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A leading concern for global wheat production, Fusarium head blight (FHB) can

cause yield losses of up to 50% during severe epidemics. The cultivation of FHB-

resistant wheat varieties is widely acknowledged as a highly effective and

economical approach to disease management. The disease resistance

breeding task depends on accurately evaluating the severity level of FHB.

However, existing approaches may fail to distinguish among healthy and

slightly infected wheats due to insufficient fine-grained feature learning,

resulting in unreliable predictions. To tackle these challenges, this paper

proposed the FHBNet model for evaluating the severity level of FHB under an

end-to-end manner by simply using image-level annotated RGB images. In total,

6035 RGB aerial images taken from the wheat field were used to construct the

dataset and each image was labelled by the light, moderate, or severe category.

In FHBNet, we first utilized themulti-scale criss-cross attention (MSCCA) block to

capture the global contextual relationships from each pixel, thereby modelling

the spatial context of wheat ears. Furthermore, in order to accurately locate small

lesions in wheat ears, we applied the bi-level routing attention (BRA) module,

which suppressed the most irrelevant key-value pairs and only retained a small

portion of interested regions. The experimental results demonstrated that

FHBNet achieved an accuracy of 79.49% on the test se5t, surpassing the

mainstream neural networks like MobileViT, MobileNet, EfficientNet, RepLkNet,

ViT, and ConvNext. Moreover, visualization heatmaps revealed that FHBNet can

accurately locate the FHB lesions under complex conditions, e.g., varying severity

levels and illuminations. This study validated the feasibility of rapid and

nondestructive FHB severity level evaluation with only image-level annotated

aerial RGB images as an input, and the research result of this study can potentially

accelerate the disease resistance breeding task by providing high-throughput

and accurate phenotype analysis.
KEYWORDS
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1 Introduction

Globally, wheat stands as a pivotal crop in both human and

animal sustenance, contributing significantly to food security

(Gruber, 2017). Its protein composition boasts ample amino acids

to fulfill daily human dietary requirements (Chen, 2020). Fusarium

Head Blight (FHB), primarily induced by Fusarium graminearum,

poses a substantial threat to wheat, ranking among the most

deleterious fungal ailments (Sari et al., 2020). The pathogen

infiltrates the spikelet during flowering, causing premature

desiccation and discoloration, thereby precipitating a notable

decline in the wheat yield. Simultaneously, the toxins will also

compromise the immune responses of both humans and animals

(Femenias et al., 2020; Gilbert and Tekauz, 2000). Breeding the

FHB-resistant cultivars stands as an effective strategy in combating

this disease. However, the breeding process requires to evaluate the

disease resistance of hundreds of wheat varieties. Exisitng methods

of evaluating the disease severity level predominantly rely on visual

observations by manually recording the proportion of infected

wheat ears to the total ears in the field. This approach is labor-

intensive and time-consuming. Consequently, there arises an urgent

need for efficient approaches to assess the FHB severity levels.

In recent years, the analysis of plant phenotype has been driven

by diverse neural network architectures (Mochida et al., 2019; Toda

and Okura, 2019; Singh et al., 2018). Deep learning and computer

vision have revolutionized the field of plant phenotyping by

providing advanced tools for analyzing and interpreting various

traits. These technologies have leveraged the power of artificial

intelligence, which mimics humans to recognize patterns and make

decisions. By learning from a sufficient amount of image data,

neural networks can identify subtle phenotypic traits that are

difficult for human observers to detect. This capability has proven

particularly useful in precision agriculture, where timely and

accurate assessment of plant characteristics can lead to better

crop management and disease control strategies.

Various publications have reported the applicability of neural

networks to wheat disease detection. Hamila et al. (2024) developed

a 3D convolutional neural network to detect wheat FHB symptoms

and accurately estimate the number of healthy and infected spikes.

Roble et al. (2023) used classification algorithms to directly estimate

the FHB scores without prior segmentation or detection of diseased

wheat spikes. However, this study achieved a low accuracy of

approximately 52% in discriminating the severity levels of FHB.

Wang et al. (2023) developed a deep learning-based multi-model

fusion system for real-time accurate diagnosis of wheat FHB,

achieving high precision in wheat spike and lesion segmentation.

The effectiveness of incorporating HSV color features as weighting

factors in the wheat spike grading model was verified. Gao et al.

(2022) collected images of individually isolated wheat ears and

applied a pre-trained network for FHB prediction. Zhang et al.

