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In the early stages of selection, many plant breeding programmes still rely on

visual evaluations of traits by experienced breeders. While this approach has

proven to be effective, it requires considerable time, labour and expertise.

Moreover, its subjective nature makes it difficult to reproduce and compare

evaluations. The field of automated high-throughput phenotyping aims to

resolve these issues. A widely adopted strategy uses drone images processed

by machine learning algorithms to characterise phenotypes. This approach was

used in the present study to assess the dry matter yield of tall fescue and its

accuracy was compared to that of the breeder’s evaluations, using field

measurements as ground truth. RGB images of tall fescue individuals were

processed by two types of predictive models: a random forest and

convolutional neural network. In addition to computing dry matter yield, the

two methods were applied to identify the top 10% highest-yielding plants and

predict the breeder’s score. The convolutional neural network outperformed the

random forest method and exceeded the predictive power of the breeder’s eye.

It predicted dry matter yield with an R² of 0.62, which surpassed the accuracy of

the breeder’s score by 8 percentage points. Additionally, the algorithm

demonstrated strong performance in identifying top-performing plants and

estimating the breeder’s score, achieving balanced accuracies of 0.81 and 0.74,

respectively. These findings indicate that the tested automated phenotyping

approach could not only offer improvements in cost, time efficiency and

objectivity, but also enhance selection accuracy. As a result, this technique has

the potential to increase overall breeding efficiency, accelerate genetic progress,

and shorten the time to market. To conclude, phenotyping by means of RGB-

based machine learning models provides a reliable alternative or addition to the

visual evaluation of selection candidates in a tall fescue breeding programme.
KEYWORDS

high-throughput phenotyping, dry matter yield, convolutional neural network, random
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1 Introduction

Plant breeding has made a substantial contribution to global

agriculture throughout history. Higher crop yields, resistance to

stress factors and enhanced quality traits are but a few examples of

its many achievements. Today, the disruptive impact of climate

change requires the rapid development of resilient plant varieties.

To meet this demand, the field of plant breeding continuously

advances, with a key area of innovation being automated high-

throughput phenotyping.

Manual plant phenotyping is a labour- and time-intensive

endeavour. Moreover, the subjective nature of the process

complicates the reproduction and comparison of evaluations

(Kumar and Bhatia, 2014). Automated high-throughput

phenotyping offers an alternative approach that can address these

shortcomings. Generally, this method involves the use of (semi-)

autonomous platforms equipped with non-destructive sensors to

collect data (Gill et al., 2022). This information is then processed

and correlated with phenotypic traits using various data analysis

tools, allowing for a fast, large-scale and accurate assessment of

traits (Kumar and Bhatia, 2014; Awada et al., 2018). However,

because the mathematical relationship between sensor data and the

trait of interest is often unknown, an analysis method is required

that can autonomously establish this connection for large datasets.

As a result, machine learning techniques have become increasingly

popular in recent years (Lin et al., 2019; Atieno et al., 2017;

Ramcharan et al., 2019; Sandhu et al., 2021).

Machine learning was first defined by Arthur L. Samuel in 1959

as ‘a field of study that gives computers the ability to learn without

being explicitly programmed’. Within the scope of automated

phenotyping, this definition implies that an algorithm can learn

the relation between the collected sensor data and the trait of

interest without additional guidance from the breeder. This study

explores the potential of two machine learning techniques: Random

Forest (RF) and Convolutional Neural Network (CNN). RF is a

method developed by Breiman in 2001. The algorithm aggregates

multiple decision trees to form one powerful, robust prediction

model. RFs have become widely popular due to their versatility,

ease-of-use and high prediction accuracy (Biau and Scornet, 2016;

Belgiu and Drăguț, 2016; James et al., 2023). Additionally, the

approach distinguishes itself from many other machine learning

techniques by providing straightforward methods to determine

feature importance, offering valuable insight into an otherwise

opaque modelling process. These advantages motivated our

selection of RF for this study. However, when applied to visual

data analysis, RFs require the manual extraction of informative

predictors, or ‘features’, from images, as they cannot process raw

pixel data directly. Selecting the optimal feature extraction method

for every task is a time-consuming process that requires a high level

of expertise. A breakthrough in this area was the development of

CNNs, which can extract features autonomously. CNNs are a type

of neural network particularly suited for image analysis (Loussaief

and Abdelkrim, 2018). The algorithm detects spatial patterns in

images via specialised operations within its ‘convolutional layers’

(Tuba et al., 2021) and uses these patterns as features in the

prediction process. CNNs are currently considered the state-of-
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the-art technology in various computer vision applications, if they

are provided with sufficient, high-quality training data.

In this study, we propose RF and CNN models to analyse RGB

images captured by an unmanned aerial vehicle (UAV or ‘drone’). The

combination of RGB imaging and UAV technology was chosen to

facilitate practical application, ensuring data collection is simple, fast

and cost-effective. The dry matter yield (DMY) of individual tall fescue

(TF) plants is the phenotypic trait of interest. TF [Festuca arundinacea

(Schreb.)] was selected due to its notable resilience to the effects of

climate change in Northwestern Europe. The grass species is known to

be tolerant to both drought and flooding, in contrast to perennial

ryegrass, which is currently the most popular pasture grass in these

regions (Gibson and Newman, 2001; Reheul, 2021; Mosimann et al.,

2010; Cougnon et al., 2014). In addition to predicting DMY, we aim to

identify the highest-yielding plants. Although DMY is a very

interesting trait, breeders do not necessarily need to know the exact

yield of a plant to consider it for selection. Essentially, they only require

an efficient way to determine whether a plant belongs to the top-

performing group and should advance to subsequent breeding phases

or if it should be discarded. This ‘Top-performers problem’ constitutes

our second research question. Finally, we explore the prediction of the

breeder’s scores as a third objective of our research. Although the

breeder explicitly evaluated DMY in this study, these observations

could still be biased by other traits, such as disease or deficiency

symptoms. Therefore, it was tested whether a model could capture

these additional visual fitness characteristics as well.

To date, few published studies have focussed on estimating yield

in forage species using RGB images. Notable examples include the

work of Castro et al. (2020); de Oliveira et al. (2021) and de Souza

Rodrigues et al. (2023), who applied CNNs to estimate yield in

various genotypes of Guinea grass (Panicum maximum). Similarly,

Oliveira et al. (2022) used a CNN to estimate DMY in a Timothy-

meadow fescue mixture. While these studies provided valuable

insights and achieved commendable prediction accuracy, they had

certain limitations. Firstly, they used relatively small datasets, with

the first three studies analysing only 330 plant plots and the last one

just 96. Secondly, they examined plots containing multiple individual

plants or pasture sections, where yield was averaged across the plot.

