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The need for large amounts of annotated data is a major obstacle to adopting

deep learning in agricultural applications, where annotation is typically time-

consuming and requires expert knowledge. To address this issue, methods have

been developed to select data for manual annotation that represents the existing

variability in the dataset, thereby avoiding redundant information. Coreset

selection methods aim to choose a small subset of data samples that best

represents the entire dataset. These methods can therefore be used to select a

reduced set of samples for annotation, optimizing the training of a deep learning

model for the best possible performance. In this work, we propose a simple yet

effective coreset selection method that combines the recent foundation model

DINOv2 as a powerful feature selector with the well-known K-Means clustering

method. Samples are selected from each calculated cluster to form the final

coreset. The proposed method is validated by comparing the performance

metrics of a multiclass classification model trained on datasets reduced

randomly and using the proposed method. This validation is conducted on two

different datasets, and in both cases, the proposed method achieves better

results, with improvements of up to 0.15 in the F1 score for significant

reductions in the training datasets. Additionally, the importance of using

DINOv2 as a feature extractor to achieve these good results is studied.
KEYWORDS

label-efficient learning, coreset selection, foundation models, agriculture,
unsupervised clustering
1 Introduction

Over the past decade, deep learning has significantly boosted computer vision, enabling

the development of solutions for scenarios where traditional image processing methods fell

short. However, a notable drawback of deep learning lies in its demand for substantial

amounts of annotated data to train models effectively. This poses a challenge for adopting
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these techniques in fields like agriculture, where annotating data

involves considerable effort and specialized expertise.

In many agricultural scenarios, data availability isn’t the issue—

data acquisition is straightforward, and there are many examples to

collect. The expensive part lies in manually annotating that data. To

address this, researchers are recently exploring methods to reduce

the required amount of annotated data (Li et al., 2023; Hu et al.,

2021; Zhu et al., 2020; Shorewala et al., 2021; Egusquiza et al., 2022;

Argüeso et al., 2020). Some of these methods involve selecting

specific samples for annotation from all the available data. The

underlying idea is that training a deep learning model is more

efficient when we have a smaller set of high-quality annotated data

that accurately represents the existing variability, rather than a

large, annotated dataset with many similar samples that may not

provide additional information to the model (Roscher et al., 2023;

Wang et al., 2022). However, selecting representative samples in a

completely unsupervised and straightforward manner remains a

challenge in agriculture, where data content is highly specific to

the field. Effectively extracting relevant information from images

in an unsupervised and simple way, without resorting to

complex methods, is difficult in agricultural data but would be

highly beneficial.

In this work, we address the critical task of selecting a set of

representative samples for annotation to use in the development of

a new agricultural deep learning model. We propose a

straightforward and totally unsupervised method to identify the

most valuable samples that are worth annotating from a large pool

of unlabeled data. Our focus is on creating a small, representative

subset of data that captures the essential information present in the

entire available dataset—a process commonly referred to as coreset

selection. Given that annotation resources are often limited in

practical scenarios, our goal is to achieve optimal results within

these constraints.

Coreset selection has already been used in the context of

selecting training data for machine learning models. Bachem et al.

(2017) provided an overview of coreset selection techniques and

analyzed the results for several common machine learning

problems. Borsos et al. (2020) presented a coreset selection

method based on cardinality-constrained bilevel optimization in

the context of maintaining data summaries to avoid the catastrophic

forgetting in continual learning scenarios. In (Killamsetty et al.,

2021) the authors presented RETRIEVE, a coreset selection method

for making semi-supervised learning trainings more efficient by

selecting a set of unlabeled data to use. CRAIG (Mirzasoleiman

et al., 2020) is a coreset selection method based on gradient

matching. Lee et al. (2024) proposes a coreset selection method

oriented to object detection based on the generation of image-wise

and class-wise representative feature vectors for multiple objects of

the same class within each image. In (Guo et al., 2022) the authors

presented DeepCore, a comprehensive library specifically designed

to facilitate the implementation of coreset selection techniques in

deep neural networks. In addition, they provided a survey and

comparison of the most popular methods in the CIFAR10 and

ImageNet databases. One interesting conclusion of this work is that
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they verify that, considering the methods compared, random

selection reduction remained a great baseline.

In our coreset selection approach, we first extract relevant

features from the dataset images and then apply an unsupervised

clustering algorithm like K-means, clustering similar samples

together and separating diverse ones. By selecting samples from

each cluster, we create a coreset that effectively represents the

dataset’s essential variability. Our proposed method is simple and

easy to implement in any agricultural use case, relying on effectively

extracting relevant features from the available data in an

unsupervised manner. For this task, we evaluate the use of a

state-of-the-art large foundation model, which excels at extracting

high-quality features from images of a specific application field

like agriculture.

We demonstrate the effectiveness of our method to select

representative samples in two public agricultural datasets with

unbalanced classes. Additionally, we highlight the relevance of

DINOv2 (Oquab et al., 2023) in our method, the best image

foundation model to date, which significantly improves upon

previous pre-trained model backbones in the extraction of

relevant features.

The paper is organized as follows. After an introduction to the

problem, the datasets are explained in Section 2. A detailed

description of the proposed solution is detailed in Section 3.

