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Plant chloroplasts produce excess reactive oxygen species (ROS) during

photosynthesis, particularly under biotic and abiotic stress conditions. These

adverse environmental stresses lead to significant alterations in various cellular

components, especially within the chloroplast, which serves as a key stress-

sensor organelle. The stress response of chloroplasts can trigger plastid-to-

nucleus retrograde signaling and enhance the biosynthesis of biologically active

compounds and phytohormones, which are mechanisms that aid plants in

acclimating to environmental stress. While ROS act as signaling molecules to

help re-adjust cellular metabolic homeostasis, they also risk damaging

chloroplasts’ structural and functional integrity. Recent research on stress-

induced plant metabolism has provided new insights into the chloroplast’s

stress response. In particular, advancements in mass spectrometry (MS)

techniques have expanded our understanding of how oxidative stress affects

plants through metabolomics analyses of metabolites involved in this process.

Here, we emphasize the MS-based profiling of lipids, apocarotenoids, and

phytohormones linked to ROS-triggered processes in plants. Moreover, we

discuss the plants’ metabolic responses to abiotic stress. Finally, we outline

future directions for chloroplast stress research. We advocate for integrating

MS-based metabolomics with biochemical and molecular genetic approaches to

discover new signaling molecules and identify interconnected signaling

components that function across multiple chloroplast signaling pathways.
KEYWORDS

chloroplast, mass spectrometry, metabolite analysis, oxidative stress, reactive oxygen
species, retrograde signals, stress response
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1 Introduction

The chloroplast is an organelle that hosts numerous essential

metabolic pathways, including photosynthesis, and facilitates the

conversion of radiant energy into chemical energy (Heinig et al.,

2013; Zoschke and Bock, 2018). Additionally, chloroplasts are crucial

in monitoring plant surroundings and signaling for acclimation

(Woodson, 2019). Adverse abiotic and biotic stresses disrupt

cellular homeostasis and trigger chloroplast stress responses. This

leads to the formation of plastid-to-nucleus retrograde signaling (RS)

and enhances the biosynthesis of biologically active compounds and

phytohormones, which mediate plant acclimation to environmental

stresses (Chan et al., 2016; Noctor et al., 2018; Woodson, 2019). Upon

sensing adverse ecological conditions, chloroplasts inevitably produce

harmful by-products, such as ROS (Noctor et al., 2018; Shapiguzov

et al., 2020). While ROS can significantly damage chloroplasts’

structural and functional integrity (Halliwell, 2006; Shapiguzov

et al., 2020), they also perform essential signaling functions by

helping to readjust cellular metabolic homeostasis and facilitating

cell repair (Halliwell, 2006; Foyer and Noctor, 2016; Foyer et al., 2017;

Sies, 2017; Woodson, 2019; Kim, 2020). In addition to ROS, the

chloroplast stress response modulates the biosynthesis of secondary

metabolites, including signaling molecules like b-cyclocitral (b-CC)
and precursors of stress hormones such as 12-oxo-phytodienoic acid

(12-OPDA) and xanthoxin (Considine and Foyer, 2021). Compelling

evidence indicates that chloroplast stress-associated metabolites, such

as b-CC and 3′(2′)-phosphoadenosine-5′-phosphate (PAP), play

pivotal roles in maintaining optimal chloroplast functions in

response to environmental changes in plants (Wagner et al., 2004;

Møller et al., 2007; Pogson et al., 2008; Dizengremel et al., 2009;

Ramel et al., 2012; Ramel et al., 2013; Kleine and Leister, 2016;

Fichman et al., 2020; Li and Kim, 2021; Moreno et al., 2021b). With

advancements in MS, large-scale analyses can identify and quantify

numerous plant metabolites through metabolomics approaches

(Fernie et al., 2004; Sato et al., 2004; Mi et al., 2016b; Zhang et al.,

2017). Furthermore, elucidating the metabolism of chloroplast

signaling-associated molecules under various stress conditions may

provide essential insights into the impact of chloroplast stress

signaling on cellular homeostasis and plant resilience (Mi et al.,

2018b; Mi et al., 2019b; Moreno et al., 2021a; Jia et al., 2022; Mi et al.,

2022a; Mi et al., 2022b). In this work, we focus on key metabolites

involved in the chloroplast stress response, provide an overview of

MS analysis of these metabolites, and discuss future applications of

MS research.
2 The alteration of plant metabolism
in chloroplast stress responses