(2022a) developed a detection method for detecting the wheat FHB

by integrating spectral and image features from raw unmanned

aerial vehicle hyperspectral imaging data. Weng et al. (2021)

proposed a method using HSI and deep learning networks to

identify FHB severity levels by selecting specific wavelengths and
Frontiers in Plant Science 02
applying a residual attention convolutional neural network,

enabling high-precision classification of healthy and infected

wheat kernels. Mi et al. (2020) developed C-DenseNet by utilizing

the convolutional block attention mechanism (CBAM) and

DenseBlock to extract traits of wheat stripe rust at varying

severity levels. The attention heatmap confirmed that the

proposed model was able to extract fine-grained features, thus

accurately distinguishing disease levels with similar symptoms.

Zhang et al. (2019) established a pulse coupled neural network to

segment wheat ears infected with FHB. Nevertheless, this

investigation solely addressed one spike within the image,

rendering it impracticality for high-throughput detection in

complex field conditions.

To boost the plant disease detection and classification accuracy,

integrating the attention mechanism to deep learning models is one

of the favorable strategies. Wei et al. (2025) introduced the dual

branch channel attention and efficient spatial attention modules to

ShuffleNetV2 to enhance feature learning of few-shot samples. The

integration of the attention mechanisms boosted the classification

accuracy by around 3%. Srinivasan et al. (2025) proposed DBA-

ViNet for fruit disease detection and classification. Specifically,

DBA-ViNet utilized a dual branch attention to capture global

contextual information and fine-grained local lesion details

simultaneously. Zang et al. (2025) developed a segmentation

algorithm, RSE-Swin Unet, for wheat powdery mildew. The

SENet attention mechanism was introduced to the baseline model

Swin-UNet for capturing global and local features. The

experimental result indicated that SENet was beneficial to identify

irregular and small lesions. Bhujel et al. (2022) examined the effect

of multiple attention mechanisms, including CBAM, Squeeze-and-

Excitation (SE), Self-Attention (SA), and dual attention on the

tomato leaf disease classification task. Recent works also reported

more advanced attention mechanisms, such as high-frequency

attention (Tian et al., 2025) context-guided attention (Yan and Li,

2025), multi-dimensional attention (Yang et al., 2025), cross-branch

channel attention (Li et al., 2025), coordinate attention (Gu and Liu,

2025), etc. All these works confirmed the potential of integrating the

attention mechanisms to deep learning models to achieve higher

accuracy of detecting and classifying the plant disease.

Despite significant improvements in wheat FHB detection, most

exisiting methods either collected images of isolated wheat spikes

under constrained conditions or used algorithms to detect the

percentage of spike and lesion pixels. However, these methods

were not targeting to handling the real-world application

scenarios and had weak generalization due to the scale differences

of wheat spikes. Furthermore, the FHB severity evaluation task can

be influenced by multiple factors. First, the quality of the data

source is concerning. RGB images may be collected from different

shooting angles under various illumination conditions. For

instance, a healthy wheat spike taken under strong illumination

usually has the similar visual characteristics as the one infected by

FHB, both of which would appear color changes. Second, the FHB

infected wheat spikes are usually distributed within the field plot

unevenly and may be occluded by leaves and healthy wheat spikes.

Therefore, aggregating the contextual information to enhance the
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feature learning is of great necessity. Although existing approaches

have integrated attention mechanisms to tackle this issue, these

attention mechanisms still experience weak generalization for FHB

detection, particularly, may fail to adapt to the complex scenes in

the wheat field. Third, at the early stage of FHB, the small spots on

the spikes can be considered as small objects, which brings great

challenges for the detection tasks.

To address the above-mentioned challenges in the FHB severity

level evaluation task, we proposed an end-to-end deep learning model,

namely FHBNet, which received an image-level annotated RGB image

as an input and provided the severity level value of FHB as an output.

The novel contributions of this study were summarized as follows.
Fron
• To enhance the contextual information of wheat ears, we

developed a multi-scale criss-cross attention (MSCCA) block.

It first replaced the standard 3×3 convolution kernels with

ones that had a larger receptive field, enabling to effectively

capture the long-term dependencies. Additionally, we

introduced a multi-scale convolution module to adapt to

variations in the orientation and scale distribution of wheat

spikes, thus enhancing the spatial feature extraction.

Concurrently, the MSCCA block performed a thorough

semantic analysis of each pixel along vertical and horizontal

directions, allowing each pixel to capture dependencies from

its neighboring pixels, which greatly enhanced the pixel-level

representational ability.