Since this approach reduces outliers, the model is not trained to

estimate the yield of exceptionally high-performing individuals —

plants that are particularly valuable in a breeding programme.

Therefore, the present study explores whether a high-throughput

phenotyping approach could accurately estimate the yield of these

top-performing individuals, using a fairly large dataset of 4,224 plots.

Furthermore, to the best of our knowledge, no previous research

includes the visual assessment of a breeder into the analysis. This is a

valuable addition, however, as it allows for a direct comparison

between the accuracy of the automated phenotyping approach and

the manual phenotyping method, providing valuable insight into the

potential improvement in selection accuracy if the tested method

were implemented in a breeding programme.

Another popular method to predict biomass yield involves plant

height models (Borra-Serrano et al., 2019; Grüner et al., 2019;

Fu et al., 2021). While this approach allows for reliable estimates,

the additional requirements with respect to data collection and

processing somewhat increase the adoption threshold (Castro et al.,
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2020). Therefore, this study proposes the use of standard RGB

images, analysed using machine learning methods, as a more

accessible phenotyping solution.
2 Materials and methods

2.1 Study area and data acquisition

2.1.1 Field trial
The tall fescue (TF) field was located at Proefhoevestraat 22 in

Melle, Belgium, as part of Ghent University’s TF breeding

programme. It was established as a progeny assessment trial,

evaluating the breeding value of 44 mothers based on the

performance of their 32 half-sib progeny across three replications

(see Figure 1). The plants were sown in trays on the 20th of August

2019 and transplanted to the field on the 15th of October.

Individual plants were spaced 0.5 m apart within and between

rows. The data were collected in the spring of 2022, marking the

third year of field evaluation for the progeny.

2.1.2 Image acquisition
RGB images were captured using a DJI Matrice 200 UAV,

mounted with a Zenmuse X5S camera. The flight took place on the

11th of April 2022 at a height of 40m, resulting in a resolution of

0.91 cm/pixel, with a frontal and lateral image overlap of 80%. The

orthoimage was generated using the open source software

OpenDroneMap, version 2.8.4. Subsequently, the field was

divided into individual plots for each plant. This segmentation

was initially performed using R functions from the FIELDimageR

package (Matias et al., 2020). However, since the layout of the

progeny field did not fully adhere to a rectangular grid, some clips

were imperfect, which we assumed would impair model accuracy.

Therefore, the images were re-segmented by visually selecting the

optimal clip location per plot, instead of relying on the locations of

the grid, using a custom Python script.

2.1.3 In-situ data collection
The plants were individually scored by an experienced TF

breeder on the 11th of April, 2022. The original scores ranged
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from zero to five, with zero indicating the worst performance and

five the best. The assessment is primarily an estimation of biomass,

based on proxy traits such as plant volume and tiller density.

However, other relevant factors, such as the presence of disease

symptoms, likely influenced the evaluation process. These scores

were aggregated into three classes: Class 1 for scores of four and five,

Class 2 for a score of three, and Class 3 for scores of two, one and

zero. This classification aims to simplify the practical use of the

model’s outcomes by plant breeders, as interpreting and

implementing categories of ‘good’, ‘medium’ and ‘bad’ performers

is more intuitive than using five distinct classes. From the 12th to

the 14th of April, the plants were harvested using a hedge trimmer

whose blade slid across the top of a 30cm square frame with a height

of 5cm. The collected biomass of each plant was weighed, dried for

three days at 70°C and then reweighed to determine the DMY.
2.2 Data exploration

First, we examined the distribution of the breeder’s score,

shown in Figure 2A. This analysis revealed a notable imbalance:

Class 1 was the least prevalent, while Classes 2 and 3 were

moderately and highly represented, respectively. This distribution

was expected, since Classes 2 and 3 contain the most common,

average scores (2 and 3). Additionally, Class 3 contains the highest

number of different scores (0, 1 and 2), further explaining its large

size. This class imbalance was addressed in both model design and

evaluation. Next, we assessed the distribution of the DMY, which

was slightly right-skewed, as depicted in Figure 2B. The extreme

observations in the right tail of the distribution might complicate

prediction. However, there is no reason to assume that these

measurements are incorrect and the highest yields are the most

interesting for a breeder. Therefore, no suspected outliers were

removed from the dataset.
2.3 Datasets

Before training the models, 10% of the data was reserved as a

stratified test set to evaluate the performance of the final, optimised
FIGURE 1

Organisation of the studied TF field.
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models. The remaining 90% was split into a training set (80%) and a

validation set (20%) for model training and hyperparameter

optimisation. To ensure robust evaluation, three stratified train-

validation splits were performed, allowing each tuning

configuration to be tested three times.
2.4 Models

We explored three different problems: estimating DMY,

identifying top-performing individuals and predicting the

breeder’s score. For the first problem, we developed a regression

model that uses RGB images as explanatory variables to estimate the

DMY of individual TF plants. This model will be referred to as the

‘DMY model’. Additionally, we wanted to compare the predictive

power of this image-based model to the ability of the breeder to

estimate DMY. Therefore, a linear model was added that uses the

breeder’s score as a predictor for DMY. This comparative model is

called the ‘Benchmark DMY model’.

The second problem focuses on the identification of the top-

performing individuals. While a ranking algorithm initially seems

the most suitable approach, we opted to use binary classification.

This method provides a better fit to the requirements of a plant

breeder, who’s primary objective is to distinguish high-yielding

plants that should be used in subsequent breeding stages from

lower-performing individuals that should be discarded. The exact

ranking of the individuals within these ‘Select’ and ‘Discard’ groups

is of marginal importance. Therefore, a binary classification model

was developed, with the ‘Select’ class containing the top 10%

highest-yielding individuals and the ‘Discard’ class comprising the

remaining 90%. This threshold can be adjusted to align with the

objectives and budget of the breeder. This model is referred to as the

‘Top-performers model’.

Lastly, we created a model to predict the breeder’s score. With

this approach we aimed to not only capture the DMY but also detect

other visual characteristics that influence a plant’s value. As the

breeder’s score is an ordinal variable, ordinal regression would be
Frontiers in Plant Science 04
the most appropriate analytical approach. However, ordinal

regression is used less frequently and is therefore less

straightforward to implement. It requires more manual coding

and consequently more time and expertise. Hence, we initially

opted for a classification model and evaluated the suitability of

this simplification in the Discussion section. This model is called the

‘Breeder’s score model’.

These three problems were modelled in both the RF and CNN

framework. Figure 3 provides an overview of the seven

resulting models.
2.5 Benchmark model

The breeder-assigned scores were used as categorical predictors

in a linear model for DMY (Equation 1):

DMY = b0S0 + b1S1 + b2S2 + b3S3 + b4S4 + b5S5 (1)

Here, b0 through b5 are the coefficients representing the average

yield corresponding to plants with scores 0 through 5, respectively.

