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Introduction: Accurate and automated yield estimation for red cluster pepper

(RCP) is essential to optimise field management and resource allocation.

Traditional object detection-based methods for yield estimation often suffer

from time-consuming and labour-intensive annotation processes, as well as

suboptimal accuracy in dense environments. To address these challenges, this

paper proposes a novel multiscale feature enhancement network (MFEN) that

integrates a learnable density map (LDM) for accurate RCP yield estimation.

Methods: The proposed method mainly involves three key steps. First, the

kernel-based density map (KDM) method was improved by integrating the

Swin Transformer (ST), resulting in LDM method, which produces higher

quality density maps. Then, a novel MFEN was developed to improve feature

extraction from these density maps. This network combines dilation convolution,

residual structures, and an attention mechanism to effectively extract features.

Finally, the LDM and the MFEN were jointly trained to estimate both yield and

density maps for RCP.

Results and discussion: The model achieved superior accuracy in RCP yield

estimation by using LDM in conjunction with MFEN for joint training. Firstly, the

integration of LDM significantly improved the accuracy of the model, with a

0.98% improvement over the previous iteration. Compared to other feature

extraction networks, MFEN had the lowest mean absolute error (MAE) of 5.42,

root mean square error (RMSE) of 10.37 and symmetric mean absolute

percentage error (SMAPE) of 11.64%. It also achieved the highest R-squared

(R²) value of 0.9802 on the test dataset, beating the best performing DSNet by

0.98%. Notably, despite its multi-column structure, the model has a significant

advantage in terms of parameters, with only 13.08M parameters (a reduction of
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3.18M compared to the classic single-column network CSRNet). This highlights

the model’s ability to achieve the highest accuracy while maintaining efficient

deployment capabilities. The proposed method provides an robust algorithmic

support for efficient and intelligent yield estimation in RCP.
KEYWORDS

red clustered pepper, yield estimation, density map generation, Swin Transformer,
hybrid dilation convolution, multiscale feature enhancement network
1 Introduction

China has the world’s largest area under pepper cultivation. As

a highly valued vegetable, pepper makes a significant contribution

to the agricultural sector in terms of production value and

efficiency. The growing global demand for pepper and its

processed products underlines its strategic importance in

Chinese agriculture. With the advancement of modern

agriculture, pepper production continues to increase,

necessitating the implementation of automated management

practices. Automated yield estimation is crucial in this context,

serving as a cornerstone in the research and development of

advanced agricultural technologies. This estimation helps

researchers evaluate the characteristics of different pepper

varieties to improve yields, and optimises crop management

strategies by monitoring the environmental impact on pepper

growth. In the field of precision agriculture, yield estimation

enables growers to make precise inputs tailored to the specific

needs of the crop, minimising waste and maximising efficiency.

However, accurate prediction of pepper yields remains a

challenge, the clustered growth pattern of RCP, characterised by

high fruit density and heterogeneous size distribution among

individuals, combined with their predominant open-field

cultivation, renders the species particularly vulnerable to

environmental interference during detection processes.

Therefore, the development of efficient yield estimation methods

is critical.

Traditional image processing techniques have been used for

plant detection and counting for automated yield estimation.

However, the performance of these methods is often hampered by

external factors such as lighting and background variations, which

affect accurate feature extraction and reduce the accuracy and

robustness of yield estimation. Apte and Patavardhan (2021)

achieved quality detection of oranges and bananas by extracting

colour features and texture features. Wan et al. (2022) identified and
le feature enhancement

ased density map; ST,

, Fixed kernel density

ruth.

02
counted pineapple canopies by extracting shape, colour and texture

features of pineapple canopies. Sun et al. (2019) used a dual-

threshold area growth method combining colour and spatial

features to extract pods and background, and proposed three

geometric feature-based algorithms for pod number estimation.

Convolutional neural networks (CNNs) have developed rapidly

and have made remarkable progress in various fields based on

biological mechanisms of visual cognition, such as disease

diagnosis, object recognition and plant segmentation (Lecun

et al., 1998; Krizhevsky et al., 2017). CNNs have also been

extensively applied to plant counting for yield estimation, using

three main methods: detection-based counting (DC), direct

regression counting (DRC), and regression density map counting

(RDMC). The DC methods (Zhang et al., 2020; Hu et al., 2022) use

object detection networks to identify targets within input images

and generate bounding boxes for each target to determine the final

count. Numerous detection models have been proposed, including

Faster R-CNN (Ren et al., 2017), FPN (Lin et al., 2017), YOLO and

its variants (Redmon et al., 2016; Redmon and Farhadi, 2018;

Bochkovskiy et al., 2020; Li et al., 2024). For example, Bargoti and

Underwood (2017) used Faster R-CNN to detect apples, almonds

and mangoes. Wang et al. (2022) developed a lightweight detection

model YOLOv5s-CFL for Xiaomila. Nan et al. (2023) optimised

YOLOv5l for green pepper detection using a pruning algorithm

based on NSGA-II. Xie et al. (2024a) improved YOLOv5s and

obtained the YOLO-Ginseng model for the detection of ginseng

fruits in a natural environment. However, these methods are

primarily effective for non-dense, close-up targets with smaller

detection areas. For dense tasks, especially those involving

occlusion and overlapping targets, the annotation process is

labour intensive and difficult to ensure quality, resulting in low

detection accuracy and poor performance. The DRC methods

(Alkhudaydi and de la Iglesia, 2022; Zaji et al., 2021) estimate

quantities by direct regression, bypassing the laborious annotation

process of DC methods and requiring only point annotations,

thereby significantly reducing the workload. This approach is

particularly advantageous for counting in complex scenarios such

as crowds, dense cells and field crops. The TasselNet model series

proposed by Lu et al. (2017), Lu et al. (2022) and Xiong et al. (2019)

is used to count wheat ears in fields, but is highly sensitive to image

angle and susceptible to background interference, resulting in poor
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robustness. Furthermore, the DRC methods lack the ability to

visualise the spatial distribution of target objects.

The RDMC methods (Zhang et al., 2015) use density maps as

regression targets, generating intermediate representations from RGB

images. The model is trained on these maps, which outputs a

representation of the same dimensions as the original image. By

using the density map, the regressor accurately estimates the number

of targets within the image. This method enhances the learning of

broader contextual features by integrating additional spatial data,

thereby increasing accuracy and overcoming the limitations of direct

regression counting, which cannot visualise results. Taking advantage

of these benefits, this counting technique was used to yield estimation

in RCP. By annotating these peppers with points, the labelling effort

was significantly reduced, and the density maps generated provide

valuable insights into their spatial distribution. However, robust

models for counting RCP in natural environments are still in their

infancy. Most current methods use point-labelled density maps as

ground truth (GT) via Gaussian filtering, followed using

convolutional neural networks to extract features. The MCNN

proposed by Zhang et al. (2016) uses convolutional kernels of

different sizes to extract features from the same feature map and

merge these features to generate a density map. However, the

extracted shallow features are insufficient to capture the complexity

offield scenes, thereby limiting the counting accuracy. Li et al. (2018)

developed CSRNet tomitigate this, an improved convolutional neural

network tailored for high-density scenes. This network improves the

performance of several counting tasks through a cascaded dilated

convolutional structure, although its single-column design struggles

with targets of different scales. Liu et al. (2019) introduced the

CANNet, a network designed to improve feature representation.

However, its density estimation based on image planes struggles to

correct for perspective distortion, compromising the robustness of

the model in scenes with significant viewpoint variations. Gao et al.

(2020) proposed the ASPDNet model, which excels in object

counting in large-scale remote sensing data, but requires further

refinement for non-remote sensing applications. Dai et al. (2021)

developed the DSNet model, which addresses scale variations in

crowd counting through dense dilated convolutional blocks and

dense residual links. Although effective on several public datasets,

its performance is suboptimal in sparse crowd conditions. Zand et al.