Section 4 explains the experiments performed to validate the

method. The results are gathered and discussed in Section 5, and

conclusions are summarized in section 6.
2 Materials

In this study, we use two public agricultural datasets. The

purpose of using these two datasets is to validate the proposed

method across two different agricultural use cases, each with

varying numbers of images and classes, as well as different types

of content within the images. We choose one dataset with a lot of

images and few classes and another dataset with less images and a

big number of classes.
2.1 PlantVillage dataset

The PlantVillage dataset serves as a valuable resource for plant

disease detection and research. Introduced in (Hughes and Salathé,

2015), this dataset emerged from a not-for-profit collaboration between

Penn State University in the US and EPFL in Switzerland. In this

project tens of thousands of plant leaf images were collected under

controlled conditions. These leaf images were carefully annotated and

made openly and freely accessible. The resulting dataset comprises 54

303 leaf images across 38 classes, including 14 crop species and 26

diseases, featuring both healthy and unhealthy leaves. Figure 1 shows

an example for each of the 38 classes in the dataset and Table 1 shows

the name of the classes together with the number of images per class. It

is observed that the dataset is highly unbalanced.
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Researchers and developers can leverage this dataset to improve

crop health monitoring and disease diagnosis. Actually, this dataset

has been widely used for research on plant disease detection using

deep learning techniques (Mohameth et al., 2020; Argüeso

et al., 2020).

Despite the good results obtained by training deep learning

models with this dataset, it is a very challenging dataset for

extracting features with backbones pre-trained on general data. The

reason is that the dataset is very specific. All the images in the dataset

show one green leaf over a similar background. Shapes, colors and

textures are very similar through the complete dataset. The

characteristics that differentiate the classes are quite subtle in many

cases: the differences in the shape of the leaves may distinguish the

crop and the colors, shapes and textures of the brownish or yellowish

spots on the leaves may distinguish the disease.
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2.2 Oxford 102 flower dataset

The Oxford 102 Flower dataset is a valuable resource for image

classification tasks introduced in (Nilsback and Zisserman, 2008).

The dataset consists of 8 189 images of 102 flower categories, with

each category representing a commonly occurring flower in the

United Kingdom. Within each category, there are between 40 and

258 images. Most of these images were collected from the web, while

a smaller number were acquired directly by the authors. Figure 2

shows examples of 22 of the categories in the dataset. It is observed

that the images exhibit variations in scale, pose, and lighting.

Table 2 shows the name of the 102 categories in the dataset and

the number of images per category. Similar to the PlantVillage

dataset, the Oxford 102 Flower dataset exhibits significant

class imbalance.
FIGURE 1

Examples from the 38 classes in the PlantVillage (Hughes and Salathé, 2015) dataset ordered (left–right) as in Table 1.
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Researchers and developers use this dataset for benchmarking

machine learning models. It serves as a challenging dataset due to the

variations in flower appearance and the large number of classes. In

fact, there is a large similarity between classes and, as the flowers are

non-rigid objects that can deform inmany ways and the same class of

flower can have different color, there is also a large variation within

classes. The extraction of relevant features is therefore challenging.

Flower classes are sometimes distinguished by color, sometimes by

shape or sometimes by patterns on the petals, but often inside a class

there are examples of different colors or shapes. The intra-class

variability is high and inter-class variability is low, which makes the

characterization and class separability problem a challenge.
3 Methods

In this paper, we propose a simple but effective coreset selection

method for agricultural use cases. The goal of coreset selection is to

choose a small subset of images that accurately captures the

diversity present in the entire dataset. Our proposed approach

relies on a feature extractor, followed by an unsupervised

clustering algorithm. From the resulting clusters, we select

samples to form the final coreset and train the multiclass

classification model. Figure 3 shows a flowchart with the different

steps of the complete proposed solution.
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3.1 Feature extraction

An effective extraction of the relevant features of the images is key

for the success of the proposed coreset selection method. We propose

to extract the features using pre-trained backbones, which eliminates

the need for ad-hoc feature extraction based on classical image

processing or training deep learning models like autoencoders.

Overall, this simplifies the coreset selection process significantly.

Until recently, pre-trained backbones were ill-suited for

extracting relevant features from images in very specific application

domains like agriculture. The available backbones were typically

based on convolutional neural networks (CNNs) and trained using

supervised methods on large public datasets such as ImageNet, which

primarily contain generic object categories. However, recent

advancements in image network architectures have introduced

transformer-based neural networks (Dosovitskiy et al., 2020). These

transformers can capture global information from images, surpassing

the limitations of local feature extraction. Additionally, self-

supervised learning has proven highly effective for training

backbones. By avoiding manual annotation, self-supervised learning

enables the use of significantly more data during training. It also

eliminates annotator bias, allowing backbones to extract relevant

features from entire images without category-specific constraints. The

most successful self-supervised tasks are based on contrastive

learning, which assumes that perturbations applied to unlabeled

inputs should not alter the prediction (Chen et al., 2020; Zbontar
TABLE 1 Classes and number of images per class in the PlantVillage dataset (Hughes and Salathé, 2015).