The binary variables S0, S1,…, S5 indicate the presence of each score.

For instance, S0 = 1 signifies that the plant has a score of 0, while S1 =

1 indicates a score of 1, and so on. Only one of these binary variables

will be 1 for any given observation, since scores are mutually

exclusive. The model uses the original scoring scale (0 to 5), as the

additional level of detail provides extra information when used as

predictors. Conversely, when the breeder’s score serves as the

response variable in the ‘Breeder’s score’ model, the specific

distinctions between individual scores are less important. Instead,

the focus shifts to classifying plants into broader categories: good

plants (Class 1) versus mediocre (Class 2) and poor plants (Class 3).

The accuracy of this linear model serves as an assessment of the

predictive power of the breeder’s visual evaluation of selection

candidates. It is compared to the accuracy of the image-based

DMY models to evaluate whether the automated phenotyping

approach provides an improvement over the manual method and

to quantify this potential enhancement.
FIGURE 2

(A) depicts the prevalence distribution of the classes based on the breeder’s score. (B) illustrates the distribution of the DMY in gram. The histogram
consists of 100 bins with a width of 1.6 gram.
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2.6 Random forest

Random Forest (RF) is a machine learning algorithm that

combines a large number of randomised decision trees to solve a

classification or regression problem (Breiman, 2001). Decision trees

divide observations into groups based on their characteristics or

features. The objective is to create segments where the response

variables are predominantly of the same class or have comparable

numerical values (James et al., 2023). The quality of each division,

or ‘split’, is determined by a splitting criterion, which quantifies the

similarity of the observations in the resulting groups, or ‘nodes’. The

algorithm iteratively finds the feature and value that create the best

split, continuing until the nodes are sufficiently homogeneous. Once

the tree is constructed, predictions can be made by assigning a new

observation to a node based on its features. The predicted outcome

is then determined as the dominant class in that node for

classification tasks or the average value for regression tasks. While

decision trees achieve high prediction accuracy on the training data,

they usually do not generalise well to new data. RF addresses this

limitation by averaging outcomes from many decision trees,

improving their predictive power. More detailed information on

RFs can be found in Breiman (2001); Biau and Scornet (2016) and

James et al. (2023).

2.6.1 Feature extraction
Since RF models cannot process raw image data directly,

informative features have to be extracted. This study uses a colour

histogram (Chapelle et al., 1999; Cheng and Chen, 2003), Hu

moments (Hu, 1962), Haralick features (Haralick et al., 1973),

green pixel counts and vegetation indices. The first three methods

aim to attain a broad overview of the images’ colour, shape and

texture, following the work of Nakhle and Harfouche (2021). The

number of green pixels was added as an intuitive estimate of plant

coverage. First, the pixels that matched a variety of predefined green

shades were counted. This approach resulted in a slight
Frontiers in Plant Science 05
underestimation of the true number of plant pixels. To address

this issue, we developed a second method that described green

pixels more broadly, based on the ratio of the green band to the red

and blue bands. This more general definition overestimated the

number of plant pixels. The combination of the two features was

assumed to give a fairly accurate approximation. Lastly, four RGB-

based vegetation indices were chosen, inspired by similar studies

(Lussem et al., 2018; Li et al., 2016). An overview of their

specifications is presented in Table 1.

2.6.2 Model optimisation and analysis
When training the RF models, two hyperparameters were fixed

and the importance of four hyperparameters was evaluated using a

grid search. The two fixed hyperparameters included the number of

trees and the maximum number of features the trees could select

from to make each split. The number of trees was set to 1000,

following an informal exploration to balance computational

efficiency with model performance. The maximum number of

features considered per split was defined according to standard

guidelines (James et al., 2023; Probst et al., 2019) as the square root

of the total number of features for classification and one-third of the

features for regression.
FIGURE 3

Schematic overview of the seven models created in this study.
TABLE 1 Overview of chosen vegetation indices.

Name Expression Reference

Red-Green-Blue
Vegetation Index

RGBVI =
(G · G) − (R · B)
(G · G) + (R · B)

(Bendig et al., 2015)

Green Leaf Index
GLI =

2 · G − R − B
2 · G + R + B

(Louhaichi et al., 2001)

Visible Atmospherically
Resistant Index

VARI =
G − R

G + R − B
(Gitelson et al., 2002)

Normalised Green Red
Difference Index

NGRDI =
G − R
G + R

(Gitelson et al., 2002)
R, G and B represent the intensities of the red, green and blue channels, respectively.
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The four formally optimised hyperparameters were: the use of

balanced class weights (yes/no), the splitting criterion (Gini

impurity/Entropy for the two classification models and Mean

squared error/Friedman mean squared error/Mean absolute error/

Poisson deviance for the DMYmodel), maximum tree depth (3/5/7)

and the complexity parameter (alpha) for cost-complexity pruning

(ten evenly spaced values between 10−3 and 1). The use of balanced

class weights was evaluated to address the imbalance in the Top-

performers and Breeder’s score datasets. Each class is assigned a

weight inversely proportional to its size, to ensure equal

contribution to the splitting criterion. Different splitting criteria

were tested to explore alternative methods of purity quantification

in this context, while the last two hyperparameters were used to

minimise overfitting. These hyperparameters were optimised using

a cross-validated grid search. In this procedure, a range of values for

each hyperparameter is given and the algorithm tests every possible

combination using cross-validation. The best performing

configuration is reported as the set of optimal hyperparameter

values, which were used when evaluating the models on the test set.

The Entropy (E) and Mean Squared Error (MSE) were the most

influential splitting criteria in this study. Therefore, their equations

for node m are given in Equations 2, 3:

Em = −o
C

i=1
 pi log pi, (2)

with C the number of classes and pi the proportion of class i

observations in node m.

MSEm =
1
No

N

i=1
(yi − �y)2, (3)

where N represents the number of samples in node m, yi the DMY

of observation i of node m and �y the mean DMY in node m.

Following model optimisation, feature importance was

determined to assess the impact of each extracted feature. The

importance was measured by calculating how much of the total

reduction in the splitting criterion was achieved due to splits

involving that particular feature, with a measure called Gini

Importance or Mean Decrease in Impurity. These values signify

the impact of each feature relative to the others, providing insight

into the model’s prediction process. Subsequently, feature selection

was carried out, which evaluates the importance of each feature and

removes those with an importance below a certain threshold. The

threshold for retaining features was first set to the mean of all

feature importances and later to a stricter threshold of 0.01,

meaning 1% of the combined Gini importance of all features. For

both thresholds the performance and required computation time of

the RF models were evaluated.
2.7 Convolutional neural network

A Convolutional Neural Network (CNN) is a type of neural

network that is well suited to analyse image data (James et al., 2023).