(2022) introduced the MPS model, which features a multiscale

architecture with multitask point-supervised crowd counting and

localisation. While it performs well in dense, variable scenarios, its

overall accuracy remains a limitation. Du et al. (2023) proposed the

HMoDE model, which improves crowd-counting accuracy in dense

scenarios by hierarchically mixing multiscale density experts and

incorporating a relative local counting loss. However, its performance

in sparse scenarios still needs improvement. Previous research have

mainly focused on dense crowd counting, where crowd morphology

is relatively uniform. This uniformity allows density maps generated

by FDM to effectively capture spatial information, enabling general

feature extraction networks to learn GT data. However, for wild RCP,

the FDM fail to accurately represent spatial information due to

significant variations in growth patterns and discrepancies between

the Gaussian shape and the actual shape of the pepper. A training
Frontiers in Plant Science 03
approach is used to generate learnable density maps to address above

problem, as the enhanced spatial information of density maps is more

beneficial for model training. Furthermore, to address the technical

limitations of existing counting models, which predominantly

concentrate on crowd counting scenarios and exhibit parameter

excessive counts this, the study proposes a lightweight, high-

precision MFEN. Designed to overcome the challenges associated

with multiscale RCP fruit detection in field conditions, MFEN

incorporates an innovative three-column, five-layer cascaded

architecture. This architecture enables differentiated configuration

of convolution kernel sizes within the triplet lightweight

enhancement module group. By adhering to the principle of hybrid

dilated convolution, the network dynamically adjusts dilation

coefficients both within and across modules, thereby effectively

suppressing grid artefacts while constructing multi-scale a feature

pyramid. Consequently, the proposed framework achieves synergistic

optimisation of RCP feature accuracy characterisation and model

computational efficiency.

Within the of realm precision agriculture, RCP yield estimation

based on vision technology encounters dual technical challenges:

the paucity of publicly available annotated datasets and the absence

of robust yield estimation algorithms capable of handling complex

environmental conditions. To address these challenges and enhance

the practical applicability of the technology, this study employs a

systems engineering approach to achieve the deep integration of

technological innovation and agricultural practice: Firstly, we

developed a novel RCP dataset tailored for clustered crops using a

multi-rotor unmanned aerial vehicle (UAV) platform. This dataset

spans three fields characterised by varying crop densities and

comprises 1,200 high-resolution images. Through the

establishment of a comprehensive multi-task annotation

framework encompassing plant localisation, disease identification,

and cluster fruit counting, this dataset significantly enhances field

monitoring efficiency, thereby optimising crop yield estimation.

This approach aligns with the strategic of FAO direction toward

sustainable intensification in agriculture. Secondly, we propose

MFEN, leveraging lightweight deep metric (LDM) learning.

Designed with an embedded lightweight architecture, MFEN

achieves real-time processing at 130.32 FPS on experimental

devices. Experimental results demonstrate that MFEN achieves an

average counting accuracy of 98.02% under field conditions.

Furthermore, the yield prediction model developed using MFEN

significantly enhances crop planning efficiency and minimises yield

losses resulting from inaccurate predictions. This network is

structured with a backbone network, a multiscale enhancement

module, and a density map regression module. The operational

process of the network is as follows: First, annotated point

information is fed into the density map generation (DMG)

network for feature extraction, resulting in a density feature map.

Next, the backbone network extracts shallow semantic information

from the RGB image and feeds it to the feature enhancement

module of the MFEN network to derive deep semantic

information at different scales. The final enhanced feature maps,

combined with the feature maps generated by the DMG network,

are used to compute the loss, facilitating continuous optimisation of
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both the DMG and the MFEN. Finally, the regression module

estimates both quantitative and density maps. The main

contributions of this study are:
Fron
1. A high quality dataset of images of the RCP taken in natural

environments at different scales has been generated. This

dataset is designed to support tasks such as localisation,

identification and counting of clustered peppers.

2. The KDM generation network is improved by integrating

the ST, recognising the critical role of density maps in

training. This modification reconfigures the feature

extraction network and leverages the global modelling

capabilities of the ST to improve the quality of DMG.

3. A MFEN is developed based on the multi-column structure

of the MCNN. By integrating dilated convolution, residual

concatenation, and an attention mechanism, the ability

model of the model to extract and fuse deep contextual

information has been improved without increasing the

number of parameters. This improvement results in

improved accuracy and stability. Evaluations on our

dataset show that MFEN achieves the lowest MAE, RMSE

and SMAPE values of 5.42, 10.37 and 11.64% respectively,

along with the highest R² value of 0.9802. Compared to the

existing methods, our model shows superior accuracy in

detecting targets in dense scenes and achieves higher

counting accuracy.
This paper is organised as follows: Section 2 describes the data

acquisition and processing, the DMG method, and the MFEN.

Section 3 discusses the training of feature extraction networks using
tiers in Plant Science 04
different DMG methods and verifies the effectiveness of our

approach through experiments. Section 4 provides a discussion,

and the final section presents the conclusions.
2 Materials and methods

2.1 Data acquisition and data process

Wild field RCP was collected to ensure the authenticity and

feasibility of the data, specifically the variety Pepper Yan 908, in

Hongfang Village, Cliphezi Township, Wusu City, Tacheng

District, Xinjiang Uygur Autonomous Region. Data collection was

conducted using a DJI Mavic 3 Pro UAV at an altitude of 2.5 metres

at a slow flight speed (0.2 m/s), as shown in Step 1 of Figure 1. In

this study, a spatio-temporal stratified sampling strategy is

implemented to systematically acquire image data from

experimental plots characterised by low, medium, and high

growth density gradients during two critical time windows: the

peak of daily light radiation (11:00-13:00) and the inflection point of

diurnal temperature variation (16:00-18:00). This approach enabled

the construction of a remote agricultural sensing comprehensive

dataset that capture sensitively spatial the heterogeneity of biomass

distribution the, multi-scale characteristics of the target objects, and

the environmental variables of thermal conditions and light. Images

were taken in each field by adjusting the magnification of the drone

lens. The pepper samples from each field are shown in Step 1 of

Figure 1. Prior to mechanical harvesting, attention was focused on

mature, clustered peppers that were ready for harvest after

defoliation. The dataset is divided into training, validation and
FIGURE 1

The flowchart from data acquisition to data processing.
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test sets to ensure a uniform distribution of photographs at each

scales, with 1,000 sample images for training, 100 for validation and

100 for testing. All images were uniformly cropped from 1920 ×

1080 to a resolution of 640 × 640 in Step 2 of Figure 1. The

composition of the dataset is detailed in Table 1. Data augmentation

techniques are applied to increase the data richness, such as

horizontal flipping, luminance transformation, and Gaussian

noise addition. These methods are applied randomly during

training to increase the diversity of the raw data in Step 4

of Figure 1.

In many conditions, targets are often small and heavily

occluded, posing a challenge for box annotation. Point annotation

is used to reduce the complexity of annotation and increase the

efficiency of subsequent algorithmic processes. The dataset was

annotated using the Labelme software, where each pepper was

marked with a point at its centre. The coordinates of all the

peppers within each image were recorded as their GT labels. The

resulting JSON file encapsulates the 2D coordinate information for

each instance. The labelled visualisation is shown in Step 3

of Figure 1.
2.2 LDM generation network

Direct integral estimation is a significant challenge. Regression

density maps are used to reduce complexity and increase accuracy.

Three common methods for generating these maps are:
Fron
1. Fixed kernel density map (FDM): This approach, converts

discrete data points into a continuous soil density

distribution using Gaussian kernel smoothing in Figure 2.

2. Refined density map (RDM): This method improves the

quality of density maps produced by the fixed Gaussian

kernel approach in Figure 2.

3. Adaptive kernel density map (ADM): This technique

adaptively fuses together traditional density maps with

different kernel bandwidths in Figure 2.
The goal of generating density maps is to simulate objects of

interest across multiple poses and viewpoints, thereby maximising

their spatial information and improving estimation accuracy.

However, these Gaussian kernel-based approaches have

certain limitations:
tiers in Plant Science 05
a. The total number of peppers in the generated density maps

may differ from the actual number due to potential

summation bias introduced by the fusion network.

b. Gaussian kernels are inadequate for targets with

significantly different shapes, especially for objects such

as peppers.

c. Analysing individual kernel shapes is challenging because

the density maps are generated directly.
A KDM method is used to produce high quality density maps

for model training (Wan et al., 2022). This method effectively

addresses the challenges the above challenges. Specifically, a

density kernel is constructed for each object, which is then used

to generate a density map centred on the object’s position. The

kernel is normalised to sum to one, ensuring that the total number

of objects in the density map matches the actual number of objects.