Crop Disease Images Crop Disease Images

Apple scab 630 Pepper healthy 1478

Apple black rot 621 Potato early blight 1000

Apple cedar rust 276 Potato healthy 152

Apple healthy 1645 Potato late blight 1000

Blueberry healthy 1502 Raspberry healthy 371

Cherry healthy 854 Soybean healthy 5090

Cherry powdery mildey 1052 Squash powdery mildew 1835

Corn cercospora 513 Strawberry healthy 456

Corn rust 1192 Strawberry leaf scorch 1109

Corn healthy 1162 Tomato bacterial spot 2127

Corn northern leaf blight 985 Tomato early blight 1000

Grape black rot 1180 Tomato healthy 1592

Grape black measles 1384 Tomato late blight 1910

Grape healthy 423 Tomato leaf mold 952

Grape isariopsis leaf spot 1076 Tomato septoria leaf spot 1771

Orange citrus greening 5507 Tomato spider mites 1676

Peach bacterial spot 2291 Tomato target spot 1404

Peach healthy 360 Tomato mosaic virus 373

Pepper bacterial spot 997 Tomato yellow leaf curl 5357
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et al., 2021; Caron et al., 2021). All this, together with the fact that

nowadays there are sufficient computational resources to handle large

amounts of data, has allowed to obtain foundation models that are

trained in a self-supervised way using tons of data from a wide range

of data sources. In our method, we propose to use one of these

foundation models to extract the relevant features from the images.

We demonstrate the importance of this choice by conducting

experiments with various other pre-trained backbones.

Specifically, in our method we propose to use the recent DINOv2

(Oquab et al., 2023) as the pre-trained backbone for unsupervised

feature extraction. DINOv2 significantly improves previous state-of-

the-art image foundation models, making it an excellent choice for

extracting the relevant features from images of a wide range of

application fields. The vector produced by a pre-trained deep

learning model, which represents the extracted features of an input

image, is commonly referred to as the image embedding.
3.2 Unsupervised clustering algorithm

Unsupervised clustering methods aim to group similar data points

together based on certain criteria. In our work, we propose to use an

unsupervised clustering method to group the image embeddings

extracted by the pre-trained deep learning models, such as DINOv2,

into coherent regions. We propose to use K-Means as the

unsupervised clustering algorithm, as it is a quite simple and widely
Frontiers in Plant Science 05
used clustering algorithm. Given a set of data points (in our case image

embeddings), K-Means split them into a specified number of clusters

(indicated by ‘K’) such that the sum of squared distances between data

points and their cluster centroids is minimized.

Key question for any clustering method is to have the relevant

and meaningful features of the data to cluster. That is, the feature

extraction is the most relevant part to get a good clustering.

Therefore, for our method using a simple and widely used, but

anyway effective, clustering algorithm as K-Means is enough to

select a good coreset that represents the complete dataset.

One of the characteristics of K-Means is that it requires

indicating beforehand the number of clusters (K) and this

number is fixed. In our approach, we introduce various criteria

for determining the optimal number of clusters. Specifically, we

evaluate two main criteria: one based on the dataset’s class count

(where the number of clusters equals the number of classes or a

multiple thereof) and another based on the number of images in the

final coreset aimed for manual annotation.
3.3 Selection of the samples for the
coreset

After extracting the clusters, we select samples from these

clusters to form the coreset, which will later be manually
FIGURE 2

Examples from 22 of the 102 classes in the Flowers dataset (Nilsback and Zisserman, 2008).
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annotated. The desired coreset size is predetermined. Let N be the

number of images in the complete unlabeled training dataset, K the

number of clusters from K-Means, and M the number of images in

the desired reduced labeled training set. At this stage of the coreset

selection method workflow, we have N image embeddings clustered

into K clusters, and we need to selectM samples from these clusters.
Frontiers in Plant Science 06
When the number of clusters (K) equals the number of classes

or a multiple thereof, we randomly select samples from each cluster

until the desired coreset size (M) is achieved. This ensures that the

coreset contains approximately the same number of samples from

each cluster. Consequently, in this case, we randomly take M/K

samples from each cluster for the coreset.
TABLE 2 Classes and number of images per class in the Flowers dataset (Nilsback and Zisserman, 2008).