• As wheat ears were considered as small objects, we adopted

the bi-level routing attention (BRA) block to further aid

FHBNet to focus on the key regions within the feature map.

Irrelevant key-value pairs were filtered out at a coarse

region level. The BRA block was helpful to distinguish the

FHB lesions among the complex background and locate the

infected wheat ears more precisely.

• We conducted extensive comparative evaluations with

several mainstream neural networks, including

MobileViT, MobileNet, EfficientNet, RepLkNet, ViT, and

ConvNext. The experimental results demonstrated the

effectiveness of FHBNet in all evaluation indicators.

Additionally, we validated the robustness of FHBNet

under various settings (e.g. , severity levels and

illuminations). Through the heatmap visualization, it was

evident that FHBNet can effectively address the detection

challenges and achieve promising performance.
2 Materials and methods

2.1 Data acquisition and preprocess
methods

The experiment site was located in Huai’an, Jiangsu Province,

China (119°01′20.74″E, 33°36′59.45″N). This region has a North

subtropical humid monsoon climate with an average temperature at

14.5°C and an average rainfall at 960 mm. The wheat variety chose
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in this study was Huaimai 33 as the experiment material, provided

by the College of Plant Protection, Nanjing Agricultural University.

The experiment field was divided into 125 plots and each plot has

5.0 m both in length and width (see Figure 1A). All plots received

the same agricultural management (e.g., irrigation, fertilization,

weeding, etc.) except the disease control measure. FHB naturally

occurred, rather than artificial inoculation. We applied different

fungicide treatments to achieve each FHB disease severity level. For

the control group, no disease control measure was adopted,

resulting in the severe disease level. For the moderate and light

disease levels, we applied the 200 g/hm2 and 400 g/hm2 of

Phenamacril suspension concentrate, respectively.

The field data was acquired on 24 May, 2024, when the wheat

was at the filling stage. We adopted a DJI Mavic 3 Pro unmanned

aerial vehicle (UAV) for acquiring the RGB imagery. This UAV was

equipped with a Hasselblad camera (4/3CMOS, effective pixels 20

MP), which fulfilled the requirement of data acquisition. The flight

height of the UAV was set at 20 m and the flight speed was set at 1.5

m/s. After obtaining the raw video data, we manually filtered and

cropped the video frames. To increase the size of the dataset, we also

utilized an FHB dataset from the research contributed by Roble

et al. (2023), resulting in a total of 6035 images. Each image was

assigned by a category from light, moderate, and severe (see

Figure 1B). Table 1 listed the classification criteria and the

number of samples included in all categories.

During training and validation, the images were resized to

224×224. To enhance the stability of the model and accelerate

convergence, we normalized the data samples by adjusting features

of different dimensions to similar ranges and pixel values to a

specific interval. The dataset was divided to a training dataset and a

test dataset by the ratio of 8:2.
2.2 FHBNet

We proposed a novel model, namely FHBNet, that can

accurately identify infected wheat spikes and determine the

severity level of FHB. The overall architecture was depicted in

Figure 2. The original image first entered the Stem layer, where a

series of convolutional layers were stacked. After passing through

the first 3×3 convolutional layer with a sampling rate of 2, we used a

depth-wise separable 3×3 convolutional layer to capture the low-

level features. Next, a 1×1 convolutional layer and a depth-wise

separable 3×3 convolutional layer was employed to perform the

downsampling operations. The image then progressed through the

Stage layer, which was the core of FHBNet. It was responsible to

locate the wheat spikes and extract the FHB features. The Stage layer

included the MSCCA and BRA blocks, which will be elaborated in

subsequent sections. The number of blocks in each stage was

presented in Supplementary Table S1. It was worth mentioning

that Stage 3 contained 18 MSCCA blocks, more than any other

stage. This was due to the reason that in deep network architectures,

deeper layers were often responsible for extracting more abstract

features. Located in the deeper layers of FHBNet, Stage 3 dealt with

more complex feature information. The MSCCA block, with its
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multi-scale and attention mechanism, effectively enhanced the

model’s ability to abstract and represent features, enabling

FHBNet to better understand and process the high-level semantic

information. Last, the Transition layer served as a bridge between

each stage, acting as an independent downsampling layer that

doubled the channel dimensions and halved the image size.
2.3 MSCCA block

To better capture the information at various scales and model

spatial contextual semantic relationships, we designed the MSCCA

block and embedded it in all the Stage layers. The detailed design of

the MSCCA block was shown in Figure 3A. In general, the MSCCA

block consisted of several sub modules, mainly including the feature

pyramid split attention (FPSA) and criss-cross attention (CCA)