In addition, the kernel shapes are explicitly defined for each object,

facilitating analysis and allowing adaptability to different object

types. This approach allows the framework to generate accurate

density maps for RCP.

In this study, the KDM method was improved, as shown in

Figure 3. The generator module was redesigned by integrating the ST

(Liu et al., 2021) as the kernel generator. The ST encoder is particularly

suited to serve as a generator due to its global feature extraction

capability, which is more conducive to the back end of DMG model

for generating high quality density maps (Xie et al., 2024b).

The ST has the global modelling capability of the transformer

and effectively reduces the computational complexity of the

transformer through the sliding window mechanism. The

layered structure of the ST is shown in Figure 4, which

includes layer normalisation, residual connections, sliding

window-based multi-head self-attention (SW-MSA) and multi-

layer perceptron (MLP) modules. Unlike the standard

Transformer, the ST uses SW-MSA to restricts self-attention to

the local window, reducing the computational complexity from

ο(P2) to ο(PM2), where P is the number of patches and M is the

window size. For M ≪ P, the computational complexity of the

ST is significantly lower than that of the standard global self-

attention transformer. The redesigned generator architecture is

illustrated in Figure 3. For an input image, it is divided into 4 × 4

non-overlapping patches, which are then flattened and

transformed into c-dimensional features. These features are

processed by the ST through a cascade of three groups. The

output of the second ST block is integrated with the input of the

third block to further improve performance. As a result, the final

output feature map is 1/8 the size of the input image in the

generator shown in Figure 3.

Following the LDM method process, on receiving the input

image, the generator learns the kernel size associated with the

spatial location of each object. It then generates a kernel map K

of dimensions w� h� k2, where w � h is the image size and k is

the kernel size. The kernel map K is calculated as follows:

K = Fk(X) (1)
TABLE 1 Composition and division of the datasets.

Class
Number of targets in each image

All
13-68 69-124 125-180 181-235

Train 250 250 250 250 1000

Val 25 25 25 25 100

Test 25 25 25 25 100

All 300 300 300 300 1200
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where, Fk is the generator constructed using the ST. K is a set of

kernel mappings for the predicted output of the generator. For a given

location p = (x, y) in space, the vector Kp in K is a k2 vector

representing a k� k kernel. Given ℜ = pj
� �N

j=1 is a collection of

two-dimensional coordinates of object annotations in an image Y, the

corresponding kernel Kpj was retrieved from K for each annotation in

ℜ. Then,Kpj is transformed and normalised to sum to 1, obtaining the

location-specific kernel ~Kpj = vec−1 Kpj

� �
=sum Kpj

� �
of size k × k,

where vec−1 represents the vector-to-matrix transformation from k2

-dim vector to k×kmatrix and sum(z ) is the sum of all elements in the

vector z . Finally, the density map for training is generated by placing

the generated kernel over each labelled point, calculated as follows,
Frontiers in Plant Science 06
M(p) =o
N

j=1

~Kpj (p − pj) (2)

where ~Kpj (p) is indexed on p ∈ −r, · · ·, rf g � −r, · · ·, rf g, where
r = (k − 1)=2, and M(p) is the final GT density map used

for training.
2.3 MFEN

Outdoor images often contain background clutter and have

significant scale variations in target objects. As a result, using filters
FIGURE 2

Visualisation process for constructing GT density maps of a fixed kernel density map method. (A) Dot map of an original image, (B) Target points are
processed as bars with a height of 1, (C) Gaussian kernel convolution smoothing target points.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1548035
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Cheng et al. 10.3389/fpls.2025.1548035
with a uniform receptive field size is inadequate for capturing the

features of peppers at different scales. A more effective approach is

to use filters with different receptive field sizes to learn the mapping

from raw pixels to density maps. Based on the successful application

of Multi-column Convolutional Neural Network (MCNN) (Zhang

et al., 2016), a multi-column network structure with a different size

for each of the columns, combined with hybrid dilation

convolution, was developed to process multiscale information. It

is crucial to obtain deeper semantic information to improve feature

extraction at different scales. A common strategy is to increase

network depth by stacking convolutional layers, thereby improving

feature extraction capabilities. However, indiscriminately increasing

network depth can lead to model degradation and increased

complexity. A fully convolutional dilation residual structure was
Frontiers in Plant Science 07
designed to replace traditional convolutional layers for feature

extraction to mitigate these problems, as shown in Figure 5. This

design expands the receptive field of the model and improves

accuracy. It also reduces the number of parameters and improves

model stability.

When modelled estimated, reducing the size of the feature map

can lead to the loss of pixel-level information, affecting the accuracy

of the count. Pooling operations that downsample feature maps

result in the loss of pixel-level semantic information by reducing

resolution. Although increasing the kernel size of convolutional

layers may seem like a simple solution, according to the effective

receptive field (ERF) theory (Luo et al., 2016), the ERF size is

proportional to the kernel size and increases linearly with depth. As

a result, larger kernels significantly increase computational
FIGURE 3

The framework for the LDM method.
FIGURE 4

The layer structure of a ST block.
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complexity, making it difficult to increase model depth. Dilated

convolution offers an alternative, as it provides a larger receptive

field compared to standard convolution in semantic segmentation

tasks. For example, the CSRNet designed by Li et al. (2018) uses six

layers of dilated convolutions with a dilation rate of 2 in its back-

end for feature extraction, which is effective for general counting

tasks. However, a theoretical problem known as the grid effect exists

in the dilated convolutions of the CSRNet in Figure 6. Because the

dilated convolution introduces zeros into the convolution kernel

through the use of dilated convolution, the actual pixels that

contribute to the computation from the kd � kd region are

limited to k� k, with a gap of r − 1 between them. For example,

when k = 3 and r = 2, only 9 out of 25 pixels are used (Figure 6).

Hybrid dilation convolution (HDC) (Wang et al., 2018) can be a

good solution to the grid effect problem. Different layers use

different dilation convolution rates, mimicking a sawtooth

heuristic. Specifically, layers are grouped to form rising edges

characterised by progressively increasing dilation rates, and this

pattern is repeated for subsequent groups. For example, starting

with the first modular layer, three successive layers are assigned

dilation rates of 1, 2 and 3 respectively, and this sequence is repeated

for each subsequent set of three layers. This approach allows the top

layer to capture a wider range of pixel information within the same

region compared to the original configuration in Figure 6. However,

it is crucial to note that the dilation rates within a group should not

have a common factor (e.g. 2, 4, 8, etc.), as this would still result in

the meshing problem affecting the top layer. This distinction is

fundamental to the HDC method as opposed to the atrous spatial

pyramid pooling (ASPP) module (Zeiler and Fergus, 2014).

2.3.1 Backbone
The first 10 layers of VGG16 (Simonyan and Zisserman, 2015)

were used as the front end of our model. Leveraging its robust
Frontiers in Plant Science 08
transfer learning capabilities and adaptable architecture, VGG16

effectively interfaces with the back-end for feature extraction. The

model integrates multiple convolutional and pooling layers to

construct a single-column front-end network with robust

generalisation properties. For an input image In, the feature map

produced by the front end is expressed as follows,

F0 = Fvgg(In) (3)

2.3.2 Multiscale feature enhancement module
Three different types of dilated residual modules were designed in

Figure 7, referred to as DRM1, DRM2, and DRM3. The DRM1

module consists of three 1 × 1 standard convolutions and a k × k

dilated convolution. The DRM2 module consists of two 1 × 1

standard convolutions and a k × k dilated convolution. The DRM3

consists of a single 1 × 1 standard convolution and a k × k dilated

convolution, where k ∈ (3, 5, 9). This design has two advantages.