Category Images Category Images Category Images

Alpine sea holly 43 Buttercup 71 Fire lily 40

Anthurium 105 Californian poppy 102 Foxglove 162

Artichoke 78 Camellia 91 Frangipani 166

Azalea 96 Canna lily 82 Fritillary 91

Ball moss 46 Canterbury bells 40 Garden phlox 45

Ballon flower 49 Cape flower 108 Gaura 67

Barbeton daisy 127 Carnation 52 Gazania 78

Bearded iris 54 Cautleya spicata 50 Geranium 114

Bee balm 66 Clematis 112 Giant white arum lily 56

Bird of paradise 85 Colt’s foot 87 Globe thistle 45

Bishop of llandaff 109 Columbine 86 Globe-flower 41

Black-eyed susan 54 Common dandelion 92 Grape hyacinth 41

Blackberry lily 48 Corn poppy 41 Great masterwort 56

Blanket flower 49 Cyclamen 154 Hard-leaved pocket orchid 60

Bolero deep blue 40 Daffodil 59 Hibiscus 131

Bougainvillea 128 Desert-rose 63 Hippeastrum 76

Bromelia 63 English marigold 65 Japanese anemone 55

King protea 49 Peruvian lily 82 Stemless gentian 66

Lenten rose 67 Petunia 258 Sunflower 61

Lotus 137 Pincushion flower 59 Sweet pea 56

Love in the mist 46 Pink primrose 40 Sweet William 85

Magnolia 63 Pink-yellow dahlia 109 Sword lily 130

Mallow 66 Poinsettia 93 Thorn apple 120

Marigold 67 Primula 93 Tiger lily 45

Mexican aster 40 Toad lily 41 Prince of Wales feathers 40

Mexican petunia 82 Purple coneflower 85 Tree mallow 58

Monkshood 46 Red ginger 42 Tree poppy 62

Moon orchid 40 Rose 171 Trumpet creeper 58

Morning glory 107 Ruby-lipped cattleya 75 Wallflower 196

Orange dahlia 67 Siam tulip 41 Water lily 194

Osteospermum 61 Silverbush 52 Watercress 184

Oxeye daisy 49 Snapdragon 87 Wild pansy 85

Passion flower 251 Spear thistle 48 Windflower 54

Pelargonium 71 Spring crocus 42 Yellow iris 49
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Alternatively, when the number of clusters (K) matches the

desired number of images in the final coreset (M), that is, when

K=M, we randomly choose one sample from each calculated cluster

for the final coreset.
3.4 Multiclass classification model

The selected samples and their manual annotations are used for

training and validating a multiclass classification model. We

allocate 10% of the samples for validation, while the remaining

90% are used for training. The classification model architecture

used in the experiments is always based on the well-known and

extended ResNet (He et al., 2016) (either ResNet18 or ResNet50,

depending on the specific experiment). The classification model is

always trained for 300 epochs with a batch size of 16 and a learning

rate of 0.001. The loss function is categorical crossentropy and the

optimizer is Adam. The input size of the images is always 256x256

pixels and random horizontal and vertical flip augmentation is

applied to the training samples before entering the model. Before

training, the ResNet backbone is initialized with the weights

obtained from pretraining with ImageNet. During training, the

validation images are used to monitor the model’s performance on

unseen data and to save the best weights, defined as those where the

validation loss is minimized.
3.5 Experiments

To assess the effectiveness of the proposed coreset selection

method, we compare the outcomes of reducing the training dataset

using the proposed method with those obtained from random

reduction. We conduct experiments on the two publicly available

agricultural datasets described before: PlantVillage dataset and

Oxford 102 Flower dataset. The target task of the models for both

datasets is multiclass classification.

For the dataset formation in each experiment, we begin by

setting aside 10% of the dataset samples for testing. These test

samples are randomly selected from the complete dataset and are

assumed to have the corresponding ground truth for calculating
Frontiers in Plant Science 07
performance metrics. They are not part of the coreset selection

workflow and are used solely for evaluation.

The remaining 90% of samples are then reduced either by

randomly selecting a subset or by using the proposed coreset

selection method with the corresponding configuration for the

purpose of the experiment. In each round of experiments, we

apply various percentages of reduction. Table 3 displays the

number of images in the training + validation set after excluding

the testing samples and performing reductions for each dataset. The

reductions applied to each dataset are determined based on the

number of images and classes in that dataset.

To minimize the impact of randomness in the test set split, the

image selection and the random initialization of the K-Means

algorithm, we repeat all experiments three times. Specifically, we

perform three repetitions of the test set separation and the

application of dataset reductions across all tested configurations.

For each experiment, we report the average metrics of the three

repetitions along with the standard deviation.

The result of each experiment is evaluated by the metrics

obtained for the test images when training the multiclass

classification model with the reduced dataset in each case. The

multiclass classification metric reported in each experiment is the
TABLE 3 Percentages of the dataset size and the corresponding number
of samples for each dataset of the training + validation set.

PlantVillage Oxford 102 Flower

Percentage
of images

Number
of images

Percentage
of images

Number
of images

100% 48875 100% 6633

30% 14662 30% 1990

10% 4887 20% 1327

5% 2443 15% 995

3% 1466 10% 663

1% 488 7% 464

0.5% 244 5% 332

0.3% 146 3% 199
FIGURE 3

Flowchart of the complete proposed solution. There are three main steps: feature extraction, unsupervised clustering and selection of samples for
the coreset. N is the number of images in the complete unlabeled training dataset, K the number of clusters calculated by K-Means and M the
number of images in the final reduced labeled training dataset (coreset). The input of the pipeline are the N unlabeled images and the output the M
images of the coreset that are labelled and used for the training of the classification model.
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macro-averaged F1 score. This score balances precision and recall

through the harmonic mean between both metrics. It provides a

comprehensive assessment of the classification model’s performance.