modules. The former was deployed to extract the multi-scale features,

while the latter was helpful to enhance the extraction of the semantic

information. Besides, we heavily employed 1×1 convolution operators in

the MSCCA block to increase the model depth and introduce the non-

linearity. Meanwhile, the 1×1 convolution operator can facilitate the

cross-channel communication. In both FPSA and CCA modules, the

residual connection was considered to tackle the network degradation

issue (i.e., the gradient vanishing issue) (He et al., 2016). Additionally,

we utilized large-kernel depth-wise separable convolutions to further
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broaden the receptive field. It was important to note that the size of the

large-kernel convolutions varied in the MSCCA blocks across each

stage. Specifically, the dimensions of the large kernels in Stages 1-4 were

31×31, 29×29, 27×27, and 13×13, respectively (Ding et al., 2022b).

Inspired by the design of EPSANet (Zhang et al., 2022b), we

introduced the FPSA module in the MSCCA block, as shown in

Figure 3B. Let H,W, and C denoted the height, width, and channels

of the feature map, respectively. We first divided the feature map

generated by the large kernel convolution into four branches along

the channel dimension, represented by [Z0, Z1, Z2, Z3]. The

convolutional kernels with different sizes were assigned to

generate feature maps at various scales. To handle input tensors

of different kernel sizes without increasing computational costs, the

group convolution method was adopted. This means that the filters

in the specific input channels only interact within these channels,

greatly reducing the total number of trainable parameters. The

multi-scale feature map was generated by Equation 1 as follows.

fi = Conv(Zi, (Ki � Ki,Gi)) (1)

where Conv(·) denoted the group convolution operation. Zi

denoted the ith feature map branch. Ki denoted the size of the

convolutional kernel in the ith branch, and Gi denoted the group

size in the ith branch. K0, K1, K2, and K3 are 3×3, 5×5, 7×7, and 9×9,

respectively. G0, G1, G2, and G3 are 1, 4, 8, and 16, respectively. fi  

denoted the feature maps.
FIGURE 1

Data acquisition and labelling: (A) the plot setting. (B) example images of each category.
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The feature maps generated from each branch were then

concatenated along the channel dimension, formulated by

Equation 2.

f = Concat(f0, f1, f2, f3) (2)

where Concat denoted the concatenation of feature maps in a

serial manner.

Subsequently, the attention weight vectors with four scales were

obtained by extracting the channel attention weight information

(Hu et al., 2018). This operation enabled the FPSA module to

capture adequate contextual information in the feature map. In

particular, each channel attention vector was concatenated and

recalibrated through the Softmax function. The recalibrated weights

and the corresponding feature maps were undergoing element-wise

multiplication to produce a feature map with attention weights,

enhancing its representational capability across multiple scales. The

relevant formulas are defined by Equations 3, 4.
Frontiers in Plant Science 05
Si = SEWeight(fi) (3)

F = f ⊗ Softmax(Concat(S0, S1, S2, S3)) (4)

where Si denoted the attention weight vectors for each scale, ⊗
denoted element-wise multiplication. F denoted the feature map

obtained after processing by the FPSA module.

After passing through the FPSA module, the feature map was

then processed by the semantic feature enhancement module (i.e.,

the CCA module). Inspired by feedforward networks (FFNs) widely

used in transformers (Kong et al., 2022; Liu et al., 2021) and MLPs

(Ding et al., 2022a; Tolstikhin et al., 2021), we employed a CNN-

style block composed of residual connections, batch normalization

(BN), two 1×1 layers, with the addition of criss-cross attention at

the end (Huang et al., 2019). Compared to the standard FFN, which

used layer normalization before the fully-connected layers, BN had

an advantage in that it can be fused into convolutions for efficient

inference. BN normalizes the output of a layer for a given mini-

batch by centering them around a mean of zero and scaling them to

a standard deviation of one. BN effectively address the issue of

internal covariate shift by ensuring that the inputs to each layer

have a consistent distribution, regardless of the variations in the

previous layer’s outputs.

The CCA module gathered the contextual information from

each pixel along the vertical and horizontal paths. As shown in

Figure 3C, the CCA module initially applied two convolutional
TABLE 1 The severity annotation scale and dataset distribution.