Neural networks are nonlinear statistical models that are, as the

name suggests, loosely based on the structure of interconnected
Frontiers in Plant Science 06
neurons in the brain. Mimicking the behaviour of its biological

counterpart, the artificial neuron accepts signals from various

neighbours as input, processes them and either fires a signal or

remains inactive based on the result (Zupan, 1994). Not all

neighbouring neurons will have the same impact on its activation,

which is why they are assigned weights. Furthermore, the ease with

which a neuron fires also varies, which is enabled by biases.

All neural network architectures contain layers of neurons,

which are all interconnected to the adjacent layers. In addition to

these ‘fully-connected layers’, most architectures include specialised

layers. An example is the convolutional layer, characteristic to the

CNN. It performs a specific type of computation, a ‘convolution’, to

assess spatial relations between the input neurons. When the input

neurons are pixels of an image, this means the CNN can not only

analyse the pixel values but also their spatial context, enabling the

model to extract meaningful image features. This automatic feature

extraction, coupled with the analytical power of the fully-connected

layers, makes the CNN algorithm efficient and potentially very

accurate. Further reading on CNNs can, among others, be found at

James et al. (2023); Bhatt et al. (2021) and LeCun et al. (2010).

2.7.1 Model optimisation
The CNN models were built using four pre-trained

architectures, namely VGG-16 (Simonyan and Zisserman, 2014),

Densenet161 (Huang et al., 2017), EfficientNetV2 (Tan and Le,

2021) and ResNet50 (He et al., 2016). VGG-16, while an older

model, was included to allow comparisons with previous studies.

The other three models were selected for their relatively low

parameter counts, while still achieving commendable accuracy.

The choice for smaller models was motivated by constraints in

computational resources and available data (Pasupa and Sunhem,

2016). The fully connected layers of these architectures were

substituted with custom code for each model. More precisely, the

DMY model was adapted to output a single value, the Top-

performers model two and the Breeder’s score model three.

The DMY model was trained using the MSE loss function

(Equation 4):

MSE =
1
No

N

i=1
(yi − ŷ i)

2, (4)

with N the number of samples in the training set, yi the measured

DMY and ŷ i the predicted DMY. The Top-performers and

Breeder’s score models made use of the Cross-Entropy loss

criterion (CE, Equation 5):

CE = −o
N

i=1
o
C

j=1
yij log p̂ ij, (5)

with N the number of samples in the training set, C the number of

classes, yij an indicator variable that takes the value 1 if class j is the

true class of sample i and 0 otherwise and p̂ ij the predicted probability

of sample i belonging to class j. The same loss functions were used for

similar approaches in previous studies (Castro et al., 2020; de Oliveira

et al., 2021; Semenov et al., 2019). Compensating class weights were

applied in the loss function to address the imbalance in the Top-

performers and Breeder’s score datasets. If the correct classification of
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the ‘Select’ class and Class 1 should be prioritised further, higher

weights can be given to these classes. However, in the scope of this

study, the class weights were selected to ensure that each class

contributed equally to the loss function, regardless of size.

The models were trained for 15 epochs, meaning all training

data was used 15 times to update the parameters. The results section

reports the prediction accuracy of the best-performing epoch.

Additionally, it was assessed which pre-trained architecture

performed the best and whether using pre-trained model

parameters enhanced accuracy.
2.8 Model evaluation

The DMYmodel was evaluated using R2 and Root Mean Square

Error (RMSE). Since R2 is a widely-used, unitless metric, it allows

for comparison across different datasets and studies, while RMSE is

easily interpretable as it is expressed in the original unit of

measurement. Their definition is given in Equations 6, 7, with N

representing the number of observations, yi the response value of

observation i, �y the mean of the response values and ŷ i the

prediction made by the model for observation i.

R2 = 1 −o
N
i=1(yi − ŷ i)

2

oN
i=1(yi − �y)2

(6)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oN

i=1(yi − ŷ i)
2

N

s
(7)

The performance metrics for the two classification models were

centred around the confusion matrix. Although this matrix is very

informative – it gives a comprehensive overview of all correctly and

incorrectly classified observations – it is less convenient when

comparing evaluations. Therefore, metrics comprising of a single

value were added as well. These measures are based on various

combinations of precision (P), recall (R) and specificity (S), which

in turn consist of different configurations of the True Positives (TP),

True Negatives (TN), False Positives (FP) and False Negatives (FN)

of the confusion matrix (Equations 8–10).

Precision (P) =
TP

TP + FP
(8)

Recall (R) =
TP

TP + FN
(9)

Specificity (S) =
TN

TN + FP
(10)

For both the Top-performers and Breeder’s score models, the

Balanced Accuracy (BA) was used to account for the imbalanced

classes during model evaluation. BA is defined in Equation 11 as the

average of the recall for each class i, with C indicating the total

number of classes:

Balanced accuracy (BA) =
1
Co

C

i=1
 Ri (11)
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Lastly, the F-measure was added as a third metric. The F1-measure

added a different perspective to the evaluation of the Breeder’s score

model (Equation 12) and the F2-measure made it possible to favour

correctly classifying the top 10% class over the bottom 90% class in

the Top-performers model (Equation 13):

F1 =
2 · P · R
P + R

(12)

F2 =
(1 + 22) · P · R
(22 · P) + R

(13)
3 Results

3.1 Predictive power of the breeder’s score

To benchmark the predictive performance of the image-based

RF and CNN models, we evaluated the breeder’s ability to predict

DMY. A linear model was fitted using the breeder’s score as a

categorical predictor. Table 2 presents this benchmark DMY

model’s performance on the training and test sets.
3.2 Feature importance in the random
forest models

Figure 4 illustrates the ten most impactful features for the DMY

and Top-performer RF models, along with their relative

importances. The DMY model attributes great importance to only

a few features, followed by a steep decline. Conversely, the Top-

performer model presents a moderately important top feature and

shows a gradual descent thereafter.

Furthermore, the figure indicates that the ten most important

features are largely the same for the two response types. The two

green pixel counters, the 4th and 68th colour histogram features

and the VARI vegetation index were important in both models.

The RF model predicting the breeder’s score exhibits an

importance distribution similar to that of the Top-performers

model (Figure 5). Moreover, it shares many of its most important

features with the other two models, particularly the Top-performers

model, with which it shares 8 of the 10 most impactful features.

Secondly, feature selection was explored for all RF models using

two importance thresholds: the mean of all importances, which is

less strict and model-dependent, and the absolute threshold of 0.01

(1% of combined Gini importance), which proved to be more

stringent. Training the models with these feature subsets resulted
TABLE 2 R2 on the train and the test set and RMSE on the test set for
the linear model using the breeder’s score as a categorical predictor.