In our initial experiments, we aim to validate whether reducing

the dataset using the proposed coreset selection method yields

better results than random reduction. Additionally, we investigate

the optimal strategy for the proposed method in terms of the

number of clusters to extract using K-Means. For these

experiments, we keep the DINOv2 model fixed as the backbone

for feature extraction. In the second round of experiments, the goal

is to assess the influence of the pre-trained backbone used for

feature extraction in the performance of the proposed coreset

selection method. The main objective of this analysis is to assess

the significance of using a large foundational model like DINOv2

for the proposed method. For that, we fix the best strategy of

number of clusters of the K-Means obtained from the previous

experiments. We compare results by reducing the number of

training samples randomly and by applying the proposed coreset

selection method with various pre-trained backbones, all having

similar number of parameters.
4 Results

In this section the results of the performed experiments

are presented.
4.1 Random vs coreset selection with
different number of clusters

To validate the proposed method, we select for labelling a

reduced number of samples from the complete unlabeled training

dataset using both random selection and the proposed coreset

selection method. We then train the multiclass classification

model with these reduced labeled training datasets and compare
Frontiers in Plant Science 08
the F1 score obtained for the same test images with the trained

models. Additionally, to determine the optimal number of clusters

to extract using K-Means, we test different values for the number of

clusters (K) in the proposed coreset selection method. Specifically,

we conduct experiments with K equal to the number of images

selected for the labeled reduced training set, K equal to the number

of classes in the dataset, and K equal to double the number of classes

in the dataset.

Figure 4 illustrates the results for the PlantVillage dataset,

demonstrating that the classification model trained with the

reduced dataset selected by the proposed coreset selection method

generally outperforms the model trained with the randomly

reduced dataset across various sizes of the selected training and

validation datasets.

A detailed analysis of the PlantVillage dataset results is shown in

Table 4 and reveals that when the dataset reduction is minimal, the

outcomes are similar whether the reduced training and validation

subsets are selected randomly or using the proposed method.

However, as the dataset size decreases, the impact of the

proposed selection method becomes more significant. Specifically,

when up to 5% of the data (2 443 images) is used for training and

validation, there is no noticeable difference between random

selection and the proposed method. For larger reductions, the

proposed method’s contribution becomes increasingly evident,

leading to improvements of up to 0.15in the F1 score. For

example, when the dataset is reduced to 0.3% of its original size,

the F1 score achieved with random reduction is 0.54, whereas the

proposed coreset selection method boosts it to 0.69. Additionally, it

is observed that for larger reductions, the proposed coreset selection

method provides more consistent results than random reduction.

This is evidenced by the smaller standard deviation between the

results obtained in the three repetitions of the experiment when

using the best configuration of our coreset selection method in

bigger reductions.

When determining the optimal number of clusters, two main

strategies are compared: selecting the number of clusters based on
FIGURE 4

Results obtained training the multiclass classification model using a ResNet18 backbone with the PlantVillage dataset. The graphs use different colors
to indicate random reduction and reduction by the proposed coreset selection method with varying number of clusters (K=number of images in the
labeled reduced dataset, K=number of classes in the dataset and K=double the number of classes). The left plot displays the absolute F1 scores
achieved for each size of the reduced dataset, while the right plot shows the difference in F1 scores compared to those obtained with random
reduction, highlighting the improvements from the proposed coreset selection method.
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the desired number of images in the coreset or based on the number

of classes in the dataset. The results in the table show that, in

general, the proposed solution outperforms random reduction

regardless of the clustering strategy used. However, the findings

indicate that the best approach is to set the number of clusters equal

to the number of images in the coreset, and then select one image

from each cluster to form the coreset for training the classification

model. This strategy yields significant improvements, especially for

the smallest training and validation sets. For example, training the

classification model with only 0.3% of the available images (146

images) results in an F1 score of 0.54 when samples are selected

randomly, compared to an F1 score of 0.69 when using the coreset

selection method with 146 clusters in K-means. This behavior is

logical, as the K-means algorithm aims to find cluster centroids that

are as far apart as possible while keeping the samples within the

same cluster as close as possible. We need our selected samples to be

as diverse as possible, which is better achieved by having the

number of clusters equal to the number of images we want to select.

To study the influence of classificationmodel size on the results, in

Table 4 we also compare the outcomes of models based on ResNet18

and ResNet50. It is well-known that larger neural networks are more

suitable for bigger datasets, as they have more information to learn

from. However, for smaller datasets, smaller neural networks are

preferable to avoid overfitting. In our experiments, the dataset size

varies significantly (from 14,662 images for training and validation to

just 146 images). Therefore, to confirm that network size does not

influence the results, we conduct experiments with two different

network sizes. The data in Table 4 shows that the F1 scores

obtained with both backbones are very similar in all cases, with

differences not exceeding 0.01 in nearly all instances. This means

that for both tested backbones the conclusions are the same: the

proposed coreset selection method outperforms random selection for

smaller coreset sizes, and the best strategy is to set the number of K-

means clusters equal to the number of images in the coreset. Thus, it
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can be concluded that using a smaller network is more efficient, as

training process is faster and the performance of the classification

model is not compromised, even outperforming larger networks when

the training dataset is smaller.

To better understand why the proposed coreset selection

method outperforms random reduction, we conducted an analysis

in a scenario with significant reduction. Specifically, we examined

the dataset balancing and distribution of the reduced datasets, each

containing 146 images, generated by the proposed coreset selection

method (with K=146) and by the random reduction method.

Figure 5 illustrates the number of images per class selected by

both methods together with the F1 score per class in both cases and

Figure 6 shows the distribution of the selected samples in both cases

in a t-SNE representation (der Maaten and Hinton, 2008) of the

complete dataset. It is a two-dimensional spatial representation of

the embeddings obtained from DINOv2 for all the samples of the

dataset, colored by the real class to what each sample belongs and

with the samples selected after the reduction highlighted.