Environmental stresses can adversely affect various cellular

components, including nucleic acids, proteins, and lipids, by

altering their structure and function. As a stress sensor, the

chloroplast is particularly vulnerable to these adverse

environmental conditions, which can lead to changes in the

redox state of proteins, gene expression, and the production of
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ROS. These changes can impact plant metabolism at multiple

levels through diverse mechanisms (Noctor et al., 2015). For

instance, there is a direct increase in the production of oxidized

compounds due to ROS-triggered chemical reactions. A notable

example of this is the oxidative cleavage of carotenoids, leading to

the formation of apocarotenoids (Ramel et al., 2012; Ramel et al.,

2013). ROS production can also influence enzyme activity,

indirectly affecting plant metabolism (Zaffagnini et al., 2012; Li

and Kim, 2021). Oxidative stress, for instance, can modify the

TCA cycle by impacting ascorbate metabolism in plants (Millar

et al., 2003; Nunes-Nesi et al., 2005; Ishikawa et al., 2010;

Zaffagnini et al., 2012; Dumont and Rivoal, 2019; Savchenko

and Tikhonov, 2021). Changes in the thiol redox state within

chloroplasts under oxidative stress may also affect plant

metabolism, including glutathione metabolism (Sies, 2017;

Dorion et al., 2021). Moreover, ROS-dependent metabolic

adjustments can lead to secondary effects, as altered metabolite

levels can further activate signaling, defense, or acclimatory

pathways (Noctor et al., 2015; Li and Kim, 2021). For example,

producing nicotinamide adenine dinucleotide phosphate

(NADPH) is crucial for maintaining intracellular detoxification

in plants. Adequate levels of NADPH result from increased

activity in various catabolic pathways and associated shunts,

such as glucose-6-phosphate dehydrogenase, NADP-dependent

glyceraldehyde-3-phosphate dehydrogenase, and isocitrate

dehydrogenase (Dizengremel et al., 2009). Thus, alterations in

the activity of any of these enzymes could disrupt NADPH levels,

ultimately affecting the plant’s sensitivity or tolerance to oxidative

stress conditions.
3 MS strategies for analyzing
chloroplast stress response-
derived metabolites

Various MS-based platforms with good sensitivity and a wide

dynamic range have been utilized in the comprehensive profile of

chloroplast stress response-derived metabolites from a complex

biological plant sample, such as gas chromatography-mass

spectrometry (GC–MS) and liquid chromatography-mass

spectrometry (LC–MS) (Table 1).

GC-MS technology is a highly effective analytical technique for

analyzing samples in complex matrices. It offers excellent separation

and resolution of metabolites, enabling the detection and

quantification of known and unknown metabolites, even at low

concentrations, with remarkable reproducibility (Misra, 2021). GC-

MS strategies are adept at achieving extensive coverage of diverse

compound classes, encompassing polar organic compounds, amino

acids, hydrophilic carbohydrates, and hydrophobic lipids,

particularly after suitable derivatization steps. This analytical

technique excels in separating and quantifying metabolites with

high sensitivity and reproducibility. However, it is essential to note

that GC-MS technology is constrained in its ability to analyze

volatile and thermally stable metabolites and compounds that

lack the potential for chemical modification to yield volatile
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derivatives (Fiehn, 2016). The electron ionization (EI) method is

predominantly utilized in GC-MS to ensure high reproducibility in

analytical results. The most common mass analyzers employed in

GC-MS are Quadrupole (Q) and orthogonal time-of-flight (oTOF)

analyzers. Q-MS analyzers offer exceptional sensitivity for targeted

compound analysis and boast a broad dynamic range. In contrast,

TOF-MS analyzers deliver superior mass accuracy, enhanced duty

cycles, and accelerated acquisition times, making them a valuable

option for comprehensive metabolomic studies.

