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Introduction

Phosphorus (P) deficiency is a significant limiting factor for cereal yields, particularly in

maize (Dhillon et al., 2017). While the Nuclear Factor Y, C subunit (NF-YC) pathway has

been extensively studied in the context of abiotic stresses such as drought, salinity, and

temperature (Sato et al., 2014; Wu et al., 2018; Zheng et al., 2021), its role beyond

P deficiency remains largely underexplored. Recent research highlights the ZmNF-YC1–

ZmAPRG pathway as a promising mechanism for improving maize tolerance to low P

(Bai et al., 2024). In this pathway, ZmNF-YC1 acts as a transcriptional activator, interacting

with ZmNF-YB14 and ZmNF-YA4/10 to modulate acid phosphatase-regulating gene

(ZmAPRG) for P homeostasis, lipid composition, and photosynthesis, contributing to

plant resistance against P-deficit conditions. Notably, ZmAPRG is an uncharacterized gene

identified through map-based cloning, which enhances acid phosphatase activity and

phosphate concentration in maize leaves during phosphate starvation (Yu et al., 2019).

However, P deficiency can severely impair plant growth and crop productivity,

underscoring the importance of efficient P acquisition and utilization for agricultural

sustainability (Paz-Ares et al., 2022; Zhu et al., 2022). A key aspect of this adaptive response

is the regulation of P-responsive genes by various transcription factors (TFs), which

orchestrate metabolic and physiological responses to P deficiency (Liu et al., 2024).

Generally, the PHT family of phosphate transporters remains the primary focus for

improving phosphorus use efficiency (PUE) in maize due to their critical role in facilitating

the uptake, translocation, and remobilization of inorganic phosphate (Pi) from the soil into

plant roots (Nagy et al., 2006; Wang et al., 2017). Specifically, the PHT1 family members

function predominantly under low P conditions and have been widely used to enhance

PUE in plants. However, it was noted that, overexpression of OsPHR2 caused excessive Pi

accumulation in shoots, which retarded whole-plant growth under sufficient Pi condition

(Zhou et al., 2008). This excessive Pi accumulation due to PHR2 was attributed to the

upregulation of phosphate transporters (PTs) in shoots, ultimately resulting in Pi toxicity

(Li et al., 2014; Liu et al., 2010). So, these studies showed that PHR2 could cause Pi toxicity

due to excessive accumulation in plants. Furthermore, Pi toxicity in rice has been associated
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with reduced Rubisco activation and inhibited photosynthesis,

leading to lipid peroxidation (Takagi et al., 2020).

In contrast, the NF-YC transcription factors offer distinct

advantages for improving PUE by regulating a broader range of

genetic and physiological responses (Bai et al., 2024). Unlike PHT1

transporters, which are directly involved in Pi uptake, NF-YC TFs play

a central role in orchestrating the expression of multiple downstream

genes, including P transporters and genes involved in stress responses,

metabolic pathways, and developmental processes. This regulatory

versatility enables NF-YC TFs to integrate external and internal

signals, ensuring more efficient adaptation to fluctuating

environmental conditions and maintaining optimal PUE in maize

(Zhang et al., 2023).

Previously, it was indicated that overexpression (OE) of TaNFYA-

B1, a low P-inducible TF on chromosome 6B, significantly enhanced P

uptake and grain yield in wheat under varying P supply conditions (Qu

et al., 2015). However, OE of ZmAPRG was shown to enhance

inorganic phosphate concentration and acid phosphatase activity,

resulting in greater biomass in maize seedlings under low P

conditions (Yu et al., 2019). Recently, Bai et al. (2024) reported that

ZmNF-YC1, an upstream regulator of ZmAPRG, has emerged as a key

modulator in maize (Zea mays L.) under low P conditions.

As part of the NF-Y complex, ZmNF-YC1 plays a central role in

the ZmNF-YC1–ZmAPRG pathway, a crucial regulatory axis

governing P metabolism and tolerance mechanisms. ZmNF-YC1

serves as the C subunit of the NF-Y complex, which forms a

heterotrimer with NF-YA and NF-YB subunits (Bai et al., 2024).

