load of the model. The Faster

Block is designed to fully incorporate the high efficiency of

PConv.The FLOPs of PConv, as shown in Equation 1, is 1/16 of

the conventional convolution.
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h� w � k2 � c2p (1)

And the memory access of PConv, as shown in Equation 2, is 1/

4 of the conventional convolution.

h� w � 2cp + k2 � c2p ≈ h� w � 2cp (2)
Frontiers in Plant Science 04
The Faster Block achieves a significant reduction in

computational complexity and memory access by introducing

PConv, which applies regular convolution operations to a portion

of the input channel while leaving the remaining channels

unchanged in their original state. Although only a portion of the

input channel is computed, the preserved channel remains useful in
FIGURE 1

Data enhancement methods.
TABLE 1 Comparison of object detection models for apple leaf disease detection.

Model Research Method Data Source Disease Type Results

MEAN-SSD (Sun et al., 2021) A new apple leaf disease detection model MEAN-SSD was
constructed using MEAN block and Apple-
Inception module.

Self-built datasets
AppleDisease5

Five categories. Achieved 83.12% mAP
and 12.53 FPS
detection performance.

FPN-ISResNet-Faster RCNN
(Hou et al., 2023)

This study proposes a deep learning model called the
feature pyramid networks (FPNs) –inception squeeze-and-
excitation ResNet (ISResNet)–Faster RCNN.

FGVC8 and AI
Challenger 2018

Three categories. The mAP50 is 93.68%.

YOLO-Leaf (Li et al., 2024) Feature extraction using DSConv, enhancement of
attention mechanism using BiFormer, introduction of IF-
CIoU for improved bounding box regression.

FGVC7 and FGVC8 Categories four
and five.

The mAP50 scores
reached 93.88% and
95.69%, respectively.

YOLOv8n–GGi (Gao
et al., 2024)

GhostConv replaces the traditional Conv layer, replaces
part of the C2f structure with C3Ghost, integrates a
Global Attention Mechanism (GAM), and incorporates an
improved BiFPN.

AppleLeaf9 Four categories. The mAP50 is 86.9%,
GFLOPs is 5.5,
Parameters is 1.7M.

ELM- YOLOv8n(Ours) Design lightweight module c2f-faster, extract subtle
features using the EMA attention mechanism, propose
Detail-Enhanced Shared Convolutional Scaling Detection
Head, and improvement of loss function.

FGVC8
and AppleLeaf9

Six categories. The mAP50 is 96.7%,
GFLOPs is 4.9,
Parameters is 1.6M.
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subsequent PWConv layers, allowing feature information to flow

through all channels. This design enables the Faster Block to operate

rapidly on various hardware platforms, including mobile devices,

while maintaining high detection accuracy.

3.2.2 EMA module
In computer vision tasks, channel or spatial attention

mechanisms effectively extract local features of an object (Sun

et al., 2022; Wang et al., 2024b; Zheng et al., 2023). Ouyang et al.

(2023) proposed the Efficient Multi-Scale Attention, which pursues

a balance between computational efficiency and information

retention by adopting an innovative approach: reconstructing

some channels into batch dimensions and subdividing the

channel dimensions into multiple sub-feature groups. This

ensures a uniform distribution of spatial semantic features within

each sub-feature group, thereby optimizing feature expression and

processing without adding computational burden. As illustrated in

Figure 3, the EMA module first divides the input into multiple

grouped feature maps, which are then processed through three

parallel path branches: two perform one-dimensional global

pooling, and the third conducts feature extraction via 3x3

convolution. Ultimately, the output feature maps within each

group are aggregated by computing the two generated spatial

attention weights and then processed using a Sigmoid function to

capture pairwise pixel relationships and emphasize the global

contextual information of all pixels.
Frontiers in Plant Science 05
The onset sites of apple leaf diseases typically appear as small

spots on the leaves, particularly during the early stages of infection.