Evaluation metric Performance

Train set R2 0.54

Test set R2 0.54

Test set RMSE (g) 14
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in negligible differences in performance and computation time

(results not shown).
3.3 Pre-trained architectures in the
CNN models

The predictive performance of the four CNN architectures are

compared for the DMY and Top-performers models in the left and

middle graphs of Figure 6. These architectures were tested both with
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pre-trained weights and biases, where only the parameters of the

final layers were updated during training, and without pre-trained

parameters. The models with pre-trained parameters demonstrated

a lower performance across all architectures and both response

types. This performance gap was particularly pronounced in the

DMY architectures. Additionally, all architectures performed

similarly, with DenseNet161 slightly outperforming the others

and VGG-16 minimally lagging behind.

For the Breeder’s score model, all architectures performed

better without pre-trained parameters, except for the VGG-16

architecture (right graph in Figure 6). The VGG-16 model

without pre-trained weights also portrayed a very large standard

deviation compared to the other architectures.

The two metrics used to evaluate the performance of the

Breeder’s score model did not agree on the best architecture: BA

favoured DenseNet161, while the F1-measure ranked ResNet50 the

highest. To better understand these contrasting results, the diagonal

values of the confusion matrices—representing the percentage of

correctly classified images per class—for the two architectures are

compared in Table 3. DenseNet161 owes its higher BA to a higher

performance on Classes 1 and 2, whereas ResNet50 scored better for

Class 3. Since Class 1 is more important for the breeding process,

DenseNet161 was selected as the optimal architecture.

As these results exemplify, the F1-measure was not ideal for the

evaluation of the Breeder’s score models. While we expected it to

provide an additional perspective alongside BA, it generally differed
FIGURE 4

Mean relative importance over three train-validation set splits of the top ten most important features for the DMY and Top-performers RF models.
FIGURE 5

Mean relative importance over three train-validation set splits of the
top ten most important features for the Breeder’s score RF model.
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only slightly. When it did favour a different model, this was

primarily due to a stronger emphasis on Class 3 rather than

Classes 1 and 2, which was undesirable in this context. A more

suitable approach would have been to replace the F1-measure with a

metric that explicitly prioritises Class 1 above Classes 2 and 3, such

as the recall or F2-measure for Class 1.

Lastly, Figure 7 illustrates the mean epoch, serving as an indirect

measure of computation time, at which each model architecture

reached its peak accuracy. The DMY models required the most

epochs to identify the general trend, while the Top-performers

models needed the least time. The Breeder’s score model is

positioned between these two. For all architectures, except VGG-

16, models with pre-trained parameters required more epochs

compared to their non-pre-trained counterparts. Moreover, the

errorbars shown in Figure 7 indicate that the number of epochs

varied considerably for different train-validation set splits.
3.4 Evaluation on the test set

For each model, the hyperparameters and architectures that

achieved the highest prediction accuracy in prior analyses were used
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to assess the performance of the models on the test set. All results

are detailed in Table 4.

The performance of the DMY and Top-performers models are

visually represented in Figure 8. The predictive power of the image-

based DMY models is also compared to that of the Benchmark

DMY model, which uses the breeder’s score as a predictor variable.

The CNNs slightly outperformed the RF models for both response

types. Furthermore, both the CNN and RF image-based models

demonstrated notably better performance in predicting DMY

compared to the Benchmark model.

The prediction accuracy of the Top-performers models are

further detailed in Figure 9. The confusion matrices show that

both models identify the 10% highest-yielding individuals quite

well. Both methods also prioritise minimising false negatives over

false positives, thereby reducing the loss of strong candidates.

Retaining some lower-potential candidates is less of a concern, as

they can be removed in later breeding stages. However, when high-

potential candidates are lost, they will likely not be recovered.

Furthermore, the CNN model performs slightly better than the

RF model, both for the top 10% and the bottom 90% classes, as can

be seen in Figure 9.

The confusion matrices of the RF and CNN Breeder’s score

models are presented in Figure 10. Although the overall

performance metrics of the CNN and RF models differ only

slightly – no difference in F1-measure and only 0.03 in BA

(Table 4) – their confusion matrices reveal a notable divergence.

The CNN method shows superior predictive power for Classes 1

and 2 but performs worse than the RF model for Class 3. Since Class

1 is the most important for the selection process, the CNN approach

is preferred.

The confusion matrices also reveal that only a very small

number of observations from Class 1 are misclassified as Class 3,

and vice versa. These specific misclassifications are likely areas

where an ordinal regression model could offer improvements over a

classification model. However, given the marginal potential
FIGURE 6

Mean scores of the four CNN architectures across the three train-validation set splits. The highest-performing architecture for each response type is
indicated with a star. The size of each errorbar represents two standard deviation units. The depicted performance metrics are the BA and R2 score,
the RMSE, F1- and F2-measures followed similar trends (results not shown).
TABLE 3 Mean percentage of correctly classified images per class for
both the DenseNet161 and ResNet50 architectures in the CNN Breeder’s
score model.

Breeder’s score model Percentage of correctly
classified images

Class 1 Class 2 Class 3

DenseNet161, no pre-
trained parameters

77 66 76

ResNet50, no pre-trained parameters 71 65 78
The best-performing architecture for each class is indicated in blue.
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advantage and the added complexity of implementing ordinal

regression, it was decided not to pursue this approach further.
4 Discussion

4.1 Feature importance: insight into the
RF models

Feature importance reflects how much a model improves its

splitting criterion by partitioning the data according to that feature.

This metric is straightforward to estimate in a trained RF, providing

valuable insights into the model’s prediction process. While it is also

possible to establish feature importance in CNNs, it requires

specialised routines that are computationally demanding, making

this information less accessible compared to RF models.
Frontiers in Plant Science 10
Figure 4 showed that the Top-performers model assigned

moderate importance to a larger number of features, while the

DMYmodel identified fewer impactful features, but attributed them

considerably higher importance. Because the binary classification

task is easier — splitting the data into two classes — many features

might contribute to the splits. Each feature that is on average

slightly different for Classes 1 and 2 in the training dataset, can

make a split that improves the criterion. In contrast, this is harder in

the regression model because its task is more complex. Only

features with a strong correlation to the outcome will result in

substantial criterion enhancement.

The most important features across all models were the two

green pixel counters and the 4th and 68th features of the colour

histogram. The significance of the green pixels was somewhat

expected, as they intuitively correlate with the plant’s biomass. To

understand the impact of the colour histogram features, they were

highlighted on a few example images in Figure 11. Both histogram

features seem to capture the intermediately light parts of the soil,

which are harder to distinguish from the lighter edges of the plants.
FIGURE 8

R² score of the Benchmark, RF and CNN DMY models (left panel)
and Balanced Accuracy (BA) of the CNN and RF Top-performers
models (right panel).
FIGURE 7

Mean epoch at which the model portrayed its highest performance. The size of each error bar is twice the standard deviation of the mean.
TABLE 4 Hyperparameters and architectures used in the optimised
models and the models’ performance on the test set.