The NF-Y complex has been reported to binds the CCAAT box in

target gene promoters, a well-characterized cis-regulatory element,

to regulate gene expression under various stress conditions (Myers

and Holt, 2018; Qu et al., 2015). However, in the case of ZmNF-YC1

binding to the promoter of ZmAPRG, Bai et al. (2024) did not

specify whether the binding site was a CCAAT box or another

motif. Thus, it remains unclear whether ZmNF-YC1 binds to the

CCAAT box or a distinct phosphate-specific regulatory element.

Future studies, such as mutagenesis of potential binding sites or

ChIP-seq, are necessary to identify the precise binding site and

confirm the regulatory mechanism.
Regulatory mechanisms of the ZmNF-
YC1–ZmAPRG pathway

The NF-YB and NF-YC subunits initially form a heterodimer,

which subsequently recruits NF-YA proteins to assemble the

complete NF-Y transcriptional complex, responsible for

regulating the expression of downstream target genes (Zheng

et al., 2021; Sato et al., 2014; Hou et al., 2014). In this process,

NF-YC first interacts with NF-YB to form dimers in the cytoplasm,

which then translocate to the nucleus where they associate with NF-

YA to form the functional heterotrimeric complex that modulates

gene expression (Zhang et al., 2023). Under low P availability,

ZmNF-YC1 forms a functional heterotrimeric complex with

ZmNF-YB14, ZmNF-YA4, and ZmNF-YA10. Initially, ZmNF-

YC1 and ZmNF-YB14 form a heterodimer in the cytoplasm,
Frontiers in Plant Science 02
which then recruits ZmNF-YA4 and ZmNF-YA410 to complete

the complex in the nucleus. Notably, ZmNF-YB14 is found in both

the cytoplasm and nucleus, while ZmNF-YA4 and ZmNF-YA10 are

localized only in the nucleus (Bai et al., 2024). Once the ZmNF-

YC1, ZmNF-YB14, ZmNF-YA4 and ZmNF-YA10 complex is

assembled, it binds to the promoter of ZmAPRG. This binding

enhances the transcription of ZmAPRG, which regulates lipid

composition adjustment, and photosynthetic capacity. Under low

P conditions, ZmAPRG influences the expression of lipid transport

and metabolism-related genes (Bai et al., 2024), including

Zm00001d047447, which encodes phospholipase C involved

in phospholipid hydrolysis (Nakamura et al., 2005), and

Zm00001d044136, which encodes the GTAP protein that

catalyzes glycerol biosynthesis and supports membrane stability

and stress response (Xue et al., 2019). In response to P deficiency,

phospholipids are hydrolyzed to release P, and non-phosphorus

lipids like MGDG and DAG replace them to maintain membrane

stability (Zhu et al., 2022). ZmAPRG OE increases MGDG and

DAG while reducing phospholipids, which are key components of

photosynthetic membranes. Although ZmAPRG improves

photosynthetic capacity under low P, whether the increase in

MGDG and DAG directly boosts photosynthesis remains unclear

and requires further investigation (Figure 1).
Expanding beyond phosphorus: is the
ZmNF-YC1–ZmAPRG pathway key to
resilience against multiple stresses?

Plants frequently encounter multiple simultaneous stresses in

their natural environment, and increasing evidence suggests that

TFs involved in one stress response pathway can cross-

communicate with other pathways (Shaik and Ramakrishna,

2014). A key example is NF-YC TFs, which is activated in

response to low P conditions (Bai et al., 2024), and drought or

salinity stresses (Chen et al., 2015). NF-YC plays a pivotal role in

modulating plant stress responses as monomers, complexes, or in

coordination with other TFs (Zhang et al., 2023).