However, these small lesions are difficult to detect due to the

complex background. Furthermore, the initial symptoms of

several apple leaf diseases, such as Alternaria Blotch, Grey Spot,

and Frog Eye Leaf Spot, are remarkably similar, making them

challenging to distinguish. To address the issue of insufficient

feature extraction for small target disease against a complex

background, the EMA mechanism is integrated into the deep

layers of the network’s backbone, as illustrated in Figure 4.

Feature extraction is conducted in depth following Pconv and two

1×1 convolution operations, enabling the model to focus more on

disease details and thereby enhancing recognition accuracy.

3.2.3 DESCS-DH (detail-enhanced shared
convolutional scaling detection head)

Although YOLOv8 performs well on many tasks, there is still

room for improvement in the design of the detection head. The first

is the large number of parameters, the original detection head

employs one 1×1 and two 3×3 convolutions for feature extraction

before predicting the object class and positional offset within each

bounding box, which inevitably results in a considerable parameter

increase; second is that the use of a normal convolution does not

capture the detailed information of the image very well during

feature extraction, which may lead to important information loss;

and lastly, the reliance on predefined anchors may cause the model
FIGURE 2

Fasternet Block. The "*" represents Convolution.
TABLE 2 Number and source of images in the Apple-Leaf1 dataset.

Disease Name Image Source Original Quantity Enhanced
Training Set

Enhanced
Validation Set

Enhanced
Test Set

Rust 2021-fgvc8 521 2496 282 348

Scab 2021-fgvc8 345 1620 234 216

Grey Spot 2021-fgvc8 316 1560 162 174

Frog eye leaf spot 2021-fgvc8 365 1794 192 204

Powdery Mildew AppleLeaf9 348 1692 210 186

Alternaria Blotch AppleLeaf9 308 1404 240 204

Total 2203 10566 1320 1332
frontiersin.org

https://doi.org/10.3389/fpls.2025.1545875
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2025.1545875
to perform poorly in detecting targets of different scales and

proportions, as the anchors may not be well adapted to the

shapes and sizes of all objects. To address these challenges, we

design a detail-enhanced shared convolutional scaling detection

head named DESCS-DH.

DESCS-DH is an efficient and lightweight detection head, which

can maintain high accuracy with reduced number of parameters and

computation. As shown in Figure 5, firstly, DESCS-DH significantly

reduces the number of parameters by fusing P3, P4, and P5 feature

mapsatdifferent scales througha sharedconvolutional layer for feature

interaction and parameter sharing. Secondly, it uses detail-enhanced

convolution to improve the ability of the detection head to capture
Frontiers in Plant Science 06
image details. DEConv significantly enhances the model’s

representation and generalization performance by incorporating a

priori information into the ordinary convolutional layers. In addition,

through the application of reparameterization techniques, DEConv

can be equivalently converted to ordinary convolution, a process that

does not require the addition of extra parameters or computational

cost, thus effectively improving performance while keeping the model

lightweight. Finally, DESCS-DH can adaptively modify its internal

parameters based on the dimensions of the input image and feature

map, so that when facing multi-scale targets, each detector head can

obtain the optimal working parameters, which enables it to maintain

stable performance in a variety of complex environments, thereby
FIGURE 3

EMA module.
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enhancing the robustness of the entire model and its

detection efficiency.

3.2.4 NWD loss function
In the field of object detection, Intersection over Union (IoU)

has long been a standard metric for measuring the accuracy of

bounding boxes (Peng and Yu, 2021; Zhang et al., 2022; Tian et al.,

2022). However, for the detection of tiny objects, the performance of

IoU is not satisfactory, which is mainly due to the small overlapping

area of the bounding box of tiny objects, resulting in a low value of IoU,

which is difficult to accurately reflect the actual detection accuracy. To

solve this problem, Wang et al. (2021) proposed a novel metric based

on the Wasserstein distance, aiming to evaluate the similarity of the

bounding boxes of tiny objects more effectively.

Specifically, the method first models the shape and position

information of the bounding box as a two dimensional Gaussian

distribution. This modeling approach captures the characteristics of

the bounding box in more detail, especially for objects with irregular

shapes or small sizes. Next, the Normalized Wasserstein Distance

(NWD) is introduced to quantify the similarity between these

Gaussian distributions. An additional significant benefit of the NWD

is its insensitivity to object scale, enabling more precise localization for

tiny objects. In addition, the application of NWD is not limited to the

label assignment stage; it can also replace the IoU in the non-maximal

suppression (NMS) process and be used in the regression loss function,

thereby improving the performance of tiny object detection in general.