Hyperparameters/
Architecture

Performance

RF

DMY Default 0.59 (R²)
13g (RMSE)

Top-performers
Entropy, max depth 7, ccp

alpha 0.001
0.78 (BA)
0.58 (F2)

Breeder’s score
Entropy, max depth 7, ccp

alpha 0.001
0.71 (BA)
0.68 (F1)

CNN

DMY DenseNet161
0.62 (R²)

13g (RMSE)

Top-performers DenseNet161
0.81 (BA)
0.63 (F2)

Breeder’s score DenseNet161
0.74 (BA)
0.68 (F1)
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The fifth feature that appeared in the top ten for all three

response types was the VARI vegetation index. A study by De Swaef

et al. (2021) explored the correlation between the visual breeder’s

score and various RGB and thermal-based vegetation indices in

different grass species. The VARI was the third highest performing

index in this study. The top-performing index was the H (hue) band

of the HSV colour space, which aligns with the high importance of

the colour histogram features found in this study.
4.2 All pre-trained CNN architectures
performed similarly

The DenseNet161 architecture without pre-trained weights

performed the best overall, although its performance was often very
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similar to that of the EfficientNet and ResNet50 architectures. On the

other hand, VGG-16 performed slightly inferior compared to the

other architectures, which is possibly related to its relatively old age.

This hypothesis is reinforced by its lower performance in comparable

studies (Latif et al., 2022; Castro et al., 2020). However, the Breeder’s

score VGG-16 was the only model to exhibit a considerably lower

predictive performance. This result can be traced back to the cross-

entropy loss function becoming trapped in a local optimum for one of

the three splits of the training data. This greatly reduced the average

performance and increased the standard deviation of the metrics.

Excluding this run reveals an average predictive power that is more

similar to that of the other architectures.

Furthermore, the models using the pre-trained parameters

demonstrated an inferior prediction performance which was

consistent for nearly all architectures and response types. This
FIGURE 9

Comparison of the normalised confusion matrices of the CNN and RF Top-performers models on the test set.
FIGURE 10

Comparison of the normalised confusion matrices of the CNN and RF Breeder’s score models on the test set.
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trend suggests that there was sufficient data to make the optimisation

of all parameters to the training dataset advantageous. This is

particularly evident in the DMY models, where the contrast

between pre-trained and non-pre-trained parameters was most

pronounced. Since the original model architectures were designed

for classification tasks, a possible explanation is that the regression

model deviates the most from the original purpose.
4.3 Both CNN and RF models outperform
the breeder’s eye

Both the CNN and RF DMY models outperformed the breeder’s

score in its ability to predict DMY. These results indicate that the

image-based models could not only offer faster, more objective

assessments, but could also enhance selection accuracy. This

improvement can be attributed to the fact that human assessments

are inherently subject to various biases that machine learning models
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avoid—some potentially useful, such as lowering a score due to disease

symptoms, and others less so, such as the influence of previously scored

plants, time of day, or the scorer’s state of mind, all of which can reduce

accuracy. These advantages of the automated phenotyping approach

demonstrate its potential as an alternative to manual phenotyping.

Additionally, the automated method could serve as an initial

selection tool rather than a replacement for the breeder’s eye. For

example, the Top-performers model can be used to preselect the

desired number of high-yielding individuals over multiple cuts, so

only this subset has to be evaluated further. The breeder can adjust

the DMY threshold to any desired percentage to accommodate his/

her objectives and budget. Moreover, the balance between false

positives and false negatives can be modified to further optimise

how ‘cautious’ the model is in discarding individuals by changing the

class weights in the CNN loss function or RF hyperparameters. The

model could prioritise the minimisation of false negatives further,

ensuring no potentially valuable plants are lost. Even a highly

cautious model would considerably reduce the breeder’s workload.
FIGURE 11

The zones on the image that are captured by features 4 (blue) and 68 (green) of the colour histogram.
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The CNN models consistently demonstrated superior

performance compared to the RFs across all response types.

CNNs are regarded as the state-of-the-art approach for numerous

computer vision tasks, particularly image classification. Therefore, it

was not surprising that these models achieved the highest accuracy.

Despite the limited size of the dataset, it appears to have provided

sufficient information for the CNNs to identify predictive patterns

in the images. Additionally, it is plausible that the extracted features

for the RF models were suboptimal and the performance could have

been improved by more advanced feature engineering. On the other

hand, the accuracy of the CNNs did not differ greatly from the RFs.

This could be attributed to the limited dataset but also the modest

optimisation of the CNN models. Various hyperparameters such as

the batch size and the learning rate were not optimised, and only a

limited number of architectures were tested.
4.4 Comparison to prior studies

The models’ predictive performance and other results obtained

in this study were compared to existing research. Several studies

have been published that estimate forage yield by means of CNN

regression models. Castro et al. (2020); de Oliveira et al. (2021); de

Souza Rodrigues et al. (2023) and Oliveira et al. (2022) all achieve

comparable results. Castro, de Souza Rodrigues and Oliveira

outperform the present study, achieving R² values between 0.75

and 0.79. In contrast, de Oliveira reports slightly lower accuracy,

with R² values ranging from 0.38 to 0.62. The better-performing

studies have several characteristics in common. Firstly, they use

higher-resolution images, with Castro and Souza Rodrigues

employing nearly double the resolution used in the present study.

Secondly, instead of estimating the yield for individuals, they focus

on plots containing multiple plants. This resulted in a more bell-

shaped distribution of the measured biomass and fewer outliers,

which are favourable properties for predictive modelling. Finally,

the models in these studies were trained for a considerably larger

number of epochs. While the present research was limited to 15

epochs due to computational constraints, Castro, de Oliveira, and

Souza Rodrigues trained their models for 200 - 500 epochs.

Conversely, to the best of our knowledge, there are no other

published studies that use a model similar to the Top-performers

model. While some studies conducted binary classification of plant
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images, the use of different modelling techniques, crops and plant

traits of interest prevented a direct comparison of the results (Koh

et al., 2021; Abdullahi et al., 2017; Momeny et al., 2020; Chipindu

et al., 2020). This lack of comparable research confirms the value of

the present study in addressing this knowledge gap.