Previous studies have shown that NF-Y complexes are key

regulators of stress resilience in response to drought, salinity and

temperature stresses (Wu et al., 2018; Zheng et al., 2021; Sato et al.,

2014, 2019). For instance, GmNF-YC14 forms a heterotrimer with

GmNF-YA16 and GmNF-YB2 to activate the GmPYR1-mediated

ABA signaling pathway, regulating drought response in soybean, as

confirmed by gene knockout and overexpression studies (Yu et al.,

2021). Likewise, overexpression of NF-YB2 and NF-YB3 enhanced

drought and heat stress tolerance in Arabidopsis, while knockout

mutants exhibited increased sensitivity to these stresses (Sato et al.,

2019). Beyond stress adaptation, NF-Y TFs also regulate nutrient

homeostasis. In wheat, TaNFYC genes play a significant role in

adapting to nitrogen (N) and P deficiency, promoting nutrient

homeostasis (Qu et al., 2015). In Arabidopsis, the interaction

between QQS protein and NF-YC4 shows that NF-Y regulates

carbon and nitrogen allocation, balancing protein and starch

levels for developmental homeostasis (Li et al., 2015). In Brassica
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napus, NF-YC genes have shown distinct tissue-specific roles in

response to nitrogen deficiency (Zheng et al., 2021). These findings

suggesting that the ZmNF-YC1 complex might also play a role in

modulating pathways that respond to multiple stress conditions.

While ZmNF-YC1 is established as crucial in P deficiency

response, its potential role in integrating multiple stress signals

remains unclear. Specifically, although it is hypothesized that ZmNF-

YC1–ZmAPRG pathway could influence root architecture and

potentially improve water uptake efficiency, thus enhancing drought

resilience and PUE under stress conditions, this relationship remains

speculative. Given its regulatory versatility, ZmNF-YC1 may extend

beyond P homeostasis, orchestrating crosstalk between multiple

nutrient pathways and contributing to overall stress adaptation.

The mechanisms underlying water utilization and P absorption

are distinct and complex, and there is currently no direct

experimental evidence linking ZmAPRG to enhanced water
Frontiers in Plant Science 03
uptake capabilities. In maize, the ZmNF-YC1 complex, which

adapts P deficiency through a heterotrimeric complex formation

with ZmNF-YB14, ZmNF-YA4 and ZmNF-YA410 (Bai et al.,

2024), might extend its regulatory functions to other stress-

responsive genes. One critical outcome of the ZmNF-YC1–

ZmAPRG pathway is its regulation of lipid metabolism under low

P conditions, which plays a key role in maintaining membrane

integrity under osmotic stresses such as drought and salinity. The

lipid remodeling that occurs under low P conditions, which shifts

from phospholipid-based to non-phospholipid-based lipids, could

similarly support membrane stability in high-salinity environments,

preventing excessive ion leakage and preserving cellular function.

This positions ZmNF-YC1 as a valuable target for breeding multi-

stress-tolerant maize varieties capable of thriving in diverse

environmental conditions, offering a significant contribution to

sustainable agriculture amid rapid climate change.
FIGURE 1

Role of ZmNF-YC1–ZmAPRG pathway in modulating maize tolerance to low P conditions. In part (a), the ZmNF-YC1 knockout (KO) plant shows
reduced plant growth, acid phosphatase (APase) activity and inorganic P (Pi) concentration. (b) illustrates the ZmNF-YC1 OE in maize plant, where
ZmNF-YC1 forms complexes with ZmNF-YB14, ZmNF-YA4 and ZmNF-YA410 to activate the promoter of ZmAPRG (Bai et al., 2024). OE of ZmAPRG
regulates photosynthetic efficiency and lipid metabolites, ultimately improve growth and grain yield of plants. In ZmNF-YC1–ZmAPRG pathway,
significant effects were observed on above-ground traits, such as length and dry weight of shoot, while no effects were reported on root traits,
including root length, biomass, and root system architecture. This suggests that the pathway primarily influences shoot growth under low P
conditions, leaving the impact on root development unclear. Since P deficiency typically induces root adaptations for enhanced nutrient acquisition,
the absence of root effects raises question. Could compensatory mechanisms or alternative pathways govern root adaptations for nutrient
acquisition in ZmNF-YC1–ZmAPRG OE plants? How might further analysis of root molecular responses and architectural changes provide deeper
insights into the role of this pathway in P tolerance? Part (c) illustrates the impact of ZmAPRG OE on lipid remodeling, photosynthetic capacity, and
the regulation of lipid transport and metabolism-related genes. Two differentially expressed genes (DEGs) identified as phosphatase-related suggest
that ZmAPRG not only regulates lipid metabolites and photosynthetic efficiency but may also influence phosphatase activities through novel
pathways. Regarding photosynthetic capacity, there is no significant difference in chlorophyll fluorescence parameters; Fv/Fm and Fv/Fo values
under NP conditions, but in LP conditions, ZmAPRG-OE plants exhibit significantly increased Fv/Fm and Fv/Fo values. Under normal P (NP)
conditions, phospholipids such as LysoPE, LysoPC, LysoPA, PA and PG remain unchanged. However, in low P (LP) conditions with ZmAPRG OE, non-
phosphorus lipids like MGDG and DAG increase, while phospholipids decrease (Bai et al., 2024). This induction of MGDG and DAG under LP
conditions is likely a compensatory mechanism for phospholipid degradation, aimed at maintaining membrane stability. Membrane stability plays a
critical role in supporting photosynthetic function, which could explain the observed improvement in photosynthetic efficiency. While, the
improvement in photosynthetic efficiency correlates with changes in lipid metabolites, particularly the increase in MGDG and DAG (Boudière et al.,
2014), it is unlikely that the elevated levels of MGDG and DAG directly enhance photosynthesis. Instead, their role may be limited to stabilizing the
thylakoid membranes, which indirectly supports photosynthetic processes. Unraveling whether MGDG and DAG have a direct impact on
photosynthesis remains a key question for future research.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1548962
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Hussain et al. 10.3389/fpls.2025.1548962
Challenges and future perspectives