The computational procedure is as follows, aftermodeling the bounding

box as a two dimensional (2D) Gaussian distribution, the distribution

distance is calculated using the Wasserstein distance metric. For two

dimensional Gaussian distribution, u1 and u2 as shown in Equation 3:

m1 = N (m1,S1),m2 = N (m2,S2) (3)

Define the distance between them as Equation 4:

W2
2 (m1,m2) = m1 −m2k k22+Tr S1 + S2 − 2(S1=2

2 S1S
1=2
2 )1=2

� �
(4)

The simplified formula is shown in Equation 5:

W2
2 (m1,m2) = m1 −m2k k22+ S1=2

1 − S1=2
2

��� ���2
F

(5)

Furthermore, for Gaussian distributions Na and Nb, which are

derived from bounding boxes A  =  (cxa,  cya,  wa,  ha) and B  =

 (cxb,  cyb,  wb,  hb), Equation 5 can be simplified to Equation 6:

W2
2 (N a,N b) = cxa, cya,

wa

2
,
ha
2

� �T
, cxb, cyb,

wb

2
:
hb
2

� �T� �����
����
2

2
(6)

However, the numerical range ofW2
2 (Na,  Nb) is not suitable for

direct use as a similarity metric. Consequently, its exponential form

is adopted for normalization, yielding a new metric termed the

Normalized Wasserstein Distance (NWD), as shown in Equation 7:

NWD(N a,N b) = exp  −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2

2 (N a,  N b)
p

C

 !
(7)

In the detection and localization of small target diseases, the limited

pixel occupation in the image results in scarce semantic information,
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making it challenging for the network to extract features that are

sufficiently effective for precise target categorization and localization.

The NWD loss function exhibits a unique sensitivity to both the size of

the target and the distances between targets. Traditional loss functions

may not fully consider these factors. For apple leaf disease detection,

accurately locating and distinguishing spots of different sizes and

location relationships is crucial for enhancing detection accuracy.

The NWD loss function facilitates the model’s focus on features

pertinent to disease detection during training, owing to its sensitivity

to target size and inter-target distances.

3.2.5 ELM-YOLOv8n network architecture
YOLOv8, an advanced object detection algorithm, effectively

strikes a balance between detection accuracy and speed (Wan et al.,

2024; Zhu et al., 2024). Consequently, in this study, we selected and

enhanced the YOLOv8n model to develop a new network

architecture termed ELM-YOLOv8n.The YOLOv8 architecture

comprises four components: Input, Backbone, Neck, and Head.

The Backbone extracts features from the input image data using

CSPDarknet53 to convert raw pixels into high-level semantic

features. The Neck serves as the middle layer of the network

structure and fuses the features of different levels through

techniques such as Feature Pyramid Network (FPN).The Head is

the output layer of the network, which predicts the information of

the target’s category, location, and confidence level based on the

fused features. As shown in Figure 6, the enhanced lightweight

model ELM-YOLOv8n is designed in this research to realize the

model to reduce the consumption of computational resources while

maintaining high detection performance. The C2f module in the

original YOLOv8 consumes a significant portion of the network’s

parameters. By substituting the Bottleneck with the Fasternet Block,

we integrate the C2f-Faster structure, which effectively diminishes

the parameter count and model complexity. The EMA attention is

incorporated into the deepest layer of the Fasternet Block in

Backbone, and after Pconv and two 1×1 convolutional operations,

the deep subtle features are extracted. The Head employs the

DESCS-DH, addressing the issues of high parameter count and

inadequate detail capture in the original detector head, as well as

inconsistencies in performance across varying target sizes. Lastly,

the NWD loss function for small target detection is utilized in place

of the CIOU loss function to enhance the model’s accuracy in

localizing small targets.
FIGURE 4

Architecture for Fasternet-EMA.
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3.3 Experimental environment

3.3.1 Experimental platform
The experiment was conducted using a 64-bit Windows 11

operating system, with the PyTorch framework, PyCharm IDE, and

Python programming language employed for model training. To

enhance data diversity and mitigate overfitting, the mosaic

augmentation technique was applied during the training phase.