FHB severity
Infested spike

area/%
The number of

samples

Light 0-5 1754

Moderate 5-14 2012

Severe 14-100 2269
FIGURE 2

The architecture of the proposed FHBNet.
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layers with 1×1 filters on Z ∈ RC�H�W , producing two feature

maps, Q and K, where K ,Qf g ∈ RC0�H�W and C0 was the number

of channels. At each position u in Q, a vector Qu ∈ RC0
was

obtained. Feature vectors from K corresponding to the same

column or row at position u were also extracted, forming a setWu ∈
R(H+W−1)�C0

. The attention map A ∈ R(H+W−1)�H�W was computed

by applying a Softmax layer (that converted a vector of raw scores

into a vector of probabilities) over the Affinity matrix (that

quantified the similarity between two data points), which was

calculated by Equation 5:

di,u = QuW
T
i,u (5)

where, di,u ∈ D represented the correlation between feature Qu

and Wi,u, where Wi,u ∈ RC0
was the ith element of Wu, and i =

½1,…, Wuj j�, with D ∈ R(H+W−1)�H�W .

A third convolutional layer applied to Z generated V ∈
RC�H�W for feature adaptability. At each position u in V, a

feature vector Vu ∈ RC and a set Fu ∈ R(H+W−1)�H�W were

obtained. The set Fu comprised feature vectors from V that were

in the same column or row as position u.

The contextual information was aggregated by Equation 6:

Z
0
u =oH+W−1

i=0 Ai,uFi,u + Zu (6)
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where, Z}
u   denoted the feature vector at position u in Z0 ∈

RC�H�W , Fi,u denoted the ith e l ement of Fu, where

i = ½0,…,H +W − 1� , and Ai,u denoted the scalar value at

channel i and position u in the attention map A.
2.4 BRA block

Considering the complexity of backgrounds in the wheat field,

and wheat spikes were small-scale targets, it was challenging to

accurately locate the position of diseased wheat spikes. Additionally,

the ability of most existing models to suppress background

information was insufficient, which challenged the focus of the

model on essential input features and increased its vulnerability to

irrelevant background noise. To tackle this issue and enhance the

model’s capability to detect small targets like wheat spikes and

concentrate on the pathological features of FHB on these spikes, we

incorporated a module, known as BiFormer, into the Stage section of

FHBNet (Zhu et al., 2023). BiFormer is a recent computer vision

algorithm integrated the attention mechanism from the Transformer

architecture. It proposed a dynamic sparse attention mechanism by

determining a small, relevant set of key pixels for each query pixel to

attend to, rather than having every pixel attend to every other pixel.
FIGURE 3

The workflow of the MSCCA block: (A) Structure of the MSCCA block; (B) the FPSA module; (C) the criss-cross attention module.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1549896
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhu et al. 10.3389/fpls.2025.1549896
The core of constructing the BRA block was the bi-level routing

attention. As depicted in Figure 4A, the BRA block comprised a 3×3

depth-wise separable convolution, two layers of layer normalization

(LN), a bi-level routing attention, three residual connections, and a

two-layer MLP with an expansion ratio of 3. Here, the depth-wise

convolution (denoted by DW in Figure 4A) was utilized to decrease

the number of parameters and the computational complexity of

FHBNet, while LN aided in accelerating the training process and

enhancing the generalization of FHBNet. The MLP further

processed and adjusted attention weights to intensify the focus of

FHBNet on high-level features. Additionally, a residual connection

between the original input and the final output was introduced, in

addition to the original three residual connections, to further

improve the model’s generalization capability. The computational

process for the BRA block was outlined in (Equations 7–10).

ẑ l−1 = DW(zl−1) + zl−1 (7)

ẑ l = BRA(LN(ẑ l−1)) + ẑ l−1 (8)

zl = MLP(LN(ẑ l)) + ẑ l (9)

zl = zl + ẑ 0 (10)

where ẑ 0 represented the initial input, ẑ l−1, ẑ l , and zl

represented the outputs of the depth-wise convolution, the BRA

module, and the MLP module, respectively.

The most critical component of the BRA block was the bi-level

routing attention, a novel dynamic sparse attention mechanism. BRA

first utilized query adaptivity to filter the input feature map, removing

the least relevant key-value pairs in the coarse-grained areas, thus

effectively identifying highly relevant key-value pairs for attention

computation later. This not only greatly reduced the computational

and storage resource consumption, but also enhanced the perception of

the input content. The BRA block cares about only a small subset of

relevant key-value pairs under a query adaptive manner, thus avoiding

distraction from irrelevant ones.