First, it can detect objects at different scales by employing convolution

kernels of different sizes. Second, it enlarges the model’s receptive

field by using dilated convolutions. In the multiscale enhancement

model, each column consists of a cascade of dilated residual modules,

using convolution kernels of different sizes. The receptive field size of

the cascaded dilated convolutions is calculated as follows,

rn = rn−1 + (Rn − 1)
Y n − 1

n = 1
si (4)

where rn is the size of the receptive field in the n-th layer, and Rn

is the actual coverage size of the convolution kernel in the n-th

layer, calculated as shown in Equation 5. The stride size of the i-th

layer is denoted as Si. In our model, all stride sizes are set to 1. The

dilation rates for the convolutions are selected as the most effective

set: 3, 5, and 9. Table 2 provides the receptive field sizes of the

DRM1, DRM2, and DRM3 cascade convolutions concerning the
FIGURE 5

The structure of MFEN.
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input feature map F0 from the front end,

Rn = K + (K + 1)(D − 1) (5)

where K is the size of the receptive field within the dilated

convolution, and D is the dilation rate of the dilated convolution.

In the proposed model, a CBAM is cascaded behind the DRM3

in each column, finally, the features in each column that have been

refined by the CBAM are concatenated and the final feature map is

generated by a convolutional layer. The architecture includes three

dilated residual modules and the CBAM attention mechanism, as

described below:

When a feature map of width C is input to DRM1, it first passes

through two cascaded 1 × 1 convolutional layers, resulting in a

reduction of the feature map size to C=4. Then, a k × k dilated

convolution is applied, where k ∈ (3, 5, 9). The 1 × 1 convolutions

improve the network’s ability to reuse information, while the k × k

dilated convolution expands the model’s receptive field. This

approach significantly reduces the computational complexity and

the number of parameters compared to direct cascading of

convolutions. The architecture of DRM1 is shown in Figure 7.

This design effectively mitigates the problems of gradient vanishing

and network degradation by incorporating features from the first

two convolutional layers, thus ensuring a seamless flow of

information through the back-end network. For the input feature

map from the previous layer, the output of the i-th DRM1 is
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calculated as follows,

Fi = Conv
C
2
K ,1 Conv

C
4
1,1 Conv

C
4
1,1(Fi−1)

� �� �
© Conv

C
4
1,1(Fi−1) ©Conv

C
4
1,1 Conv

C
4
1,1(Fi−1)

� �� �� �
⊕ ConvC1,1(Fi−1)

(6)

where ConvCK ,D is the dilated convolutional layer with an output

channel C, kernel size K, and dilation rate D, where K ∈ (3, 5, 9).

The symbol © is the concatenation of feature maps over the channel

dimension and⊕ represents the element-wise summation of feature

maps. Each column comprises three cascaded DRM1 modules,

producing output feature maps F1
3 , F2

3 , and F3
3 . Here, Fx

3

represents the output feature map of the third DRM1 in the x-

th column.

Following the third DRM1 module, a cascade of a DRM2 and a

DRM3 is implemented, which can reduce the number of model

layers and increase the size of the feature map during training. The

DRM2 module consists of two 1 × 1 standard convolutional kernels

and k × k dilated convolutions, with a 1 × 1 convolution forming the

residual structure, as shown in Figure 7. DRM3 includes a k × k

dilated convolution and a 1 × 1 convolutional kernel for the residual

structure in Figure 7. Compared to the direct cascading of DRM1,

this design results in a reduction of model layers and an increase in

the size of the back-end feature maps during training, improving

the model’s receptive field and information extraction capability.

The computation of the DRM2 output for input feature maps from

the previous layer is computed as follows,
FIGURE 6

Illustration of the gridding problem. From left to right: the pixels (marked in blue) contribute to the calculation of the centre pixel (marked in red)
through three convolution layers with a kernel size of 3 × 3. (A) All convolutional layers have a dilation rate of r = 2, (B) The dilated rates of the three
consecutive convolutional layers are r = 1, 2 and 3 respectively.
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F 0
i = Conv

C
2
K ,D Conv

C
2
1,1(F

0
i−1)

� �
©Conv

C
2
1,1(F

0
i−1)⊕ ConvC1,1(F

0
i−1) (7)

The input feature map of DRM2 is derived from the output

feature map Fx
3 of the third DRM1. A DRM3 was cascaded after

DRM2. For the input feature map F00
i−1 from the previous layer, the

output feature map F00
i from DRM3 is computed as follows,

F00
i = ConvCK ,D(F

00
i−1)⊕ ConvC1,1(F

00
i−1) (8)

The input feature map for DRM3 is derived from the output

feature map of DRM2.

In neural network processing, attention mechanisms increase

efficiency by selectively focusing on critical input data. Recent

research has successfully integrated attention mechanisms into

counting tasks to highlight important features and reduce

background noise. In pepper plant detection, the overlap of stems

and leaves with the background has a significant impact on

accuracy. By integrating the CBAM (Figure 8) attention module,

this problem can be mitigated (Woo et al., 2018). This module

combines spatial and channel attention mechanisms to selectively

enhance information-rich features and suppress irrelevant or

redundant information. The spatial attention mechanism allows

CBAM to adaptively adjust the weights of the feature maps,
Frontiers in Plant Science 10
allowing the network to focus on peppers while ignoring

background noise. The channel attention mechanism adaptively

recalibrates the importance of different channels by capturing inter-

channel dependencies, allowing the network to prioritise

information-rich channels while attenuating less relevant ones.

When an intermediate feature map F ∈ RC�H�W is used as

input, CBAM sequentially infers a one-dimensional channel

attention map Mc = RC�1�1 and a two-dimensional spatial

attention map Ms = R1�H�W . The entire attention process can be

summarised as follows,

F0 = Mc(F)⊗ F,

F00 = Ms(F
0)⊗ F0 (9)

where ⊗ is element-wise multiplication. During this process,

the attention values are appropriately broadcast: the channel

attention values are extended along the spatial dimension. The

result is the final refined output F00.
A CBAM is cascaded after the DRM3 in each column. The

output feature map Fo is obtained by summing the CBAM output

feature maps FM of each column, i.e.

Fo = F1
M ⊕ F2

M ⊕ F3
M (10)
TABLE 2 Theoretical receiving field for different combinations of convolution kernels and dilation rates.

Column Kernel size
Dilation of different layers Receptive field of different layers

1 2 3 4 5 1 2 3 4 5

First column 3 1 3 7 1 3 3 9 23 25 31

Second column 5 1 5 13 1 5 5 25 77 81 101

Third column 9 1 9 17 1 9 9 81 217 255 297
fron
FIGURE 7

The structure of the three different dilated residual modules. (A) DRM1, (B) DRM2, (C) DRM3.
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2.4 Loss function

Given a set of images and their corresponding GT point maps,

the LDM method was used to generate density maps. The density

map generator and the counters are trained in conjunction with our

MFEN model. The loss function for this joint training is calculated

as follows,

Loss1 =oN
i=1 M̂ i −Mi

�� ��2 + l 1 − CS M̂ 0,M0
i

� �� �
,

CS M̂ 0,M0
i

� �
= M̂ 0 ·M0

max ( M̂ 0k k2 · M
0k k2,z )

(11)

where M̂ i is the estimated density map, and Mi is the density

map generated by the LDMmethod. The vectorised representations

of M̂0
i and M0

i are M̂ i and Mi respectively. The cosine similarity

between them is CS(M̂0
i,M

0
i), where z = 10−8. Cosine similarity was

used to spatially regularize the density maps. The normalised

vectors M̂0
i= M̂0

i

��� ���
2
and M0

i= M0
ik k2 represent the spatial

distributions of the populations, independent of the counts. The

cosine similarity ensures that the GT and estimated density maps

are more aligned in terms of spatial distribution in Equation 11.
2.5 Experimental settings

The network was developed using Python 3.8 on Ubuntu 20.04,

with PyTorch 1.10.0 and CUDA 11.3. Both training and testing

were performed on identical hardware, consisting of an Intel Xeon

Silver 4214R CPU @ 2.40GHz, 90GB RAM, and an NVIDIA

GeForce RTX 3080Ti GPU with 12GB VRAM. The backbone of

the model is VGG16, which was initialised with pre-trained weights

from ImageNet, while the remaining layers were initialised with a

Gaussian distribution with a standard deviation of 0.1. In this study,

a systematic grid search strategy within the Bayesian optimisation

framework is used to conduct a comprehensive exploration of the

hyperparameter space. Through the integration of a cross-

validation mechanism (± 2.8%), we monitor in real-time the

convergence trajectory of the loss function and the fluctuations in
Frontiers in Plant Science 11
validation set accuracy. This iterative process culminates in the

identification of optimal hyperparameter configurations, which

include the Adam optimizer, 200 full training cycles, a batch size

of 8, an initial learning rate of 7 × 10-6, and an L2 regularisation

factor of 1 × 10-4,. These settings ensure stable convergence (Dloss <
1e-5/epoch) under the early stopping mechanism, thereby

enhancing the robustness and reliability of the model. Basic data

enhancement techniques were applied during training, including

random horizontal flipping, brightness adjustment, and Gaussian

noise. The GPU was preheated for an appropriate and sufficient

time to ensure an accurate measurement of the inference speed.
2.6 Evaluation metrics

MAE, RMSE, SMAPE and R² were used as evaluation metrics.