The detailed experimental environment and some experimental

parameters are presented in Tables 3, 4, respectively.

3.3.2 Evaluation metrics
The model is evaluated on two dimensions: performance and

complexity. Performance metrics include precision (P), which

measures the proportion of positive samples detected by the

model that are actually positive; recall (R), which refers to the

proportion of samples that are actually in the positive category that

are correctly predicted by the model to be in the positive category;

F1 score, which is the harmonic mean of precision and recall;

average precision (AP), which is a combination of precision and

recall and is obtained by plotting a precision-recall curve and

calculating its area; and mean average precision in multiple

categories(mAP), which calculates the AP for each category and

averages the values. The specific calculation formulas are shown in

Equations 8–12:
Frontiers in Plant Science 08
P =
TP

TP + FP
� 100% (8)

R =
TP

TP + FN
� 100% (9)

F1 =
2� P � R
P + R

� 100% (10)

AP =
Z 1

0
P (R) dR � 100% (11)

mAP =
1
N o

k=N

k=1

APk � 100% (12)

In complexity evaluation, three main indicators are considered: the

number of model parameters(Params), Giga Floating-point Operations

Per Second (GFLOPs), and the model size. The number of parameters

of the model is the total number of all trainable parameters in the

model, which are optimized during training to reduce prediction

errors.The parameter count serves as a crucial indicator of a model’s

complexity. GFLOPs is used to measure the amount of model

computation. Model size denotes the memory space required for

storing the model on disk and aids in evaluating its deployment

viability in environments with limited resources.
FIGURE 5

The structure of DESCS-DH. (A) DESCS-DH (B) DEConv.
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4 Results and analyses

4.1 Effect of incorporating different
attention mechanisms into the backbone
C2f on model performance

Incorporating different attention mechanisms into the deepest

layer of the Fasternet Block in the backbone network, the attention

mechanisms together with the lightweight module resulted in a

reduction in the number of parameters and computation of the
Frontiers in Plant Science 09
whole model. As shown in Table 5, the CF-LSKA has the highest

precision of 94.6%. In the F1 score, a composite metric, both CF-

TripleAttention and CF-EMA achieve 92.5%, indicating that they

strike a good balance between precision and recall. On the key

metrics of mAP50 and mAP50-95, CF-EMA performs well with

96.3% and 66.5%, respectively. Finally, CF-EMA shows excellent

efficiency in terms of parameter count and computation, with its

parameter count of only 2.65M and its GFLOPs remaining at 7.1,

which means that it maintains high performance with high

computational efficiency and low resource consumption.
FIGURE 6

ELM-YOLOv8n overall framework and its component modules (A) ELM-YOLOv8n. (B) Conv. (C) SPPF. (D) C2f-Faster. (E) C2f-Faster-EMA.
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4.2 Effect of different detection heads on
model performance

Among the four different detection heads, with the exception of

the Aux detection head (Wang et al., 2023), the other three detection

heads reduce the number of parameters and computational

complexity of the model. Specifically, LADH (Zhang et al., 2023a)

has the lowest computational complexity, but this is accompanied by

lower accuracy. As presented in Table 6, LADH has relatively low F1

scores and mAP50 values. The Aux detection head has the highest

accuracy. However, on the whole, the DESCS-DH has relatively high

F1 score and mAP50 value, and also has a low number of parameters

and computational complexity, thus achieving a balance between

performance and computational resources.
4.3 Performance comparison of different
loss functions

Model training and validation were performed using different

loss functions. As presented in Table 7, the NWD loss function

yields the highest precision, F1, and mAP50, with respective values

of 94.1%, 93.5%, and 96.6%. As shown in Figure 7, all five loss

functions significantly decreased the model’s boundary regression

loss throughout the network’s training process. However, the

DIOU, CIOU and EIOU resulted in relatively high loss value,

whereas the NWD loss function achieved the lowest loss value.
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4.4 Ablation experiments