LC-MS is a pivotal technology for analyzing thermolabile and

polar metabolites and high-molecular-weight compounds without

derivatization. The versatility of column chemistry and retention

mechanisms in LC-MS allows for broad coverage of the plant

metabolome (Marta et al., 2021). For instance, reversed-phase

stationary phases facilitate strong interactions with less-polar

compounds, while normal-phase stationary phases are employed to

separate highly polar metabolites effectively. However, hydrophilic

interaction liquid chromatography (HILIC) and porous graphitic

carbon stationary phases are gaining prominence for analyzing highly

polar metabolites commonly encountered within the plant

metabolome. Electrospray ionization (ESI) is LC-MS analyses’ most

widely used ionization method. In addition to triple quadrupole

(QQQ) MS and time-of-flight (TOF) MS, Orbitrap-MS represents a

high-resolution mass spectrometry system increasingly employed for

qualitatively analyzing plant metabolites.
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4 MS analysis of lipids and
their peroxides

Chloroplast oxidative stress induces lipid peroxidation (LPO), a

complex process in which free radicals attack polyunsaturated fatty

acids, synthesizing lipid peroxides (Vollenweider et al., 2000;

Farmer et al., 2003; Davoine et al., 2006). The lipid peroxides

encompass aldehydes, ketones, alcohols, ethers, and alkanes

(Noctor et al., 2015). LPO can either result in plant oxidative

injury or promote plant redox homeostasis (Noctor et al., 2015).

LPO can occur through both enzymatic and non-enzymatic

processes. In the enzymatic process, chloroplastic lipoxygenases

serve as an early step in the synthesis of jasmonates (JAs) (Bell and

Mullet, 1993; Farmer et al., 2003), and play a crucial role as they

catalyze the peroxidation of fatty acids, particularly during

wounding stress. Additionally, lipoxygenases catalyze the

oxidation of polyunsaturated fatty acids, producing bioactive

oxylipins that are activated in response to various stress

conditions, including wounding and insect and pathogen attacks

(Feussner et al., 1995; Göbel et al., 2001). In non-enzymatic

reactions, ROS are the primary agents triggering the generation of

lipid peroxides (Oenel et al., 2017; Mhamdi and Van Breusegem,

2018). Some of these lipid peroxides have been studied as markers

of oxidative stress (e.g., malondialdehyde [MDA]), as well as lipid-

derived signaling molecules and hormones (e.g., JAs), particularly

under stress conditions (Feussner et al., 1995; Göbel et al., 2001;

Biswas and Mano, 2015; Choudhury et al., 2017; Oenel et al., 2017;

Yonny et al., 2017; Mhamdi and Van Breusegem, 2018;

Alché, 2019).

MS-based lipid profiling has been utilized to investigate the

effects of stress on lipid metabolism and the oxidation mechanisms

associated with stress-induced LPO in plants. For instance, Yonny

et al. developed an ultra-high-performance liquid chromatography

(UHPLC)-MS method for detecting the oxidative stress marker

MDA directly from the leaves of melon plants under thermal stress

conditions, eliminating the need for derivatization (Yonny et al.,

2017). Additionally, another significant lipid peroxide, 4-hydroxy-

2-nonenal (HNE), a reactive aldehyde, was measured in carrot

callus cultures using an LC-MS approach, which aids in studying

free radical-mediated mechanisms during in vitro plant

development (Deighton et al., 1997). Beyond analytical protocols

for detecting free-form aldehydes, high-sensitivity LC-MS

techniques have been developed utilizing derivatization to detect

various aldehydes from plant samples (Deighton et al., 1997; Yonny

et al., 2017; Jia et al., 2019; Mi et al., 2019a; Mi et al., 2020; Jia et al.,

2021). These LC-MS approaches will be critical tools for analyzing

lipid peroxides in chloroplast oxidative stress-induced LPO.

In addition, MS-based metabolomics analytical strategies,

particularly lipidomics, have been extensively employed to

investigate alterations in lipid metabolism in plants under stress

conditions. Using an ultra-performance liquid chromatography

(UPLC)-MS method (Hummel et al., 2011), Degenkolbe et al.

conducted a comparative analysis of 180 lipid species across 15

Arabidopsis accessions, revealing significant accumulation of

s to rage l ip id s , pa r t i cu l a r ly long-cha in unsa tura t ed
TABLE 1 MS analyses of oxidative stress markers in chloroplast
stress responses.