MAE quantifies the average deviation between estimated and actual

values and reflects the accuracy of the model. RMSE assesses the

robustness of the model, particularly in scenarios with significant

errors. SMAPE measures the relative error between estimations and

actuals, considering both overestimation and underestimation. As

SMAPE is scale-independent, it facilitates comparisons between

different models. R² assesses the fit of estimated values to actual

values, helping to assess potential overfitting or underfitting. The

metrics are defined as follows:

MAE =
1
No

N
i=1jCi − CGT

i j (12)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
No

N
i=1jCi − CGT

i j2
r

(13)

SMAPE =
100%
N oN

i=1
jCi − CGT

i j
jCij+jCGT

i j
2

(14)

R2 = 1 − oN
i=1jCi − CGT

i j2

oN
i=1jCGT

i − �CGT
i j2 (15)
FIGURE 8

The structure of CBAM.
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where N is the number of images in the test set, CGT
i is the true

count value, and �CGT
i is the average count value in the test set. Ci is

the counts on the output density map whose value is the sum of the

values on each pixel of the output density map.
3 Results

3.1 Comparison yield estimation accuracy
with other methods

To validate the effectiveness of the proposed approach, a

comparative evaluation against several state-of-the-art models was

performed using on our dataset. Two DMG training methods were

used: the ADM and the LDM. The models were evaluated include

MCNN, CANNet, CSRNet, ASPDNet, DSNet, MPS and HMoDE.

All models were trained under identical conditions and used the

same data augmentation techniques.

Achieving high yield accuracy for targets of different scale,

density and morphology in the presence of background clutter

remains a significant challenge. Table 3 shows that the MFEN

outperforms other models in both DMGmethods using the dataset.

In particular, when trained using the LDM method, the MFEN has

the lowest MAE, RMSE and SMAPE values of 5.42, 10.37 and

11.64% respectively, and the highest R² value of 0.9802 on the test

dataset. The superior yield accuracy of the model is attributed to its

multi-column structure, efficient feature augmentation, aggregation

techniques, and an improved DMG method, which together

increase the training effectiveness the model and significantly
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improve its accuracy and robustness. Although MCNN also uses

a multi-column structure, its shallow network design limits effective

feature extraction, resulting in a performance inferior to CSRNet,

which uses a single-column structure, making it the weakest of all

methods. This suggests that a multi-column structure alone is not

sufficient and needs to be complemented by feature enhancement

and aggregation techniques. CANNet and DSNet are the next best-

performing models after MFEN, with R² values close to 0.953 and

0.97 respectively for both DMG methods. This performance is

attributed to the use of dilated residual structures and aggregation

techniques, which are effective in capturing contextual information.

The R² value of ASPDNet under the two DMG methods are 0.9493

and 0.9656 respectively, which is slightly lower overall. Despite the

use of dilated convolution and feature aggregation, the single-

column structure and lack of dense residual design results in

weaker contextual understanding. The R² of MPS, CSRNet and

HMoDE were all less than 0.947 under the ADMmethod and about

0.96 under the LDM method. CSRNet, as a classic single-column

model, struggles to detect targets with significant scale variation.

MPS and HMoDE, both designed for dense, crowded scenes, are

particularly susceptible to the DMG methods, especially when

targets intersect and occlude.

A box plot was generated to further illustrate the discrepancy

between estimated and actual yields for the different models, which

were trained by the LDM method, as shown in Figure 9. The

analysis shows that the maximum error in MCNN estimations

exceeds 60, and the average error exceeds the upper quartile of other

methods, highlighting the inferior accuracy and robustness of

MCNN, making it unsuitable for practical applications. The data
TABLE 3 Comparing different methods on my dataset.

Method Year, venue Density map MAE RMSE SMAPE R²

MCNN 2016 CVPR
ADM 29.44 37.16 36.31% 0.6404

LDM 27.07 34.26 34.12% 0.6838

CANNet 2018 CVPR
ADM 9.98 13.69 16.18% 0.9532

LDM 9.05 12.71 15.28% 0.9702

CSRNet 2019 CVPR
ADM 11.61 15.67 17.87% 0.9471

LDM 10.62 14.70 17.80% 0.9602

ASPDNet 2020 ICASSP
ADM 10.37 14.98 17.21% 0.9493

LDM 9.60 14.66 16.81% 0.9656

DSNet 2021 ICMR
ADM 9.97 14.87 16.62% 0.9531

LDM 9.16 12.67 16.42% 0.9704

MPS 2022 ICASSP
ADM 9.85 15.41 13.80% 0.9447

LDM 9.25 14.78 13.01% 0.9622

HMoDE 2023 TIP
ADM 13.65 17.60 19.80% 0.9409

LDM 12.12 15.81 17.45% 0.9604

MFEN This paper
ADM 7.23 12.45 13.34% 0.9605

LDM 5.42 10.37 11.64% 0.9802
The best results among all methods are shown in bold.
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distribution shows that CANNet, CSRNet, ASPDNet, DSNet and

HMoDE tend to overestimate yield, with their plots skewed towards

the positive y-axis and containing some anomalies. This is mainly

due to their sensitivity to background and target scale

transformations, resulting in misclassification of background as

targets. Nevertheless, their overall accuracy remains high, with

average errors not exceeding 10. Conversely, MPS generally

underestimates the estimated yield with large errors and

overestimates with smaller errors, suggesting frequent missed

target identifications. MFEN has the shortest box heights and the

smallest absolute values for upper and lower bounds, indicating that

its estimations have the most consistent data fluctuations with

errors centred between zero and five and the lowest estimation

errors. Although there are a few outliers, they remain within

acceptable limits compared to other methods. As a result, MFEN

outperforms other models in terms of both accuracy and stability of

yield estimation, particularly in scenarios with dense, scale-

varying targets.
3.2 Comparison density map estimation
with other methods

Five images are selected for validation, with sparse small targets,

sparse large targets, dense small targets, dense large targets, and a
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mix of dense large and small targets. Figure 10 shows the estimated

density maps and counting results of the different methods for these

images, arranged from left to right. The results show that our

proposed MFEN accurately locates pepper fruits and effectively

discriminates the background, producing density maps closest to

the GT and achieving superior yield estimation accuracy. For

example, the density maps estimated by MFEN for both sparse

small and large target images, especially the latter, are close to the

GT, resulting in minimal counting errors (see the first and second

columns). In contrast, MCNN’s density maps are significantly

affected by background and pepper pose, showing numerous stray

points (see the white elliptical areas) that deviate from the GT,

leading to overestimation and underestimation.

Similarly, MPS and HMoDE are also affected by background

noise and pose variations, resulting in missed targets on the density

maps and consequently low yield estimations. The differences in

performance on dense targets are shown in the third and fourth

columns. In scenarios with occluded or intertwined small targets

that are densely packed, the estimated density map often shows

high-density values at specific locations, with lower values in the

surrounding areas, resulting in underestimation. Conversely, for

densely packed large targets, the density values tend to be high,

resulting in an overestimation (see the rectangular areas). For

example, MCNN has the largest error, over 10%, while CSRNet,

DSNet, MPS and HMoDE have errors between 5% and 10%.
FIGURE 9

The box plots of the error values between the GT and the estimation for different methods. The upper and lower horizontal lines outside the box
indicate the maximum and minimum values of the error, the top and bottom of the box indicate the upper and lower quartiles respectively, the
dotted line inside the box indicates the mean value of the error, the circle indicates the individual error and the plus sign indicates the outliers.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1548035
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Cheng et al. 10.3389/fpls.2025.1548035
CANNet, ASPDNet and MFEN have smaller errors, all within 5%.