Similarly, no published studies were found that use the breeder’s

scores as a response variable, but there are papers employing the

same modelling approaches. However, the comparison of results

remains difficult, as the classification tasks in these studies focus on

diseases and weed species, which are likely easier to visually

distinguish than breeder’s scores from 2D images. Furthermore,

all studies used images captured with handheld cameras, resulting

in considerably higher resolution at the expense of increased time

and labour. Nevertheless, it is still interesting to explore these

studies due to the technical similarities in their use of CNN

models. Table 5 provides an overview of three comparable

studies, detailing their methods and results.

Latif et al. (2022) conducted a study on rice disease classification,

encompassing six disease types. They used several pre-trained model

architectures, including DenseNet201, VGG-16, and VGG-19. Their

comparison of models using pre-trained parameters or newly trained

parameters was most interesting for this paper. The majority of

models demonstrated improved performance when evaluated with

newly trained parameters, which confirms the results obtained in the

present study. Mathulaprangsan et al. (2020) used two different

ResNet and DenseNet architectures to predict disease classes in

rice, of which DenseNet161 performed the best. However, all

model architectures showed comparable performance, similar to

the findings of the current study. The same observation was made

by Chen et al. (2022), who compared 35 different pre-trained

architectures to classify weeds in cotton fields. The performance of

their highest- and lowest-scoring architectures differed only 4

percentage points.
5 Conclusion

The breeder’s eye has proven to be an effective method for plant

phenotyping, with successes dating back to the beginning of plant

breeding. However, its subjective and time-intensive nature has

motivated the search for automated phenotyping approaches. In the

present paper, RGB imaging was combined with CNN and RF
TABLE 5 Comparison of three research papers exploring image-based classification of crops to the results for the Breeder’s score classification model
developed in the present study.

Source Crop Classification
Best CNN

architecture
Number of classes Size of the dataset Performance

Latif et al. (2022) Rice Disease Modified
VGG-19

6 2,167 F1: 0.96

Mathulaprangsan et al. (2020) Rice Disease DenseNet161 6 12,223 CA: 0.96

Chen et al. (2022) Cotton Weeds RepVGG-B1 15 5,187 F1: 0.99

This study Tall
fescue

Yield DenseNet161 3 4,224 BA: 0.74
CA, Classification Accuracy.
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techniques to assess the phenotype of TF individuals. Three

response types were evaluated: a regression model with DMY as

the response variable, a binary classification model to identify the

top 10% highest yielding individuals and a multi-class classification

model to predict the breeder’s score. Additionally, a linear model

using the breeder’s score to predict DMY was developed to serve as

a benchmark for comparison with the image-based DMY models.

The CNN models slightly outperformed the RFs for all three

response types, but both methods clearly surpassed the predictive

power of the breeder’s score. Thus, the tested automated

phenotyping approach not only offers improvements in cost,

efficiency and objectivity, but also enhances selection accuracy.

Furthermore, the automated method could complement rather

than replace the breeders’ expertise by serving as an initial

selection tool, thereby reducing the breeder’s workload while

maintaining their crucial role in the process. To conclude, the

automated phenotyping approach explored in this study could offer

a valuable alternative or addition to traditional visual selection. By

accelerating the phenotyping process, it brings resilient and high-

yielding varieties one step closer to realisation.

Further research could expand upon this concept by using an

average breeder’s score, derived from the evaluation of several

breeders, to obtain a more nuanced understanding of ‘the’ breeder’s

score. Additionally, using various datasets from different seasons,

repeated measurements within seasons, several locations, and various

flight times could improve the general applicability of the model.

Moreover, due to time constraints, each condition was tested using

only three different splits into training and validation sets and finally

evaluated on only one test set. Conducting additional splits would

have enhanced the reliability of the results and reduced the standard

deviation. Also, using cross-validation for these splits would have

been preferable, as it ensures the data is systematically partitioned into

non-overlapping splits, rather than randomly divided into groups.
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Belgiu, M., and Drăguț, L. (2016). Random forest in remote sensing: A review of
applications and future directions. ISPRS J. photogrammetry Remote Sens. 114, 24–31.
doi: 10.1016/j.isprsjprs.2016.01.011

Bendig, J., Yu, K., Aasen, H., Bolten, A., Bennertz, S., Broscheit, J., et al. (2015).
Combining uavbased plant height from crop surface models, visible, and near infrared
vegetation indices for biomass monitoring in barley. Int. J. Appl. Earth Observation
Geoinformation 39, 79–87. doi: 10.1016/j.jag.2015.02.012

Bhatt, D., Patel, C., Talsania, H., Patel, J., Vaghela, R., Pandya, S., et al. (2021). Cnn
variants for computer vision: History, architecture, application, challenges and future
scope. Electronics 10, 2470. doi: 10.3390/electronics10202470

Biau, G., and Scornet, E. (2016). A random forest guided tour. Test 25, 197–227.
doi: 10.1007/s11749-016-0481-7

Borra-Serrano, I., De Swaef, T., Muylle, H., Nuyttens, D., Vangeyte, J., Mertens, K.,
et al. (2019). Canopy height measurements and non-destructive biomass estimation of
lolium perenne swards using uav imagery. Grass Forage Sci. 74, 356–369. doi: 10.1111/
gfs.12439

Breiman, L. (2001). Random forests. Mach. Learn. 45, 5–32. doi: 10.1023/
A:1010933404324

Castro, W., Marcato Junior, J., Polidoro, C., Osco, L. P., Gonc¸alves, W., Rodrigues,
L., et al. (2020). Deep learning applied to phenotyping of biomass in forages with uav-
based rgb imagery. Sensors 20, 4802. doi: 10.3390/s20174802

Chapelle, O., Haffner, P., and Vapnik, V. N. (1999). Support vector machines for
histogram-based image classification. IEEE Trans. Neural Networks 10, 1055–1064.
doi: 10.1109/72.788646

Chen, D., Lu, Y., Li, Z., and Young, S. (2022). Performance evaluation of deep transfer
learning on multiclass identification of common weed species in cotton production systems.
Comput. Electron. Agric. 198, 107091. doi: 10.1016/j.compag.2022.107091

Cheng, Y.-C., and Chen, S.-Y. (2003). Image classification using color, texture and
regions. Image Vision Computing 21, 759–776. doi: 10.1016/S0262-8856(03)00069-6

Chipindu, L., Mupangwa, W., Mtsilizah, J., Nyagumbo, I., and Zaman-Allah, M.
(2020). Maize kernel abortion recognition and classification using binary classification
machine learning algorithms and deep convolutional neural networks. AI 1, 361.
doi: 10.3390/ai1030024

Cougnon, M., Baert, J., and Reheul, D. (2014). Dry matter yield and digestibility of
five cool season forage grass species under contrasting n fertilizations. Proceedings of
the 25th General Meeting of the European Grassland Federation Aberystwyth, Wales, 7-
11 September 2014. Grassland Sci. Europe 175–177.