As depicted in Figure 4B, the input feature map X ∈ RH�W�C

was initially partitioned into S� S sub-regions, also known as

patches, each containing HW/S2 feature vectors. Subsequently, X

underwent a change in shape to obtain Xr ∈ RS2�(HW=S2)�C . Xr was

then subjected to linear transformation to obtain three feature

vectors Q, K, and V. The formulas for calculating Q, K, V can be

expressed by Equations 11–13, respectively.

Q = XrWq (11)

K = XrWk (12)

V = XrWv (13)

Subsequently, a graph was constructed to obtain attention

relationships between regions, determining the relevant regions.

The specific implementation process was as follows. For each

region, Q and V were processed by region averaging to obtain

region-levelQr and Kr ∈ RS2�C . Then, the dot product ofQr and Kr
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was computed to obtain the adjacency matrix Ar ∈ RS2�S2 , which

measured the correlation between regions. The formula of

calculating Ar were expressed by Equation 14.

Ar = Qr(Kr)T ,  Ar ∈ RS2�S2 (14)

Next, at the coarse-grained level, the least relevant tokens in Ar

were pruned, retaining the top k most relevant regions in Ar to

obtain the routing index matrix Ir ∈ NS2�k. The formula of

calculating Ir were expressed by Equation 15.

Ir = topkIndex(Ar) (15)

Subsequently, token-to-token attention was used at a fine-

grained level. For a query in region i, this attention focused only

on the k routing regions indexed by Ir(i, 1), Ir(i, 2),…, Ir(i, k) in the

routing index matrix Ir , and collected all the K and V tensors from

these k regions to obtain Kg and Vg . The formula of calculating  Kg

and Vg were expressed by Equation 16.

Kg = Gather(K , Ir),Vg = Gather(V , Ir) (16)

Finally, attention processing was applied to the collected Kg and

Vg , and a local context enhancement term LCE (V) was added to

obtain the output tensor O. The formula of calculating O were

expressed by Equation 17.

O = Attention(Q,Kg ,Vg) + LCE(V) (17)

The function LCE(·) was parameterized using a depth-

wise convolution.
2.5 Experimental environment and training
details

All experiments in this study were conducted under the same

hardware and software configurations to ensure fairness. The

experiments were performed on a server running Ubuntu 20.04,

equipped with an Intel® Core™ i7 central processing unit (CPU)

and an NVIDIA GeForce RTX 3090 with a GPU memory size of 24

GB. Additionally, we utilized CUDA 11.3, cuDNN 8.9.0, and

PyTorch 1.10.0 as the deep learning framework.

We utilized the Adam optimizer (Kingma and Ba, 2014) for

training, with the momentum set at 0.9. Additionally, in 250 epochs,

we set the batch size to 36 and employed a cosine annealing

schedule (Loshchilov and Hutter, 2016) to adjust the learning

rate, starting from 1� 10−3 and gradually decaying to 1� 10−6.

This scheduling method reduced the learning rate in a cosine curve

fashion, effectively preventing the network from settling into local

optima by periodically refreshing the learning rate, thus promoting

better convergence and stability.
2.6 Evaluation metrics

In the experiment, we used four evaluation metrics: accuracy,

precision, recall, and F1 score. The proportion of accurately

classified instances, both positive and negative, out of the total
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number of instances was referred as Accuracy. It reflected the

overall correctness of the classifier. Precision was defined as the

proportion of accurately classified positive instances among all

instances classified as positive. Recall, on the other hand, was the

proportion of accurately identified positive instances among all true

positive instances. The F1 − score combined Precision and Recall

into a single metric by taking the harmonic mean of these two

metrics. These definitions were given by (Equations 18–21). Accur

acy, Precision, Recall, and F1 − score were denoted by Acc, P, R and

F1, respectively, in the following evaluation results.

In these Equations, True Positives (TP) and True Negatives

(TN) referred to cases where the true labels and false labels matched

the predicted results, respectively. False Positives (FP) and False

Negatives (FN) referred to cases where false labels were incorrectly

predicted as true labels and true labels were incorrectly predicted as

false labels, respectively.