Overall, MFEN excels in both density map estimation and yield

estimation, demonstrating robust performance across different

scenarios. In the fifth image, characterised by significant target

scale variation and concentration, all methods show locally high

estimated density values, resulting in overestimated yields (see the
Frontiers in Plant Science 14
rectangular areas). MCNN is the most affected, while MFEN and

HMoDE are the least affected. HMoDE benefits from multiscale

hierarchical density mixing and local technique loss, while the

success of MFEN is attributed to its multi-column structure,

feature enhancement module and aggregation techniques. Despite

MFEN’s strong performance, occlusion and interweaving with the
FIGURE 10

Density maps derived from my dataset using different methods. The white elliptical areas represent obvious identification stray points, and the white
rectangular areas represent areas where there are obvious differences in identification.
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background still affect yield estimation accuracy in dense small

target scenarios, resulting in locally high-density values and missing

potential targets (see third column). A more efficient feature

extraction architecture is used to replace VGG16, and infrared

imagery is incorporated to improve accuracy in scenes with dense

target interweaving and occlusion.
3.3 Comparison inference speed and the
parameters with other methods

Input images with a resolution of 640 × 640 were used to assess

the inference speed of each model. After ensuring that the training

and validation metrics had stabilised, the performance of the

methods that met the accuracy threshold was evaluated (R² ≥

0.9), as shown in Figure 11. Although CSRNet demonstrated a

fast inference speed (260 FPS), its application to yield estimation of

RCP was suboptimal, resulting in low accuracy and inaccurate

density maps. This suggests that a simple single-column dilated

convolutional model is inadequate for handling complex multiscale

targets. Both MPS and HMoDE showed comparable accuracy to

CSRNet, but their inference speed was less than half that of CSRNet,

and they had significantly larger parameter counts, particularly

HMoDE with 82.62M parameters, which poses challenges for

deployment. CANNet and DSNet improved accuracy at a slight

cost to inference speed, achieving a more balanced performance in

terms of inference speed, accuracy and parameter size. However,

MFEN outperformed all other models by significantly reducing

parameters through the cascading of DRM1, DRM2 and DRM3,

resulting in 3.16M fewer parameters than CSRNet and an R² value

of over 0.98. Despite its moderate inference speed (130.32 FPS), the

R2 value of MFEN outperformed that of all the models compared,

surpassing DSNet, which was previously the best of the models
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compared, by 1%. To further evaluate how well MFEN’s

performance aligns with real-world requirements, its inference

capability was compared with the demands of real-time

applications. Real-time applications typically strict impose

constraints time on model inference to meet the necessity for

instantaneous feedback. For instance, in scenarios such as video

surveillance or industrial automation, processing speeds exceeding

100 FPS are often required. With an inference speed of 130.32 FPS,

MFEN satisfies real-time requirements while achieving an R² value

exceeding 0.98, demonstrating exceptional accuracy in yield

estimation tasks. This combination of high accuracy and rapid

inference capability ensures that MFEN performs exceptionally well

in practical applications In. conclusion, MFEN offers a robust

solution for RCP yield estimation scenarios diverse across, owing

to its superior accuracy and efficient inference performance.
3.4 The impact of different DMG methods

The effects of the FDM, the ADM, the KDM and the LDM

methods were evaluated to assess the influence of different density

map generation (DMG) techniques on model performance.

Figure 12 illustrates the GT density maps produced by these

methods. The first three methods, FDM (Figure 12), ADM

(Figure 12), are not training-based and are categorised as

conventional DMG methods. These methods primarily use a

Gaussian function to smooth the target coordinates on a 2D

plane, thereby producing feature representations rich in

information. For the FDM method, kernel sizes of 4 and 16 were

used. The last two methods, KDM (Figure 12) and LDM

(Figure 12), are training-based and aim to capture spatial

position, shape and pose information to improve the generation

of GT density maps for pepper fruits. MFEN and DSNet are used to
FIGURE 11

The parameters and inference speed of different methods. (A) The parameters of different methods, (B) The FPS of different methods.
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evaluate the impact of the different DMG methods. The FDM

method with a kernel size of 16 outperformed that with a kernel size

of 4, demonstrating better suitability for small targets (Table 4).

Among MFEN and DSNet, the models trained with the ADM

method showed the lowest accuracy, with R² values of 0.9605 and

0.9531, respectively. This discrepancy is attributed to the

algorithm’s automatic kernel size adjustment, which is susceptible

to occlusion and interleaving, thereby misleading model learning.

Both KDM and LDM outperformed the non-training-based
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methods, significantly improving model accuracy. For MFEN, the

KDM method reduced the MAE and RMSE by 2.20 and 0.44

respectively and improved R² value by 0.93% compared to the

FDM method with a kernel size of 16. The LDM method further

reduced the MAE and RMSE to 1.37 and 2.40 respectively and

improved R² value by 0.98%. In summary, the LDM method

outperformed the others, mainly due to the global modelling

capability of the ST, which accurately captures target distribution

and scale variations, surpassing the capabilities of simple
FIGURE 12

Visualisation of density maps for different DMG methods. (A) Original image, (B) FDM (kernel size = 4), (C) FDM (kernel size = 16), (D) ADM, (E) KDM,
(F) LDM.
TABLE 4 The impact of different density maps on model performance.

Model Density Map MAE RMSE R²

MFEN

FDM (kernel size = 16) 8.99 13.21 0.9611

FDM (kernel size = 4) 9.78 13.63 0.9595

ADM 7.23 12.45 0.9605

KDM 6.79 12.27 0.9704

LDM (ours) 5.42 10.37 0.9802

DSNet

FDM (kernel size = 16) 9.16 14.55 0.9551

FDM (kernel size = 4) 9.88 14.89 0.9501

ADM 9.97 14.87 0.9531

KDM 9.68 13.54 0.9622

LDM (ours) 9.16 12.67 0.9704
The best results of each method are shown in bold.
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convolutional and pooling layers. Figure 12 shows the density map

generated by the KDM method, while Figure 12 shows the LDM

method. It is clear that the LDM method focuses more on overall

target distribution and background differentiation rather than local

targets, making it more effective in scenarios involving occlusion

and interweaving.
3.5 The impact of different dilated rate
configurations

A comparison of three configurations is conducted, while

maintaining the same network architecture, to assess the effect of

dilation rates on multi-column cascade dilation convolution. The

first configuration uses standard convolution. The second

configuration, like CSRNet, sets the dilation rate for all dilation

convolution layers to 2. The third configuration uses a hybrid

dilation convolution design. The accuracy and inference speed of

these configurations were evaluated at 640 × 640 resolution, using

frames per second (FPS) as the metric, as detailed in Table 5. The

results show that replacing the dilation convolution with the

standard convolution (configuration 1) results in a marginal

decrease in inference speed and a reduction in R² value of

approximately 1.99%. Using a fixed dilation rate of 2

(configuration 2) significantly slows down the inference speed

and reduces R² value by 1.16%. In contrast, our proposed hybrid

dilation rate convolution configuration (configuration 3)

demonstrates superior performance in both speed and accuracy.