Markers Stresses
Biological
function

MS
techniques

Lipid peroxides,
e.g., MDA, HNE

Thermal
stress

Stimulating gene
expression and cell
survival; Inhibiting
gene expression and
promoting cell death

GC-MS
LC-MS

Oxylipins
Wounding;
Insect attacks;
Pathogen

Signaling molecules for
defense and
development

LC-MS

Galactolipid,
Triacylglyceride

Cold;
Drought

Storage lipids;
Lipids of the
plasma membrane

LC-MS

Zeaxanthin,
Antheraxanthin

High light
Regulating xanthophyll
cycle-based
photoprotective system

LC-MS

Apocarotenoids,
e.g., b-CC,
b-CCA, DHA

High light;
Drought

Signaling molecules;
Root growth promoter;
Precursors of ABA

GC-MS
LC-MS

GAs Salinity Plant hormone
GC-MS
LC-MS

ABA
Drought;
Salinity

Plant hormone LC-MS

Auxins
Drought;
Salinity

Plant hormone GC-MS

JA Wounding Plant hormone
GC-MS
LC-MS
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triacylglycerides, in most accessions following cold acclimation

(Degenkolbe et al., 2012). Introducing ion trap (IT) technology

into the analytical workflow has enhanced high-resolution MSn,

making it an efficient method for characterizing complex mixtures

of plant metabolites (Okazaki et al., 2013; Higashi et al., 2015).

Higashi et al. applied HILIC coupled with IT-time-of-flight MS for

lipidomic analysis, detecting 66 glycerolipid species in Arabidopsis

under heat stress (Wang et al., 2014). Their results indicated that

certain glycerolipid species increased while others decreased during

recovery from stress exposure, suggesting a reduction in

unsaturated fatty acids from chloroplast membranes (Higashi

et al., 2015). Furthermore, high-sensitivity triple quadrupole-

tandem MS (QQQ-MS/MS) has also been utilized in targeted

lipidomic experiments (Wang et al., 2014; Mi et al., 2016a; Mi

et al., 2018a). For instance, Tarazona et al. examined lipid

alterations related to cold and drought stress using UPLC-QQQ-

MS/MS, revealing close relationships between glycosyl inositol

phosphor ceramides, steryl glycosides, and acylated steryl

glycosides in response to drought stress (Tarazona et al., 2015).

Additionally, Zoeller et al. conducted targeted lipidomic analyses of

LPO in the interaction between Arabidopsis wild-type and

lipoxygenase 2 (lox2) mutants, which are deficient in 9-

lipoxygenases and 13-lipoxygenases, and Pseudomonas syringae

using UPLC-QQQ-MS/MS (Zoeller et al., 2012). Their findings

indicated that LPO predominantly targeted plastid lipids, including

galactolipid and triacylglyceride species (Zoeller et al., 2012).
5 MS analysis of carotenoids and their
oxidation cleavage products

Many compounds, including carotenoids, have been reported as

effective antioxidants capable of scavenging ROS in cells (Michaeli

and Feitelson, 1994; Bouvier et al., 2005; Krieger-Liszkay and Trebst,

2006; Ramel et al., 2012). Their oxidation products and derivatives

are recognized as stable and promising markers in plant oxidative

stress responses (Ramel et al., 2012). Due to their roles as ROS

scavengers, the antioxidant functions of carotenoids have been

extensively studied in both humans and plants (Rao and Rao, 2007;

Cazzonelli and Pogson, 2010; Avendaño-Vázquez et al., 2014; Fiedor

and Burda, 2014; Swapnil et al., 2021). Although it remains unclear

whether carotenoids are primary contributors to ROS homeostasis in

plants, particularly under stress conditions, they are considered

critical in regulating the accumulation of ROS and their derived

molecules within the membrane phase (Swapnil et al., 2021).

Additionally, carotenoids serve accessory light-harvesting roles and

possess photoprotective properties, such as quenching triplet

chlorophyll and singlet oxygen (1O2) through the xanthophyll cycle

(Swapnil et al., 2021). Interestingly, stress conditions like high light

exposure can stimulate the production of zeaxanthin and

antheraxanthin, particularly influencing the ratio between these two

compounds (Logan et al., 1998). Beyond their biophysical

interactions, carotenoids can be oxidized to yield apocarotenoids, a

reaction that can occur spontaneously through ROS or be catalyzed
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by enzymes from the CAROTENOID CLEAVAGE DIOXYGENASE

(CCD) family (Havaux, 2014; Jia et al., 2018; Mi and Al-Babili, 2019).

CCDs comprise a superfamily of mononuclear non-heme iron

proteins that catalyze the oxygenolytic fission of alkene bonds in

carotenoids to generate apocarotenoid products (Havaux, 2014; Jia

et al., 2018; Mi and Al-Babili, 2019). Recent studies have identified

various apocarotenoids associated with photoacclimation and

drought tolerance, such as cyclic and acyclic apocarotenoids that

confer high light and drought tolerance, including b-CC, b-
cyclogeranic acid (also known as b-cyclocitric acid, b-CCA), and
dihydroactinidiolide (DHA) (Moreno et al., 2021b).