It is clear that the proposed method achieves better dataset

balancing compared to random reduction. This leads to an

improved F1 score for nearly all classes. Notably, with random

reduction, five classes have no selected images, resulting in an F1

score of 0 for these classes. In contrast, the proposed method ensures

at least one image is selected for every class, significantly enhancing

the F1 score for those classes. For instance, in the random reduction,

no images are selected for classes such as “Tomato mosaic virus” or

“Grape isariopsis leaf spot”. However, with the proposed method, two

images per class are selected for these classes, improving their F1

scores from 0 to 0.92 and 0.89, respectively. The improved

performance in dataset balancing achieved by the coreset selection

method is due to the combination of image embeddings extracted by

DINOv2 and the K-Means algorithm. This combination effectively

separates images of different classes into distinct clusters based on

their representative features. This is particularly important for
TABLE 4 The mean and standard deviation of the F1 scores from classification models trained on various sizes of reduced training datasets using
different strategies (random reduction and the proposed solution with varying numbers of clusters for K-Means) are reported.

Percentage
of reduction

in the
training
dataset

30% 10% 5% 3% 1% 0.5% 0.3%

R
es
N
et
18

Random 0.99 ± 0.00 0.97 ± 0.01 0.96 ± 0.00 0.93 ± 0.01 0.83 ± 0.01 0.72 ± 0.04 0.54 ± 0.05

K=classes 0.98 ± 0.01 0.97 ± 0.00 0.94 ± 0.02 0.92 ± 0.01 0.85 ± 0.01 0.73 ± 0.06 0.59 ± 0.05

K=2·classes 0.99 ± 0.01 0.97 ± 0.00 0.95 ± 0.02 0.93 ± 0.01 0.80 ± 0.01 0.73 ± 0.06 0.64 ± 0.05

K=images 0.99 ± 0.00 0.97 ± 0.00 0.96 ± 0.01 0.95 ± 0.01 0.85 ± 0.00 0.78 ± 0.02 0.69 ± 0.03

R
es
N
et
50

Random 0.98 ± 0.01 0.98 ± 0.00 0.96 ± 0.01 0.94 ± 0.02 0.84 ± 0.02 0.74 ± 0.05 0.55 ± 0.03

K=classes 0.99 ± 0.01 0.97 ± 0.01 0.96 ± 0.01 0.93 ± 0.01 0.84 ± 0.04 0.74 ± 0.05 0.64 ± 0.01

K=2·classes 0.98 ± 0.01 0.97 ± 0.01 0.95 ± 0.02 0.94 ± 0.02 0.81 ± 0.03 0.72 ± 0.03 0.66 ± 0.02

K=images 0.99 ± 0.01 0.98 ± 0.00 0.96 ± 0.02 0.95 ± 0.02 0.86 ± 0.02 0.79 ± 0.03 0.67 ± 0.02
The results include models based on both ResNet18 and ResNet50 backbones.
Bold values remark the experiments showing the best results for every proposed reduction in the training data and the network architecture.
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unbalanced datasets like the PlantVillage dataset, where some classes

are underrepresented.

Additionally, it is observed that the samples selected by the

proposed method are better distributed across the entire dataset

compared to those chosen by random reduction. This means that the

samples selected in the proposed method represent better the variability

of the whole dataset, enabling the model to learn to work in a wider

scope of the use case. The improved variability is evident even within

individual classes. For instance, in the “Soybean healthy” and “Apple
Frontiers in Plant Science 10
healthy” classes (turquoise and purple samples in Figure 6, respectively),

although the proposed method selected half as many samples as the

random reduction, the F1 scores significantly improved. Specifically, the

F1 score for “Soybean healthy” increased from 0.86 to 0.97, and for

“Apple healthy,” it rose from 0.57 to 0.88. The reason is that, as it is

observed in the t-SNE representation, the selected samples are better

distributed across all the variability of the class.

Finally, to thoroughly evaluate the effectiveness of the proposed

coreset selectionmethod, Figure 7 and Table 5 presents the results from
FIGURE 5

On the left number of images per class when reducing the training and validation sets of PlantVillage to 146 images by random reduction and by the
proposed coreset selection method with the best strategy of number of clusters equal to number of classes. On the right the F1 score per class in
each case.
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the Flowers dataset. The conclusions drawn from these results are

consistent with those from the PlantVillage dataset. Specifically, in the

case of this dataset the proposed coreset selection method successfully

selects representative samples from the entire dataset, yielding better

results than random selection. Additionally, as in the case of

PlantVillage the strategy of setting the number of clusters equal to

the number of images to be selected generally proves to be the

most effective.

For the Flowers dataset, the benefits of the proposed method are

evident even with smaller dataset reductions, as this dataset has fewer

samples and more classes than PlantVillage. Using 10% of the dataset

for training and validating the multiclass classification model involves

only 663 images, which would equate to approximately 6 images per

class in a perfectly balanced dataset. In this scenario, the F1 score

improves from 0.67, when using 663 randomly selected images to

train a classification model based on ResNet18, to 0.75 when the same

number of images are selected using the proposed coreset selection

method. These results confirm the generalizability of the proposed

method across different use cases.