As shown in Table 8, the F1, mAP50, and mAP50-95 of

YOLOv8n on the test set are 92.3%, 95.5%, and 66.2%,

respectively. Following the integration of Fasternet Block, the

model’s parameter count and computational complexity were

significantly reduced, accompanied by a minor decline in the F1

score and a slight enhancement in the mAP50 metric. After

incorporating the EMA mechanism, only a slight increase in

model parameters and computational effort was exchanged for a

significant improvement in F1 score and mAP50-95 value, by 1.4%

and 1.2%, respectively. The adoption of the DESCS-DH detection

head further significantly reduced the model’s complexity, yielding

a 0.1% increase in mAP50 value and a 0.2% reduction in the F1

score. With the introduction of the loss function NWD, the

parameters and computational effort of the model did not change,

but the F1, mAP50, and mAP50-95 improved by 0.9%, 0.2%, and

0.6%, respectively. Consequently, the model’s F1 score and mAP50

value were enhanced by 1.7% and 1.2%, respectively, compared to

the baseline YOLOv8n model. Additionally, the model’s parameter

count and computational effort were reduced by 44.8% and

39.5%, respectively.

Figure 8 illustrates that the ELM-YOLOv8n model exhibits

superior accuracy in identifying various apple diseases compared

to the original YOLOv8n model, with the performance

improvement being particularly pronounced for the detection of

small target diseases. For example, the mAP50 indexes for detecting

Grey Spot, Alternaria Blotch, and Frog Eye Leaf Spot, which are
TABLE 3 Experimental environment.

Environment Configuration

Operating system Windows 11

CPU AMD Ryzen 7 7735H

GPU NVIDIA GeForce RTX 4060

RAM 16GB

Programming language Python 3.8.19

Deep learning framework Pytorch 2.2.1

CUDA CUDA version12.1
TABLE 4 Experimental parameters.

Parameters Setup

Input image size 640 × 640

Batch size 16

Workers 8

Optimizer SGD

Learning rate 0.01

Epochs 100
TABLE 5 Effect of different attention mechanisms on model performance.

Attention P% R% F1% mAP50% mAP50-95% Params/M GFLOPs

CF-LSKA 94.6 90.0 92.2 96.1 66.3 2.68 7.1

CF-CAFM 92.4 91.9 92.1 95.8 66.2 2.86 8.1

CF-SEAttention 93.1 91.3 92.2 95.8 65.3 2.65 7.0

CF-TripleAttention 94.5 90.5 92.5 96.2 66.4 2.65 7.0

CF-CAA 93.0 91.3 92.1 95.9 65.7 2.71 7.2

CF-MLCA 92.5 91.2 91.9 95.9 66.0 2.65 7.0

CF-EMA 94.0 91.0 92.5 96.3 66.5 2.65 7.1
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small target diseases, were improved by 2.0%, 2.2%, and

1.0%, respectively.
4.5 Comparison with other models

Table 9 presents the performance comparison of the seven

object detection algorithms on the test set. ELM-YOLOv8n achieves

the highest F1 and mAP50 scores of 94.0% and 96.7%, respectively,

where mAP50 compares favorably with Faster R-CNN, RT-DETR-l,

YOLOv5n, YOLOv7-tiny, YOLOv8-Mobilenetv4, and YOLOv10n
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by 24.2%, 1.8%, 2.1%, 0.9%, 3.3%, and 0.2%, respectively. Figure 9

depicts the changes in mAP50 for various models throughout the

training process. With respect to model complexity, ELM-

YOLOv8n has the fewest parameters, totaling only 1.66M.

Regarding computational and model size, as illustrated in

Figure 10, Faster R-CNN exhibits the highest computation and

largest model size, at 948.2 GFLOPs and 108.0 MB, respectively. In

contrast, YOLOv5n has the smallest computation and model size,

followed by the improved model, but the improved model’s F1,

mAP50, and mAP50-95 values are 2.5%, 2.1%, and 3.1% higher

than YOLOv5n, respectively.
TABLE 7 Effect of different loss functions on model performance.