(U)HPLC-UV approaches are preferred for detecting plant

carotenoids due to their high abundance and characteristic UV

absorption (Gupta et al., 2015). However, MS is employed to

identify or detect carotenoids in organisms or materials where

carotenoid levels are significantly low (Rivera et al., 2011; Pérez-

Gálvez and Roca, 2018). While plants typically contain high levels of

carotenoids, profiling of apocarotenoids is often conducted using

GC or LC analytical platforms. For example, using GC-MS, Ramel

et al. investigated the effects of light stress on b-carotene oxidation
in Arabidopsis. Their results showed a rapid accumulation of b-
carotene oxidation products, such as b-CC, b-ionone, and DHA, in

plants exposed to high light stress within hours (Ramel et al., 2012).

In conjunction with transcriptomics analysis, they concluded that

b-CC acts as a signaling molecule produced during photooxidative

stress and likely functions in the 1O2 signaling pathway in

Arabidopsis (Ramel et al., 2012). In another study, Alexandra

et al. used a UHPLC-MS method to detect b-CC in Arabidopsis

roots, finding that b-CC enhances root branching in the presence of

N-(4-fluoro-benzyl)-N-hydroxy-3-(4-methoxy-phenyl)-

propionamide (D15). This CCD inhibitor reduces primary root

length and inhibits lateral root capacity by 50%. This suggests that

b-CC is a growth promoter in Arabidopsis roots (Alexandra et al.,

2019). Recently, d’Alessandro et al. identified a water-soluble b-
CCA in Arabidopsis leaves from plants subjected to drought stress

or treated with exogenous b-CC using GC-MS (d’Alessandro et al.,

2019). They also demonstrated the positive effects of exogenous b-
CCA application on plant adaptation to drought stress, a benefit

observed in other plants such as pansy, pepper, and tomato

(d ’Alessandro et al., 2019). Transcriptomic analysis of

Arabidopsis plants exposed to excessive light or b-CC revealed

that both treatments induce the expression of several

glycosyltransferase genes in leaves (Ramel et al., 2012). Our group

recently identified a new modification of apocarotenoids

glycosylation resulting in the formation of apocarotenoid

glucosides in Arabidopsis through MS-based metabolite profiling

(Mi et al., 2019b). Furthermore, the results indicated that high-light

conditions increase the levels of glycosylated apocarotenoids,

including glycosylated b-CC, glycosylated b-ionone, glycosylated
b-apo-11-carotenal, glycosylated b-apo-13-carotenone, and their

isomers in Arabidopsis (Mi et al., 2019b). Additionally, we

developed a UHPLC-MS method for apocarotenoid profiling. We

used it to investigate the effect of salt stress on the metabolism of

apocarotenoids in Arabidopsis, revealing that salt stress
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significantly induces the formation of C15 b-apo-11-carotenals,
which are precursors of abscisic acid (ABA) in an alternative ABA1-

independent biosynthetic pathway in plants (Jia et al., 2022).
6 MS analysis of chloroplast stress-
related phytohormones

Chloroplasts are the primary sites for synthesizing

phytohormone precursors, which are crucial in producing

essential hormones such as gibberellic acid (GA), ABA, auxins,

and JA. These phytohormones regulate various aspects of plant

growth and development and mediate responses to environmental

stimuli. Specifically, GA is instrumental in promoting seed

germination and flowering, while ABA is vital for managing stress

responses, such as stomatal closure during drought conditions

(Peng and Harberd, 2002; Lim et al., 2015). Auxins facilitate cell

elongation and are key to maintaining apical dominance and

supporting root development (Gomes and Scortecci, 2021).

Additionally, JA is critical for activating plant defense

mechanisms against biotic and abiotic stressors (Wang et al.,

2020). The biochemical processes occurring within chloroplasts

significantly contribute to the overall balance of phytohormones,

which is essential for the physiological functions of plants.

Increasing evidence suggests that phytohormones mediate

oxidative stress signaling in plants (Zhu, 2002; Achard et al., 2006;

Achard et al., 2008; Magome et al., 2008; Tognetti et al., 2010;

Colebrook et al., 2014; Gao et al., 2014; Ruiz-Sola et al., 2014; Zhu,

2016; Sato et al., 2018; Wang et al., 2018; Balfagón et al., 2019).