Accuracy =
TP + TN

TP + TN + FP + FN
(18)

Recall =
TP

TP + FN
(19)
Frontiers in Plant Science 08
Precision =
TP

TP + FP
(20)

F1 − score =
Precision� Recall
Precision + Recall

(21)
3 Results

3.1 Ablation experiment

We first conducted the ablation experiments on FHBNet to

validate the effectiveness of the individual modules.

The results in Table 2 demonstrated that each module had a

positive impact on the prediction performance. The MSCCA block

utilized large-kernel multi-scale convolutions and criss-cross

attention to effectively adapt to changes in the orientation and

scale of wheat ears in the field. It also thoroughly extracted the

spat ia l contextual re lat ionships , enhancing per-pixel

representational capability, which increased accuracy by 4.06%.

The attention mechanism in the BRA block focused on the
FIGURE 4

The workflow of BRA block: (A) overall structure. (B) bi-level routing attention module. In B, mm denoted the matrix multiplication operation.
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critical information within the feature maps and effectively captured

small, diseased wheat ears, raising accuracy by 1.35%. The improved

model saw an overall accuracy increase of 5.42%, with all detection

metrics showing substantial improvements. The FHBNet model

achieved the optimal performance across all metrics, indicating that

each component significantly contributed to the overall

performance of the model.
3.2 The feature extraction process at each
stage of FHBNet

To more clearly demonstrate the feature extraction process of

FHBNet for diseased wheat spikes, we utilized GradCAM (Selvaraju

et al., 2017) to visualize the feature maps at different stages, thereby

providing a clear display of FHBNet learning curves.

As shown in Figure 5, we presented the test result using two

example images. As the network deepened, FHBNet progressively

extracted the features of wheat spikes, illustrating its effectiveness in

feature extraction. This also highlighted the potential of FHBNet in

detecting wheat spikes and identifying FHB. This formed the basis

for the model to further discern pathological features on the spikes.

According to the second test image, it was also evident that the

model focused more on the diseased spikes.
3.3 Performance of FHBNet under different
disturbances

To verify the generalization ability of the FHBNet model, we

visualized network feature maps under different noise disturbances.

In natural conditions, overexposure of RGB images due to excessive

sunlight is common. Therefore, we selected two examples of

overexposed images for visualization. As shown in Figure 6A, even

in overexposed conditions, the FHBNet model can still accurately

locate infected wheat spikes. Meanwhile, when selecting resistant

varieties, the shooting angles are often in non-ideal states, such as

spikes concentrated at the edges or in the center, or spikes oriented

towards various angles. Therefore, we selected two images: one with

wheat samples concentrated at the edge and another with spikes

fallen towards the photographer, corresponding respectively to the

upper and lower parts of Figure 6B. The visualization results

demonstrated that, under different angles and orientations of

spikes, FHBNet can still precisely locate FHB lesions and effectively
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perform FHB detection. We observed that in cases of moderate

infection, healthy, and diseased spikes often intermingle, which posed

challenges for assessing the severity of FHB. To address this, we

selected two images with a moderate severity of FHB to test whether

ourmodel can accurately locate FHB lesions under such disturbances.

As shown in Figure 6C, examples on the left were the original images,

with the diseased parts of the spikes framed in red. On the right were

the visualizations, where the framed parts of the spikes were the FHB

lesions, distinctly redder compared to the healthy spikes. The result

demonstrated that the FHBNet model focused on the pathological

features of FHB on the spikes and can accurately locate FHB lesions

amid interspersed healthy and diseased spikes, thereby enabling it to

assess the severity of FHB based on these findings.
3.4 Comparison with other methods

To further analyze the performance of FHBNet, we conducted

comparative experiments on the same testing environment and

dataset with several current mainstream and advanced neural

network models, including ConvNext (Liu et al., 2022), ViT

(Dosovitskiy et al., 2020), RepLKNet (Ding et al., 2022a),

MobileNet (Howard et al., 2017), MobileViT (Mehta and

Rastegari, 2022), and EfficientNet (Tan and Le, 2019). The basic

information of compared models can be found in the note of

Supplementary Figure S1 in the supplementary file. To ensure a

fair comparison, the hyperparameter configurations of these models

were the same as FHBNet with Adam being the optimizer. The

training Epoch was set to 250 and the batch size was 36. The cosine

annealing schedule was adopted to promote better convergence and

stability. Table 3 displayed the test result, and we also plotted the

loss and accuracy curves of the seven models for a clear comparison

of accuracy (see Supplementary Figure S1).