Loss Function P% R% F1% mAP50% mAP50-95% Params/M GFLOPs

DIOU 92.4 92.2 92.3 95.8 66.3 3.01 8.1

CIOU 92.9 91.6 92.2 95.8 66.5 3.01 8.1

EIOU 93.5 91.2 92.3 95.8 67.0 3.01 8.1

WIOU 92.8 91.8 92.3 96.0 66.8 3.01 8.1

NWD 94.1 93.0 93.5 96.6 66.9 3.01 8.1
TABLE 6 Effect of different detection heads on model performance.

Detection Head P% R% F1% mAP50% mAP50-95% Params/M GFLOPs

LADH 92.4 90.9 91.6 95.3 66.3 2.36 5.7

Auxhead 94.0 89.6 91.7 95.2 66.3 3.76 11.2

SEAMHead 93.1 92.0 92.5 96.0 66.5 2.82 7.0

DESCS-DH 93.7 91.3 92.5 96.3 66.6 2.36 6.5
FIGURE 7

Change in loss value.
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4.6 Generalization experiment

To evaluate the model’s adaptability to new data and its

performance in various environments and scenarios, we

conducted generalization experiment. A collection of 823 apple

disease images from different scenarios were selected to be collected

under different light, weather and geographic locations, with 755

images from field scenarios and 68 images from simple scenarios to

simulate a variety of situations in the real world, thus testing the

stability of the model under these conditions. Images were selected

to cover a wide range of disease types including Rust, Scab, Grey

Spot, Frog Eye Leaf Spot, Powdery Mildew, and Alternaria Blotch,

naming this dataset Apple-leaf2.The example of the dataset is

illustrated in Figure 11.
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Experimental results show that the model can work efficiently in

simple scenarios as well as remain robust in complex scenarios. As

shown in Table 10, the ELM-YOLOv8nmodel exhibits an enhanced F1

score of 0.8% and anmAP50-95 value improvement of 1.1%, relative to

the YOLOv8n. Concurrently, the parameter count and computational

complexity are diminished by 44.8% and 39.5%, respectively. These

results suggest that the improved model has strong detection

capabilities for leaf diseases in multifactorial complex scenarios and

is more suited for deployment on mobile devices.

To intuitively illustrate the interpretability of the model’s

decisions, we utilize XGrad-CAM to visualize the model’s

predictions. This method involves computing the gradient of the

feature map in the convolutional neural network relative to the

target category, combining these gradients with the feature map
TABLE 8 Results of ablation experiments.

Fasternet EMA DESCS- DH NWD P% R% F1% mAP50% mAP50-95% Params/M GFLOPs

× × × × 93.2 91.3 92.3 95.5 66.2 3.01 8.1

✓ × × × 93.7 90.2 91.9 95.9 65.3 2.30 6.3

✓ ✓ × × 94.5 92.2 93.3 96.4 66.5 2.31 6.4

✓ ✓ ✓ × 93.8 92.5 93.1 96.5 66.3 1.66 4.9

✓ ✓ ✓ ✓ 94.5 93.6 94.0 96.7 66.9 1.66 4.9
fr
The “✓” indicates that the model employs this module, while the “x” indicates that the model does not employ this module.
FIGURE 8

MAP50 values of YOLOv8n and ELM-YOLOv8n in the detection of six diseases.
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values to obtain importance scores, and normalizing the result to

create a heat map that highlights the critical regions in the image for

decision-making. Figure 12 displays the heat maps comparison

between YOLOv8n and ELM-YOLOv8n on selected test sets. The

heat maps generated by ELM-YOLOv8n reveal that the predicted

targets exhibit darker colors, signifying that the model allocates

greater attention to regions of interest within the target image

during the prediction.
5 Discussion

Current apple disease detection algorithms confront various

challenges, including large model parameters, high computational

complexity, and long inference times (Ma et al., 2024). To effectively

address these issues and achieve accurate detection of apple leaf

diseases, this study introduces the Fasternet Block and proposes a

detail-enhanced shared convolutional scaling detection head
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(DESCS-DH) for constructing a lightweight, real-time object

detection model. Incorporating the Fasternet Block into C2f

reduced the model’s parameters and computational requirements

by 23.5% and 22.2%, respectively. The F1 score slightly decreased by

0.4%, while the mAP50 increased by 0.4%. This can be attributed to

PConv in Fasternet, which convolves only a subset of input channels,

significantly reducing model complexity and storage space needs.