Phytohormone signaling allows for flexible and appropriate

modulation of plant growth in response to environmental changes.

For instance, Achard et al. detected bioactive GA1 and GA4 in 14-

day-old wild-type Arabidopsis seedlings grown under 100 mM NaCl

and control conditions using GC-MS (Achard et al., 2006). Their

results showed that salt stress significantly reduced the levels of

bioactive GAs. Studies of quadruple-DELLA and GA-deficient

mutants concluded that salt-activated signaling pathways enhance

the growth-repressing effects of DELLAs, at least partly by reducing

bioactive GA levels (Achard et al., 2008). Similarly, Magome et al.

profiled 15 GAs, including 13-H GAs and 13-OH GAs, from

Arabidopsis wild-type and ga2ox7-2 mutant lines under high-

salinity stress using LC-MS. They demonstrated that endogenous

GA levels were actively reduced due to the induction of GA 2-oxidase

regulated by the salinity-responsive DWARF AND DELAYED

FLOWERING 1 (DDF1) gene, leading to the conclusion that

growth is repressed to favor stress adaptation (Magome et al., 2008).

The role of ABA in abiotic stress responses is well-documented,

with its signaling pathway central to drought and salt stress

responses in plants (Zhu, 2002). Sato et al. measured ABA

content in Arabidopsis wild-type and NGATHA1 (NGA1, a

transcriptional regulator of NINE-CIS-EPOXYCAROTENOID

DIOXYGENASE 3 [NCED3]) transgenic lines, both with and

without dehydration stress, using LC-MS/MS (Sato et al., 2018).
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Their results indicated that dehydration stress enhances the

NGATHA1 transcription factor, positively regulating ABA

accumulation by activating the NCED3 gene, a key player in ABA

biosynthesis during early drought stress (Sato et al., 2018). In

another study, Ruiz-Sola et al. reported that salt stress can rapidly

activate the carotenoid pathway, specifically in roots, likely leading

to the production of ABA precursors necessary for sustained ABA

production (Ruiz-Sola et al., 2014).

Recent research on catalase-deficient plants has uncovered

meaningful interactions with auxins. For example, using GC-MS,

Gao et al. compared auxin levels between Arabidopsis wild-type and

catalase 2-1 (cat2-1) mutant leaves (Gao et al., 2014). Their results

indicated that cat2-1 mutant leaves accumulate high levels of H2O2

under photorespiratory conditions, leading to decreased auxin

levels. Conversely, cat2-1 mutant leaves exhibited lower H2O2

content and elevated auxin levels under low light intensities (Gao

et al., 2014). Additionally, microLC-MS/MS was employed to detect

auxins and auxin derivatives in Arabidopsis wild-type and

transgenic plants ectopically expressing UGT74E2, a UDP-

glycosyl transferase induced in catalase-deficient plants (Tognetti

et al., 2010). The results showed that these transgenic plants had

increased concentrations of indole-3-butyric acid glucose ester

(IBA-Glc), as well as higher levels of free indole-3-butyric acid

(IBA) and conjugated indole-3-acetic acid (IAA). The altered IBA

and IAA homeostasis significantly improved survival during

drought and salt stress treatments (Tognetti et al., 2010).

As discussed earlier, intracellular oxidative stress can also

activate pathways associated with JA. A study utilizing a reversed-

phase C18 column UPLC coupled with QQQ-MS profiled JA, JA-Ile,

ABA, salicylic acid (SA), and 12-OPDA in Arabidopsis plants

subjected to a combination of high light and heat stress (Balfagón

et al., 2019). Balfagón et al. revealed that JA is crucial for regulating

several transcriptional responses specific to these stress conditions

and proposed that JA may function as a signaling molecule

regulating plant photosynthesis under high light and heat stress

(Balfagón et al., 2019).