In Figure 8, we analyze the images of one of the dataset’s classes

selected by both the random reduction method and the proposed
Frontiers in Plant Science 11
coreset selection method (with K equal to the number of images) in

one of the experiments for training the classification model with

10% of the dataset. Specifically, we examine the selection for the

“fritillary” class. We observe that the random reduction method

selects 9 images of this class, while the proposed method selects 5

images. Notably, this type of flower can be either pink or white in

the dataset. Despite selecting more images, the random reduction

method fails to include any white flowers. In contrast, the coreset

selection method ensures that at least one white flower is included.

This results in an improvement of the F1 score for this class from

0.82 to 1 with half the training samples. This demonstrates how the

proposed coreset selection method better represents the dataset’s

variability in the reduced dataset.
4.2 Comparison of pre-trained backbones
for feature extraction

To evaluate the significance of the selected pre-trained

backbone for extracting image features in the proposed coreset

selection method, the method is tested using various pre-trained
FIGURE 7

Results obtained training the multiclass classification model using a ResNet18 backbone with the Flowers dataset. The graphs use different colors to
indicate random reduction and reduction by the proposed coreset selection method with varying number of clusters. The left plot display the
absolute F1 scores achieved for each size of the reduced dataset, while the right plots show the difference in F1 scores compared to those obtained
with random reduction, highlighting the improvements from the proposed coreset selection method.
FIGURE 6

t-SNE representation of the complete PlantVillage dataset with the 146 images selected for training and validation on one of the experiments
highlighted. On the left, the selection of the samples is done randomly and on the right the selection is done by the proposed coreset selection
method with the best configuration.
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Gómez-Zamanillo et al. 10.3389/fpls.2025.1546756
backbones with a similar number of parameters. Specifically, we

consider ResNet34 (He et al., 2016) (a traditional convolutional

architecture) and the ConvNext-tiny (Liu et al., 2022) (a more

modern convolutional architecture), both pre-trained in a

supervised way using the 1.28M images of ImageNet-1K.

Additionally, we include ViT-Small (Dosovitskiy et al., 2020),

which is transformer-based, also pre-trained on ImageNet-1K in a

supervised manner. Finally, we consider DINOv2 (Oquab et al.,

2023), based also on a ViT-Small architecture but pre-trained in a

self-supervised way using 142M images. Throughout these

experiments, ResNet18 is used as the backbone for the multiclass

classification model and the best configuration from previous

experiments is fixed, that is, the number of clusters in K-means is

set equal to the number of images to select. The classification

performance with different sizes of training and validation sets is

reported for both datasets. Figure 9 shows the results obtained in

this comparison.

The results from both datasets lead to similar conclusions. On

the one hand, the worst outcomes are observed when using the

proposed coreset selection method extracting the image features

with convolutional architectures, such as ResNet34 or ConvNext

Tiny, pre-trained in a supervised manner on ImageNet-1K.

Specifically, when using ResNet34, a more traditional backbone,
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the results generally do not even surpass those obtained by

randomly reducing the dataset. However, switching to more

modern architectures, such as the transformer-based network ViT

Small, yields better results. These findings suggest that transformer-

based networks are more effective at extracting image features than

convolutional networks. When both types of architectures, of

similar size, are pre-trained with the same data and approach

(supervised), the transformer-based architecture consistently

provides superior results.

On the other hand, it is observed that using the same

transformer-based architecture for image feature extraction yields

better results when it has been pre-trained in a self-supervised

manner rather than a supervised way. For the Flowers dataset, the

self-supervised approach consistently produces much better results.

In the case of the PlantVillage dataset, better performance is mainly

observed when the dataset reduction is more significant. The

superior results obtained with the self-supervised pre-trained

backbone can be attributed to the possibility to use much more

data in the pre-training process, as manual annotation is not

required. In fact, in the supervised pre-training 1.28M images are

used while DINOv2 is pre-trained in a self-supervised way using

142M images. This extensive pre-training allows the network to

learn to extract features from a much larger number of examples,
FIGURE 8

Images of “fritillary” class selected for training in one of the experiments with 10% of the dataset by (a) the random reduction and (b) the proposed
coreset selection method with k equal to number of images.
TABLE 5 The mean and standard deviation of the F1 scores from classification models trained on various sizes of reduced training datasets using
different strategies (random reduction and the proposed solution with varying numbers of clusters for K-Means) are reported.

Percentage
of reduction

in the
training
dataset

30% 20% 15% 10% 7% 5% 3%

R
es
N
et
18

Random 0.88 ± 0.01 0.82 ± 0.03 0.77 ± 0.04 0.67 ± 0.02 0.64 ± 0.03 0.52 ± 0.04 0.38 ± 0.03

K=classes 0.87 ± 0.04 0.81 ± 0.05 0.73 ± 0.12 0.71 ± 0.06 0.66 ± 0.03 0.51 ± 0.09 0.45 ± 0.03

K=2·classes 0.88 ± 0.01 0.84 ± 0.02 0.77 ± 0.03 0.72 ± 0.02 0.65 ± 0.02 0.61 ± 0.05 0.46 ± 0.02

K=images 0.88 ± 0.02 0.86 ± 0.02 0.83 ± 0.02 0.75 ± 0.02 0.66 ± 0.02 0.58 ± 0.04 0.46 ± 0.03
Bold values remark the experiments showing the best results for every proposed reduction in the training data and the network architecture.
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covering a wider spectrum of the reality and representing many

more fields of application. Additionally, supervised pre-training

introduces annotator bias, leading the model to primarily learn to

distinguish objects. In contrast, self-supervised pre-training

proposed in DINOv2 enables the model to learn from the entire

image, focusing on important details and thus becoming a better

image feature extractor.