This improvement is mainly attributed to our hybrid dilation rate

design, which effectively mitigates the grid effect associated with

fixed dilation rates, reduces redundancy, expands the model’s

receptive field, improves the understanding of multiscale targets,

and achieves higher accuracy and inference speed.
3.6 The impact of different kernel size
configurations

A comparison of four different configurations is conducted,

while keeping the network architecture constant, to assess the

influence of different convolution kernel sizes on the performance

of a multi-column cascade dilation convolution network. In the first

configuration, the convolution kernel sizes for the dilation layers

across all columns of the feature-enhanced network were set to 3,

with the aim of minimising model size and optimising deployment

efficiency. The second configuration used convolution kernel sizes
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of 3, 5 and 7 for the respective columns. The third configuration

used kernel sizes of 3, 5 and 9, while the fourth configuration used

kernel sizes of 3, 7 and 9. Configuration 1 had the smallest model

parameters (9.94M) but the lowest accuracy, with a R² value of

0.9613 (Table 6). As the convolution kernel size increased, so did

the number of model parameters, with the accuracy peaking in

configuration 3, which reached a R² value of 0.9802. Further

escalation of the kernel size in configuration 4 resulted in a

decrease in accuracy (a 0.7% decrease in R² value compared to

configuration 3) and an increase in model parameters (0.99M more

than configuration 3), compromising feasibility.
3.7 Benefits from dilated residual module
and attention mechanism

Two validation strategies were used to assess the effectiveness of

the key components in our network architecture. First, the necessity

of each module was examined by evaluating different combinations

of dilated residual and attention mechanism modules. Second, the

role of the dilated residual module was evaluated by replacing the

DRM1, DRM2, and DRM3 with standard convolutional layers of

equivalent depth, but without the residual structure. Several

baseline models were generated for both validation methods

in Table 7.

Experiments were performed on the dataset to evaluate the

performance of each baseline model, and the results are listed in

Table 8. The analysis shows that using DRM1 and DRM2 reduces

model parameters by 37.49% and 3.61% respectively and improves

accuracy. Although DRM3 does not significantly reduce

parameters, it significantly improves accuracy by increasing the

size of the feature map at the back end of the model. In the first

validation method, DRM1 uses three 1 × 1 convolutions for feature

compression and aggregation, reducing the feature map to a quarter

of the input size during forward propagation. This effectively

reduces parameters in wider slices. However, the reduced feature

map size at the front end makes DRM1 unsuitable for stacking

throughout the model, resulting in the lowest accuracy (e.g. Baseline

1 in Figure 13). In contrast, DRM2 and DRM3 increase the feature

map size at the back end by minimising the use of 1 × 1

convolutions. Stacking DRM2 and DRM3 at the back end

significantly improves model accuracy (e.g. Baseline 2, Baseline 3

and Baseline 4 in Figure 13). However, stacking only DRM3

significantly increases the number of parameters (e.g. Baseline 3

in Figure 13) and its accuracy is inferior to Baseline 4, which has

fewer parameters. In summary, stacking DRM1 at the front end

effectively reduces parameters while maintaining accuracy, and

DRM2 and DRM3 can be stacked at the back end to increase

feature maps, significantly improving accuracy, albeit with some

increase in parameters. The CBAM attention mechanism is also

crucial; without it, the model cannot reach the upper limit of the R²

value (0.9802) and only reaches 0.9707 (compare Baseline 4 in

Figure 13 with MFEN).

The second validation approach involves the evaluation of the

dilated residual module. By substituting the three dilated residual
TABLE 5 Estimation accuracy and speed performance of different
dilation rate configurations.

Configuration MAE RMSE SMAPE R² FPS

Configuration 1 6.82 12.07 13.79% 0.9603 125.30

Configuration 2 6.49 11.51 12.64% 0.9686 102.10

Configuration 3 (ours) 5.42 10.37 11.64% 0.9802 130.32
The best results of each configuration are shown in bold.
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modules and the attention mechanism module, a contrasting

Baseline model was constructed. When all modules are

substituted, the model has the highest number of parameters and

the lower R² value, which is 0.9651 (Figure 13). DRM1 significantly

reduces the number of model parameters while maintaining the

accuracy of the model (compare Figure 13 for Baseline 4, Baseline 5

and MFEN). In contrast, the combined use of DRM2 and DRM3

increases the size of the feature map during forward propagation of

the model to the backend, resulting in an increase of 1.17% in R²

(compare Figure 13 for Baseline 4 and MFEN). This improvement

is crucial for the extraction of small target features. Therefore, this

validation further confirms the effectiveness of our design approach.
4 Discussion

4.1 Effect of LDM generation method

A training-based approach was used to generate GT density

maps to optimize the accuracy of yield estimation. The feature

extractor within the KDM framework was augmented by

integrating the ST, which uses its global modelling capabilities to

produce superior density maps. Our experimental evaluation
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compared the FDM, ADM, KDM and LDM methods, as detailed

in Table 4. The results show that the traditional non-training-based

methods (FDM and ADM) show negligible differences in

estimation accuracy, with variations not exceeding 0.5%. This

discrepancy is attributed to the irregularity of the targets and the

randomness of their poses, which makes it difficult to accurately

represent spatial relationships. In addition, the misalignment of the

Gaussian kernel with the target shape contributes to suboptimal

results. Using the MFEN trained with each DMG method, the R²

value for traditional methods is approximately 0.96. The KDM

method achieves a R² value of 0.9704, an improvement of 0.93%

over the best traditional method. The LDM method achieves a R²

value of 0.9802, an improvement of 0.98% over the previous KDM

version, and has the lowest MAE and RMSE values of 5.42 and

10.37 respectively. Visualisation of the density maps shows that

training-based methods not only localise target positions but also

account for pose and shape variations (e.g. Figures 12E), in contrast

to traditional methods (e.g. Figures 12B). As the feature extractor is

refined, the focus of the model becomes more comprehensive. This

indicates that the ST, with its global modelling capabilities, allows

for better differentiation between background and targets, as well as

between individual targets. Compared to the convolutional and

pooling based extractor used in KDM, the ST significantly improves

model accuracy.

While the LDM method demonstrates outstanding

performance in experimental settings, its applicability and

effectiveness are subject to certain limitations. Below, we outline

the primary scenarios that may result in suboptimal outcomes for

LDM methods:
a. Data Dependency: The efficacy of the LDM method is

heavily contingent upon the quality and diversity of the

training data. If the training dataset lacks representation of

specific critical scenarios—such as extreme lighting

conditions, target occlusions, or regions with unusually

high densities—the model may exhibit diminished

performance when encountering these situations in real-

world applications

b. Model Generalisation Ability: The LDM approach exhibits

limited adaptability to variations in target pose and shape.

In complex operational environments characterised by

overlapping targets or highly irregular poses, the model

may struggle to deliver accurate judgments, potentially

leading to misclassifications or omissions.
TABLE 6 Estimation accuracy and inference speed of different convolutional kernel configurations.

Kernel size configuration Evaluation metrics

Column 1 Column 2 Column 3 Parameter MAE RMSE SMAPE R² FPS

3 3 3 9.94M 6.70 11.31 13.65% 0.9613 125.12

3 5 7 12.01M 6.21 11.28 13.09% 0.9689 126.32

3 5 9 13.08M 5.42 10.37 11.64% 0.9802 130.32

3 7 9 14.07M 6.49 11.50 12.62% 0.9732 124.21
The best results of each configuration are shown in bold.
TABLE 7 The baseline models established for different
validation methods.

Validation
method

Baseline model
Combination or

replacement rules

Combination

Baseline 1 Five DRM1

Baseline 2 Three DRM1 and two DRM2

Baseline 3 Three DRM1 and two DRM3

Baseline 4
Three DRM1, one DRM3 and

one DRM3

Replacement

Baseline 1 DRM1, DRM2 and DRM3

Baseline 2 DRM1 and DRM2

Baseline 3 DRM1 and DRM3

Baseline 4 DRM2 and DRM3

Baseline 5 DRM1

Baseline 6 DRM2

Baseline 7 DRM3
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c. Robustness: The resilience of the LDMmethod to noise and

external interference requires further enhancement. Under

extreme interference conditions, such as abrupt changes in

lighting, pronounced shadows, or significant background

disturbances, the model’s performance may degrade,

compromising its reliability in challenging environments.
4.2 Effect of MFEN

A comprehensive evaluation of different model configurations

tailored to our tasks was performed, including different dilation

rates (Table 5), convolution kernels (Table 6), and the integration of

dilation residue modules with attention mechanisms (Table 8). The

results show that the proposed configuration, which incorporates

optimised dilation rates, convolution kernels, and module

combinations, achieves superior accuracy and inference speed.