This allows the Fasternet Block to effectively manage the number of

model parameters with minimal performance degradation. Utilizing

DESCS-DH as the detection head for YOLOV8, the model’s mAP50

is enhanced by 0.8% while simultaneously decreasing model

complexity. DESCS-DH is an efficient and lightweight detection

head that boasts several advantages, including the use of shared

convolutions for parameter sharing, which drastically decreases the

number of parameters. In the task of apple leaf disease detection,

critical feature information of the target, such as disease edges and

textures, is often found in image details. Standard convolution

operations may overlook these subtle yet vital details; however,
TABLE 9 Performance comparison of different network models on test sets.

Model P% R% F1% mAP50% mAP50- 95% Params/M GFLOPs

Faster R-CNN 70.2 74.5 72.3 72.5 42.1 28.33 948.2

RT-DETR-l 91.7 91.8 91.7 94.9 65.0 32.0 103.5

YOLOv5n 91.9 91.1 91.5 94.6 63.8 1.77 4.2

YOLOv7-tiny 92.8 91.7 92.2 95.8 65.2 6.02 13.2

YOLOv8-Mobilenetv4 92.1 90.0 91.0 93.4 63.3 5.70 22.5

YOLOv10n 93.5 93.0 93.2 96.5 67.7 2.27 6.5

ELM-YOLOv8n 94.5 93.6 94.0 96.7 66.9 1.66 4.9
FIGURE 9

Changes in mAP50 during training of different models.
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DEConv within DESCS-DH effectively captures them. When

combined with re-parameterization techniques, DEConv optimizes

the convolution operation without increasing the model’s

computational load, thereby enhancing the model’s responsiveness

to input data. In real-world disease detection scenarios, the target

sizes vary significantly. DESCS-DH can adaptively modify its internal
Frontiers in Plant Science 14
parameters, ensuring that the detection head maintains stable

performance across a range of target sizes.

In the recognition of small target diseases on apple leaves within

complex backgrounds, the primary challenges are the small size of

target objects, their subtle features, and their susceptibility to

interference from background noise, lighting variations, leaf
FIGURE 10

Comparison of computation and model size for different models.
FIGURE 11

Example of Apple-leaf2 dataset.
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occlusion, and similar textures. These challenges compound the

difficulty of detection, thereby diminishing recognition accuracy

(Shao et al., 2024; Wang et al., 2024a). Incorporating the EMA

mechanism into YOLOv8n enhances the mAP50 by 0.8%. The

EMAmechanism constructs local cross-channel interactions within

each parallel sub-network without reducing channel dimensions.

Through a cross-space learning approach, it fuses the output feature

maps of the two parallel sub-networks and generates better pixel-

level attention for high-level feature maps. Thus, the model can

focus on the disease area and reduce the influence of disturbing
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factors, even in the presence of light variations or background noise.

Spatial attention weights, processed by the sigmoid function,

capture pairwise pixel relationships, facilitating the model’s

comprehension of structural information within the diseased area

and enabling the recognition of minute disease features through

pixel interactions, even when such features are not readily apparent.

In the detection and localization of small target lesions, they occupy

fewer pixels in the image, which makes it difficult for the model to

accurately determine the category and location of the target, while

the NWD (Normalized Wasserstein Distance) loss function is
TABLE 10 YOLOv8n and ELM-YOLOv8n detection results on Apple-leaf2 dataset.