To further understand the results obtained in these

experiments, we calculate two clustering metrics using the real

labels of the complete dataset and the different pre-trained

backbones used for feature extraction. Specifically, we calculate

the Davies-Bouldin score and the Silhouette score. The Davies-

Bouldin score measures the average similarity ratio of each cluster

with its most similar cluster, considering both the compactness

within clusters and the separation between clusters. The best value

for this score is 0. The Silhouette score measures how similar an

object is to its own cluster compared to other clusters, with values

ranging from -1 to 1, where 1 is the best value. In our case, better

values of these scores indicate better separation of the different

classes in the dataset, and consequently, better performance of the

feature extraction. Table 6 shows the results obtained for these

metrics. They are consistent with those shown in Figure 9, with ViT

Small DINOv2 being the pre-trained backbone that best clusters the

samples of the same class in both datasets. This indicates that it is

the backbone that most effectively extracts the relevant features of

the images.
Frontiers in Plant Science 13
Additionally, to visually contrast these results we create t-SNE

representations (der Maaten and Hinton, 2008) of the feature

vectors produced by the tested pre-trained backbones for the

Flowers dataset. This involves generating a two-dimensional

spatial representation of the embeddings obtained by each pre-

trained backbone for all the images available for training and

validation, with each sample colored according to its ground

truth class. Figure 10 displays these representations. In the case of

ResNet34 pre-trained in a supervised manner, the feature vectors

are highly mixed, making it impossible to obtain proper clusters

using K-Means. When switching to a more modern convolutional

architecture like ConvNext Tiny, the feature vectors are better

grouped by class, although they remain somewhat mixed overall.

The results are very similar with a transformer-based architecture

(ViT Small) pre-trained in a supervised way with the same data.

Finally, DINOv2, which is also based on ViT Small but pre-trained

in a self-supervised manner using a large amount of data,

significantly enhances image feature extraction. The calculated

embeddings are clearly grouped by class, allowing the K-Means

algorithm to form clusters that accurately represent the dataset.
5 Conclusions

The coreset selection method proposed in this work is highly

effective yet very simple to apply for choosing the most representative
TABLE 6 Davies-Bouldin and Silhouette score for both complete datasets and the tested pre-trained backbones considering the real labels.

Percentage of
reduction in the
training dataset

PlantVillage dataset Flowers dataset

Davies-Bouldin Silhouette Davies-Bouldin Silhouette

ResNet34 ImageNet1K 27.43 -0.03 16.04 -0.05

ConvNext Tiny ImageNet1K 3.68 0.01 2.91 0.01

ViT Small ImageNet1K 3.21 0.04 3.13 0.04

ViT Small DINOv2 2.90 0.09 1.40 0.30
Bold values remark the experiments showing the best results for every proposed reduction in the training data and the network architecture.
FIGURE 9

Results for the PlantVillage dataset (left) and Flowers dataset (right) comparing various pre-trained backbones used as feature extractors. The plots
illustrate the F1 score of the multiclass classification model, trained with different percentages of the training and validation datasets. Each color
represents the results obtained using the proposed coreset selection method for dataset reduction with different feature extractors, except for the
grey color, which shows the results obtained by randomly reducing the dataset.
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samples from a dataset for manual annotation. It enables the creation

of a deep learning model for any agricultural use case with strong

performance while significantly reducing the required annotation

effort. The results obtained using this method to select the training

set are significantly better than those achieved by random selection,

especially when the reduction of annotated training data is substantial.

This is particularly relevant for agricultural use cases where obtaining

annotated images is usually challenging.

Additionally, this work also demonstrates the effectiveness of

recent foundation models like DINOv2. Trained in a self-supervised

manner on a vast amount of data, these models can properly extract the

most relevant features from images. Proper feature extraction is critical

for the effectiveness of the proposed coreset selection method.

Among the potential extensions and applications of this work,

the proposed coreset selection method could be highly effective for

selecting an initial set of samples to train a robust first model, which

can then be improved through a continual active learning cycle.

Having a high-performing initial model is crucial for the active

learning cycle to yield better results. Additionally, this method

could be suitable for selecting the few annotated data needed in a

semi-supervised solution. Also, improvements in the method could

be made, particularly in the unsupervised clustering part. While K-

Means is a simple and effective algorithm, it has limitations, such as

the need to specify the number of clusters in advance and the fact

that it may not be the most suitable algorithm for a large number of

clusters. Finally, it should be pointed out that, although the

proposed method has been validated for multiclass classification

on two different agricultural datasets, the concept could also be

applied to select reduced training sets for any other task or use case,
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especially since the best configuration is to select K equal to the

number of images and therefore the model task to apply this

method is not limited to classification.
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