Specifically, our model yields MAE, RMSE, SMAPE, R², and FPS

values of 5.42, 10.37, 11.64%, 0.9802, and 130.32, respectively. This

configuration effectively balances model parameters, inference

speed, and accuracy, prioritising accuracy while maintaining

competitive inference speed and parameters efficiency to ensure

robust deployment performance. MFEN achieves the fastest speed

of inference and the highest level of accuracy in Table 5. Although

MFEN does not have the smallest number of parameters or the

absolute fastest speed, its accuracy significantly outperforms other

configurations (Table 6), which is why we chose convolution kernel

sizes of 3, 5 and 9. In contrast, Baseline configurations such as

Baseline 1 and Baseline 2 (Table 8), despite their lower parameters,

fail to achieve the same level of accuracy as our proposed scheme.

Through rigorous experimental comparisons, the configuration that

excelled in both accuracy and deployment performance was

identified, leading to the development of the MFEN model.
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Compared to other density map estimation and yield estimation

methods, includingMCNN, CANNet, CSRNet, ASPDNet, DSNet, MPS

and HMoDE, MFEN shows superior performance, as evidenced by the

data in Table 3. Under the two different DMGmethods,MFEN achieves

R² values of 0.9665 and 0.9802, outperforming the next-best methods by

0.83% and 0.98% respectively. In addition, MFEN has the lowest MAE,

RMSE and SMAPEmetrics of the alternatives evaluated. Examining the

yield estimation errors and densitymap quality in Figures 9, 10,MFEN’s

error box plots have the shortest height, indicating minimal and

consistent data fluctuations and the lowest counting inaccuracies.

Density maps generated by MFEN closely resemble actual conditions,

effectively distinguishing between background and target elements while

minimising yield estimation errors. In contrast, other methods often

struggle to accurately distinguish between background and targets,

resulting in higher error.

It is important to note that training and deploying MFEN on

less powerful hardware presents several challenges. First, the

training process of MFEN requires substantial computational

resources and memory support. In environments with limited

resources, this can lead to significantly increased training times or

even failure to complete the training task. Second, while MFEN

demonstrates relatively fast inference speeds in experimental

settings (130.32 FPS), it may not meet the requirements of real-

time applications on certain low-performance hardware.
4.3 Limitations and future work

There are three main limitations to the current method. First, the

operating parameters of the UAV platform are constrained by strict

thresholds: at an altitude of 2.5 metres and standard optical zoom

conditions, the flight speed must be controlled to within 0.5 m/s to

ensure image clarity; and when the flight altitude is increased to 3.5

metres, the target resolution drops dramatically below the thresholds
TABLE 8 Effects on estimation accuracy of different dilated residual modules and attention mechanisms.

Method Model Parameter MAE RMSE SMAPE R²

Combination

Baseline 1 11.94M 7.48 12.95 14.71% 0.9597

Baseline 2 12.26M 6.67 12.11 13.28% 0.9616

Baseline 3 16.32M 6.32 11.80 13.17% 0.9692

Baseline 4 13.07M 6.31 11.67 13.01% 0.9707

Replacement

Baseline 1 21.28M 7.98 12.96 13.80% 0.9651

Baseline 2 21.26M 8.35 12.27 14.97% 0.9663

Baseline 3 20.88M 6.88 11.35 13.40% 0.9698

Baseline 4 13.53M 6.92 12.20 13.63% 0.9685

Baseline 5 20.91M 9.20 14.01 16.34% 0.9597

Baseline 6 13.56M 7.23 12.54 14.35% 0.9677

Baseline 7 13.16M 7.20 12.32 14.59% 0.9692

Origin MFEN (ours) 13.08M 5.42 10.37 11.64% 0.9802
The best results among all models are shown in bold.
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required for effective detection. Secondly, the static image analysis

protocol faces a dynamic performance bottleneck and lacks a

compensation mechanism to cope with airflow disturbances (e.g. an

average wind speed of 3.2 m/s at a height of 1.5 metres) or the shading

effect of a high-density canopy (6 to 10 plants per square metre).

Thirdly, as the data set was collected in a fixed viewing angle mode (top

view, 2.5 metres height), the generalisability of the method is limited

when applied to agricultural platforms with different mounting angles

and different RCP species.

To address the above shortcomings, the follow-up work will

focus on the following three aspects. In terms of optimising

dynamic performance, a spatio-temporal fusion framework

combining optical flow motion field estimation with ConvLSTM

multi-frame weighting will be established, and motion blur will be

reduced by an adaptive optical zoom coordination mechanism at an

airspeed not exceeding 0.7 m/s. To improve scale adaptation, a

multi-height synthetic dataset at 0.3 metres intervals (covering a

height range of 2.5 to 3.5 metres) will be used, and cross-domain

adaptive training based on CycleGAN will be applied to ensure that

the loss of scene accuracy at untrained air heights does not exceed

5%. Embedded mission optimisation will then use FPGA-

accelerated lightweight networks to ensure that the inference

process reaches 30 FPS while maintaining over 95% accuracy. In
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addition, a dynamic data acquisition protocol will be developed to

create a quantitative modulation model between flight speed/

altitude/optical zoom, and a transfer learning framework based

on an attention mechanism will be developed to enhance the

adaptability of the model to common RCP variants.
5 Conclusions

This paper presents an improved DMG method, termed LDM,

and a novel model, MFEN, aimed at estimating RCP yields and

producing high quality density maps. The main results are as follows:
a. The KDM method was improved by integrating the ST

module into its feature extraction network to improve the

quality of the GT DMG. This integration enabled the

network to capture feature information globally. Compared

to the KDMmethod, LDM, when trained jointly withMFEN,

showed an increase in R² value of 0.98% and a reduction in

MAE and RMSE of 1.37 and 2.40 respectively, significantly

improving the accuracy of the MFEN.

b. Different dilation rate configurations, convolution kernel

configurations, combinations of dilation residual modules
FIGURE 13

The parameters and FPS of different models. (A) Different models’ parameters of combination, (B) Different models’ R² of combination, (C) Different
models’ parameters of replacement, (D) Different models’ R² of replacement.
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and attention mechanism modules were evaluated to

develop a yield estimation model that balances accuracy

and deployment performance. This led to the configuration

of the MFEN with optimal overall performance. Several

models (MCNN, CANNet, CSRNet, ASPDNet, DSNet,

MPS, HMoDE and MFEN) were trained using the LDM

and ADM methods. The results show that MFEN

outperforms the others, achieving the lowest MAE, RMSE

and SMAPE metrics of 5.42, 10.37 and 11.64% respectively.

It is the only model with R² value above 0.98, which is 0.98%

higher than DSNet, the best-performing model in the

comparison. In addition, MFEN has 13.08M parameters,

3.18M fewer than the classic single-column model CSRNet,

and achieves an inference speed of 130.32 FPS on a single

640 × 640 RGB image, which meets practical requirements.
While the current work has yielded promising results, several

research directions remain to be explored, offering opportunities for

further advancements:
a. Hyperspectral Data Integration: Integrating hyperspectral

data with existing visual data could leverage the rich

spectral information to enhance the model’s feature

extraction capabilities and classification accuracy,

particularly in complex or visually similar environments.

This integration could enable the model to distinguish

subtle differences in materials or objects that are

challenging to discern using data visual alone.

b. Dataset Expansion: Expanding the dataset’s size and

diversity by collecting additional samples under varied

conditions—such as different lighting scenarios, target

densities, poses, and levels of background clutter—could

validate the model’s adaptability across a broader range of

practical applications. A more comprehensive dataset

would not only improve generalisation but also help

identify potential weaknesses in the current model design.

c. Multimodal Data Fusion: Exploring the fusion of visual

data with complementary sensor data, such as LIDAR or

infrared sensors, could enhance the model’s robustness

under constrained conditions. By leveraging the unique

strengths of each modality, the fused system could

achieve more reliable performance in challenging

environments where visual data alone may be insufficient.

d. Model Structure Optimisation: Further optimising the

model architecture by exploring lightweight module

designs or incorporating techniques such as knowledge

distillation could reduce the number of model parameters

and computational complexity while maintaining high

accuracy. Such optimisations would make the model

more deployable on resource-constrained hardware,

broadening its applicability in real-world scenarios.
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