de Oliveira, G. S., Marcato Junior, J., Polidoro, C., Osco, L. P., Siqueira, H., Rodrigues,
L., et al. (2021). Convolutional neural networks to estimate dry matter yield in a
Guineagrass breeding program using uav remote sensing. Sensors 21, 3971.
doi: 10.3390/s21123971

de Souza Rodrigues, L., Caixeta Filho, E., Sakiyama, K., Santos, M. F., Jank, L.,
Carromeu, C., et al. (2023). Deep4fusion: A deep forage fusion framework for high-
throughput phenotyping for green and dry matter yield traits. Comput. Electron. Agric.
211, 107957. doi: 10.1016/j.compag.2023.107957

De Swaef, T., Maes, W. H., Aper, J., Baert, J., Cougnon, M., Reheul, D., et al. (2021).
Applying rgb-and thermal-based vegetation indices from uavs for high-throughput
field phenotyping of drought tolerance in forage grasses. Remote Sens. 13, 147.
doi: 10.3390/rs13010147

Fu, H., Wang, C., Cui, G., She, W., and Zhao, L. (2021). Ramie yield estimation based
on UAV RGB images. Sensors 21, 669. doi: 10.3390/s21020669

Gibson, D. J., and Newman, J. A. (2001). Festuca arundinacea schreber (f. elatior l.
ssp. arundinacea (schreber) hackel). J. Ecol. 89, 304–324. doi: 10.1046/j.1365-
2745.2001.00561.x

Gill, T., Gill, S. K., Saini, D. K., Chopra, Y., de Koff, J. P., and Sandhu, K. S. (2022). A
comprehensive review of high throughput phenotyping and machine learning for plant
stress phenotyping. Phenomics 2, 156–183. doi: 10.1007/s43657-022-00048-z

Gitelson, A. A., Kaufman, Y. J., Stark, R., and Rundquist, D. (2002). Novel algorithms
for remote estimation of vegetation fraction. Remote Sens. Environ. 80, 76–87.
doi: 10.1016/S0034-4257(01)00289-9

Grüner, E., Astor, T., and Wachendorf, M. (2019). Biomass prediction of
heterogeneous temperate grasslands using an sfm approach based on uav imaging.
Agronomy 9, 54. doi: 10.3390/agronomy9020054

Haralick, R. M., Shanmugam, K., and Dinstein, I. H. (1973). Textural features for
image classification. IEEE Trans. Systems Man Cybernetics SMC-3 (6), 610–621.
doi: 10.1109/TSMC.1973.4309314

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Las Vegas, NV, USA. pp. 770–778. doi: 10.1109/CVPR.2016.90

Hu, M.-K. (1962). Visual pattern recognition by moment invariants. IRE Trans. Inf.
Theory 8, 179–187. doi: 10.1109/TIT.1962.1057692
Frontiers in Plant Science 15
Huang, G., Liu, Z., van der Maaten, L., and Weinberger, K. Q. (2017). “Densely
connected convolutional networks,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Honolulu, HI, USA. 4700–4708.

James, G., Witten, D., Hastie, T., Tibshirani, R., and Taylor, J. (2023).
An Introduction to Statistical Learning (New York: Springer International
Publishing Ag).

Koh, J. C., Spangenberg, G., and Kant, S. (2021). Automated machine learning for
high-throughput image-based plant phenotyping. Remote Sens. 13, 858. doi: 10.3390/
rs13050858

Kumar, G., and Bhatia, P. K. (2014). “A detailed review of feature extraction in image
processing systems,” in 2014 Fourth International Conference on Advanced Computing
& Communication Technologies, Rohtak, India (IEEE).

Latif, G., Abdelhamid, S. E., Mallouhy, R. E., Alghazo, J., and Kazimi, Z. A. (2022).
Deep learning utilization in agriculture: Detection of rice plant diseases using an
improved cnn model. Plants 11, 2230. doi: 10.3390/plants11172230

LeCun, Y., Kavukcuoglu, K., and Farabet, C. (2010). “Convolutional networks and
applications in vision,” in Proceedings of 2010 IEEE International Symposium on
Circuits and Systems, Paris, France (IEEE), 253–256.

Li, W., Niu, Z., Chen, H., Li, D., Wu, M., and Zhao, W. (2016). Remote estimation of
canopy height and aboveground biomass of maize using high-resolution stereo images
from a low-cost unmanned aerial vehicle system. Ecol. Indic. 67, 637–648. doi: 10.1016/
j.ecolind.2016.03.036

Lin, K., Gong, L., Huang, Y., Liu, C., and Pan, J. (2019). Deep learning-based
segmentation and quantification of cucumber powdery mildew using convolutional
neural network. Front. Plant Sci. 10, 155. doi: 10.3389/fpls.2019.00155

Louhaichi, M., Borman, M. M., and Johnson, D. E. (2001). Spatially located platform
and aerial photography for documentation of grazing impacts on wheat. Geocarto Int.
16, 65–70. doi: 10.1080/10106040108542184

Loussaief, S., and Abdelkrim, A. (2018). Convolutional neural network hyper-
parameters optimization based on genetic algorithms. Int. J. Advanced Comput. Sci.
Appl. 9. doi: 10.14569/IJACSA.2018.091031

Lussem, U., Bolten, A., Gnyp, M., Jasper, J., and Bareth, G. (2018). Evaluation of rgb-
based vegetation indices from uav imagery to estimate forage yield in grassland. Int.
Arch. Photogrammetry Remote Sens. Spatial Inf. Sci. 42, 1215–1219. doi: 10.5194/isprs-
archives-XLII-3-1215-2018

Mathulaprangsan, S., Lanthong, K., Jetpipattanapong, D., Sateanpattanakul, S., and
Patarapuwadol, S. (2020). “Rice diseases recognition using effective deep learning
models,” in 2020 Joint International Conference on Digital Arts, Media and
Technology with ECTI Northern Section Conference on Electrical, Electronics,
Computer and Telecommunications Engineering (ECTI DAMT & NCON), Pattaya,
Thailand (IEEE), 386–389.

Matias, F. I., Caraza-Harter, M. V., and Endelman, J. B. (2020). FIELDimageR: An R
package to analyze orthomosaic images from agricultural field trials. Plant Phenome J.
3, 1–6. doi: 10.1002/ppj2.20005

Momeny, M., Jahanbakhshi, A., Jafarnezhad, K., and Zhang, Y.-D. (2020). Accurate
classification of cherry fruit using deep cnn based on hybrid pooling approach.
Postharvest Biol. Technol. 166, 111204. doi: 10.1016/j.postharvbio.2020.111204

Mosimann, E., Schmied, R., Thuillard, C. P., and Thomet, P. (2010). Production de
viande sur prairies temporaires: intérêt de la fétuque élevée. [beef fattening on grazed
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