With the development of LC-MS-based targeted plant

hormonomics, Šimura et al. performed comprehensive profiling

of 101 phytohormones using fresh plant material (Šimura et al.,

2018). They highlighted key hormone metabolites, such as GA,

ABA, auxins, and cytokinins, that play critical roles in plant

adaptation to salt stress (Šimura et al., 2018). Additionally, Mi

et al. utilized the targeted plant hormonomics strategy developed by

Šimura et al. to investigate hormone levels regulated by

manipulating carotenoid metabolism in crops, ultimately

enhancing tomato’s abiotic stress tolerance to high light, salt, and

drought conditions (Mi et al., 2022b).
7 Perspective

Our understanding of how chloroplast stress regulates plant

metabolism and its positive contributions to plant adaptation to
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environmental stress has dramatically advanced in recent years. The

impact of environmental stress on plant metabolism is highly

complex. However, the widespread application of MS techniques

in analyzing stress-regulated metabolites has enabled a more

comprehensive understanding of metabolic regulation under

stress conditions. Lipid oxidation enhances the metabolic flux of

JA and signaling lipid peroxides in plants, which may serve as a

signaling mechanism for environmental stress responses.

Furthermore, the non-enzymatic oxidation of carotenoids not

only scavenges ROS in the chloroplast but also likely generates

important signaling apocarotenoids, including b-CC and

precursors of ABA.

Environmental stresses stimulate hormone metabolism and

signaling pathways, which regulate plants’ stress responses.

However, new RS metabolites, such as novel apocarotenoids and

their metabolic and signaling pathways, remain elusive. To address

these biological questions, new multi-omics strategies should aid in

identifying and characterizing the genes, enzymes, and metabolites

involved. b-CC has been established as a new RS and plant growth

regulator. However, information about its tissue-specific functions,

transport, and plant perception remains largely unknown. In

addition to b-CC, many carotenoid derivatives of unknown

identity (e.g., linear cis-carotene-derived apocarotenoids, LCDAs)

have been reported to possess signaling functions in plant

development and environmental interactions (Escobar-Tovar

et al., 2021; Moreno et al., 2021b; Dhami et al., 2022; Sierra et al.,

2022). Recently identified C15 b-apo-11-carotenals can be induced

by salt stress, contributing to enhanced ABA content in Arabidopsis

(Jia et al., 2022). However, information regarding the genes and

enzymes involved in this bioconversion is still lacking.

Research on carotenoid-related signals in chloroplast stress

responses is among this field’s most intriguing and urgent topics.

Progress is somewhat hindered by challenges such as the discovery

of novel bioactive apocarotenoids and their modifications and the

characterization of new biosynthetic and signaling pathways related

to the chloroplast stress response in plants. Future research should

focus on discovering bioactive molecules (e.g., apocarotenoids) and

characterizing their physiological functions. Additionally,

elucidating the biosynthetic pathways of apocarotenoids, their

compartmentalization, and the molecular mechanisms implicating

their regulation in plant chloroplast stress responses must be the

focal points for the coming years.

In summary, the stress response markers discussed herein play a

pivotal role in plant adaptation to environmental stressors. The

analyses of those markers provide insight into plants’ physiological

and biochemical pathways to cope with adverse conditions. The

detection and quantification of these markers help understand the

mechanisms of stress response and inform breeding programs to

improve stress resilience in crops.

Combined with other technologies such as NMR, next-

generation sequencing, and CRISPR/Cas9 gene editing, MS-based

metabolomics strategies are poised to discover new plant bioactive

apocarotenoids (including b-CC derivatives and LCDAs) and to

investigate the potential biosynthetic and signaling pathways of

both novel and known apocarotenoids. High-resolution (HR)-MS/
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MS is crucial in untargeted metabolomic studies for identifying

unknown metabolites, as its ability to measure mass accurately

allows for distinguishing different isobaric species while providing

structural information through MS/MS analyses. Consequently,

HR-MS-based untargeted metabolomics of wild-type plants and

their relative mutants, or plants under various stress conditions, can

yield valuable insights into promising candidates.

Combined with transcriptomic data, these findings enable the

investigation of potential metabolic pathways through high-

sensitivity (HS)-MS-based targeted metabolite analysis in wild-

type plants and available transgenic lines. While a few pioneering

studies have explored these approaches, information regarding the

molecular mechanisms remains limited or incomplete. Only a tiny

fraction of the described apocarotenoids have been studied in depth,

indicating a “virgin” niche for discovering new signaling molecules

involved in plant chloroplast stress responses. Uncovering the

molecular mechanisms that regulate these compounds to enhance

plant stress tolerance will be key to manipulating the content of

chloroplast stress-related active apocarotenoids in the future.

Integrating transcriptomics, proteomics, and MS-based

metabolomics will be instrumental in exploring the signaling

pathways that regulate environmental stress responses in plants.
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