Dataset Model P% R% F1% mAP50% mAP50- 95% Params/M GFLOPs

Apple-leaf2 YOLOv8n 85.5 94.5 89.8 94.8 57.8 3.01 8.1

ELM-YOLOv8n 85.6 96.3 90.6 95.6 58.9 1.66 4.9
FIGURE 12

Comparison of YOLOv8n and ELM-YOLOv8n heat maps on selected test sets.
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sensitive to the size and distance of the target. Utilizing the NWD as

a loss function for YOLOV8, the model’s F1 score is enhanced by

1.2%, and the mAP50 value is incremented by 1.1%.

Apple orchards usually have a large area, and traditional

artificial disease detection methods are not only extremely

inefficient, but also difficult to achieve comprehensive and timely

monitoring. The enhanced lightweight model proposed in this

study has significant features such as high precision, low

computational complexity and small model size, which makes it

very suitable for deployment on mobile devices with limited

resources. In the next research, we plan to deploy the model on

the UAV. By integrating edge computing devices on the UAV, the

model can process the collected image data in real time during UAV

flights, timely and accurately identify diseases in the orchard, and

provide support for the disease prevention and control of the

orchard. The UAV can automatically fly according to the preset

route and complete the scanning of the entire orchard in a short

time, which greatly improves the detection efficiency.

The ideal UAV platform should have the following

characteristics: sufficient computing power(GPU over 2GB of

VRAM), a high-resolution camera, equipped with a Global

Positioning System (GPS), automatic flight control, wireless

communication systems, multiple sensors, and other functional

components, preferably a multi-rotor UAV (Chen et al., 2021).

However, the accuracy of the model is affected by the distance of the

drone’s image capture and the flight speed. Based on theoretical

analysis, in order to ensure a certain field of view and obtain a clear

image of the leaf, the appropriate flight altitude should be

maintained 3-5 meters (Hou et al., 2023), which can meet the

needs of most disease detection. With the improvement of camera

resolution, the height can be increased to more than 5 meters. The

appropriate flight speed should be set 1.5-3 m/s. By adjusting the

shooting parameters, most common diseases can be accurately

recognized. As the flight speed increases, the recognition accuracy

of the model will decline, and there may be a small amount of

missed detection for some extremely subtle disease features, such as

the early mild symptoms of apple powdery mildew. In addition, the

present model has some limitations in dealing with the presence of

multiple diseases in a leaf, because the training data primarily target

the case of a single disease. Therefore, the model still requires

further optimization and improvement for the identification of

multiple diseases. We will work on these challenges in our future

work to enhance the comprehensive performance and application

scope of the model.
6 Conclusions

To achieve real-time detection of apple leaf diseases in complex

environments, this study introduces an enhanced lightweight

model, ELM-YOLOv8n.In order to overcome the challenge of

inadequate feature extraction from small targets in complex

backgrounds, we incorporate the Efficient Multi-Scale Attention

(EMA), which captures both channel and spatial information,

enhancing feature representation without a significant increase in

parameters or computational cost. To decrease the parameter count
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and computational load, the Fasternet Block is integrated into the

C2f module of the backbone and neck, substantially reducing the

model’s complexity. In order to make the network more lightweight

and better extract the edge information of the disease, we design the

Detail Enhanced Shared Convolutional Scaling Detection Head

(DESCS-DH), which can maintain the high accuracy with fewer

parameters and computation. The detection head can adaptively

modify its internal parameters in response to the input feature map

size, ensuring optimal operating parameters for multi-scale targets,

thereby enhancing resilience to environmental changes and

interference. Lastly, utilizing the NWD loss function enhances the

model’s precision in localizing and identifying small targets, which

further enhances the model’s recognition accuracy.

The experimental results indicate that the ELM-YOLOv8n

algorithm performs well in terms of computational resource

consumption while maintaining excellent detection accuracy,

which fully meets the demand for real-time processing.

Compared to other current models, this approach not only

significantly improves the detection accuracy, but also drastically

reduces the demand for computing platform resources, making it

more feasible to be deployed on resource-constrained devices.

Future research will concentrate on enhancing the model’s

robustness across various environmental conditions and on

optimizing its capability to detect and process a broader range of

crop diseases. The optimized model is poised for successful

application in resource-limited embedded detection systems, with

the algorithm set to undergo further refinement to guarantee its

efficiency and reliability in practical settings.
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