ZmNF-YC1 is a transcriptional regulator under low P conditions,

forming complexes that activate ZmAPRG, which modulates gene

expression of lipid transport and metabolism, photosynthetic

capacity, improve resistance against P deficiency. However, the

identification of the ZmNF-YC1–ZmAPRG pathway as a key

mechanism in P deficiency response is groundbreaking (Bai et al.,

2024). However, role of ZmNF-YC1–ZmAPRG pathway on root

architecture, such as enhanced root hair growth, root biomass and

lateral root formation, under low P conditions is unclear, which need

to investigate (Figure 1). Under low P conditions, ZmAPRG OE

increases the levels of non-phospholipid MGDG and DAG, and

reduce the levels of phospholipids (Bai et al., 2024), which are key

components of photosynthetic membranes (Boudière et al., 2014).

The enhanced photosynthetic capacity observed with ZmAPRG OE

suggests that ZmAPRG plays a key role in low P tolerance by

regulating photosynthesis. However, while increased MGDG and

DAG levels correlate with improved photosynthesis under low P, the

direct relationship between these lipid changes and photosynthetic

improvement requires further investigation. Given its influence on P

metabolism, lipid composition, and photosynthesis, ZmNF-YC1

could be a pivotal factor in improving both nutrient-use efficiency

and water-use efficiency in maize. Moreover, understanding this

pathway’s interaction with other stress responses, modifying these

genes could enhance their resilience to both P deficiency and other

abiotic stresses, such as heat, salinity and drought. If ZmNF-YC1

contributes to managing multiple stress responses, it could become a

pivotal target for breeding maize varieties with enhanced resilience to

a range of environmental challenges.

Furthermore, the potential application of ZmNF-YC1–

ZmAPRG pathway in other crops should be tested in low P

conditions. If homologs of NF-YC and APRG exist in other

cereals like rice or wheat, manipulating these genes could enhance

P use efficiency across a range of agricultural systems, potentially

reducing reliance on phosphate fertilizers. Further research should

focus on identifying other co-regulatory factors and downstream

target genes involved in the ZmNF-YC1–ZmAPRG pathway to

provide a more comprehensive understanding of its regulatory

network. Large-scale field trials are also necessary to confirm the

effectiveness of this pathway across diverse maize genotypes and

environmental conditions, ensuring its applicability in real-world

agricultural systems.

ZmNF-YC1–ZmAPRG pathway could be a target for precision

breeding, which could involve enhancing the expression of ZmAPRG
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or similar genes in other crop species, leading to more efficient

nutrient use and greater yields under low P conditions. Moreover,

ZmNF-YC1 and ZmAPRG are key target genes that could be directly

utilized in breeding programs or modified through gene-editing

technologies to enhance P-use efficiency under low P conditions.
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