The results indicated that FHBNet achieved excellent

performance, surpassing the second-best performing model by

3.7% in accuracy. We also observed that all models exhibited the

lowest accuracy in recognizing moderate infection, as the

complexity of the image background increased with healthy wheat

and infected wheat intermingled, which interfered with the models’

discriminative capabilities.

Additionally, we selected two examples from each of the three

FHB severity levels to visualize the heatmaps for all models. As

shown in Figure 7, ConvNext and ViT performed the worst, only

focusing on areas with color traits similar to FHB. RepLKNet,

MobileNet, MobileViT, and EfficientNet showed better results, but

still had instances of missed and false detections, and, in some cases,

failed to detect the wheat spikes at all. In contrast, FHBNet was able

to precisely locate the majority of the wheat spikes and further

pinpoint the lesions.
4 Discussion

In this study, we developed and validated the FHBNet model for

automatically assessing the severity of wheat FHB with image-level
TABLE 2 Ablation experiment of FHBNet.

Blocks Metric

MSCCA BRA Acc=% R=% F1=% P=%

× × 74.07 74.07 74.03 74.21

✓ × 78.13 78.13 78.62 78.81

× ✓ 75.42 75.42 75.63 76.17

✓ ✓ 79.49 79.49 79.54 79.94
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annotated RGB images as an input. We introduced the MSCCA

block, which integrated the FPSA module and the CCA module to

enhance the capability of FHBNet for feature extraction and

semantic analysis. The multi-scale convolution module adapted to

variations in the orientation and scale distribution of field wheat

spikes, thus improving the efficiency of spatial feature extraction.

We enhanced the model’s pixel-level representation by capturing

the relationships between adjacent pixels. Subsequently, we

introduced the BRA block to filter noise region from the feature

map, achieving precise localization of small lesions on the spikes. In

the experiments, FHBNet demonstrated superior performance, with

accuracy and F1 score reaching 79.49% and 79.54%, respectively.

FHBNet outperformed other advanced neural network models.

Moreover, it maintained high recognition accuracy under various
Frontiers in Plant Science 10
disturbances. These results indicated that FHBNet possessed strong

generalization capability and robustness, enabling it to work stably

under diverse field conditions.

We further analyzed models with the help of Table 3, Figure 7. The

self-attention mechanism was a core advantage of ViT, enabling the

model to capture relationships between different parts of the input

image, regardless of their spatial positions in the image. This

mechanism worked by computing the correlation between each

image patch and all other patches, allowing ViT to understand the

image globally rather than just locally. This was beneficial for themodel

to understand wheat images in complex backgrounds. However, by

observing the result of ViT in Figure 7, we found that the heatmaps

generated by ViTmight have been too scattered, not clearly focusing on

the details or pathological changes of wheat ears. The reason might
FIGURE 5

Heatmap visualization of FHBNet: (A) Original image. (B) Heatmap for Stage 1. (C) Heatmap for Stage 2. (D) Heatmap for Stage 3. (E) Heatmap for
Stage 4. Note: the diseased wheat spikes are highlighted with red boxes in the second image.
FIGURE 6

Heatmap visualization of FHBNet under different noise disturbances: (A) Strong natural light interference. (B) Different scales, with upper section
indicated uneven distribution and the lower section denoted fallen wheat ears. (C) Intermingling of diseased wheat ears.
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have been that although the self-attention mechanism emphasized the

global context, it might have overlooked the fine processing of

extracting local features. When processing images of wheat ears, ViT

might have overly focused on broad regions in the overall image rather
Frontiers in Plant Science 11
than precisely focusing on subtle pathological changes on the ears.

Additionally, compared to convolutional layers, self-attention lacked

structured patterns of local receptive fields, which might have led to

poor performance in extracting detailed features with local correlations.
TABLE 3 Comparison results of SOTA models.

Model
Light Moderate Sever

F1/% Acc/%
P/% R/% P/% R/% P/% R/%

Ours 86.75 74.86 71.16 76.12 82.02 85.78 79.54 79.49

MobileViT 82.84 80.01 64.25 70.65 81.37 71.65 75.63 75.42

MobileNet 82.39 82.86 65.37 66.67 78.40 76.61 75.12 75.08

EfficientNet 85.99 77.14 61.29 71.54 79.81 77.98 75.84 75.59

RepLkNet 82.43 69.71 64.25 66.17 77.41 84.86 74.03 74.07

ViT 72.41 60.12 46.57 64.18 74.42 58.72 61.69 60.94

ConvNext 84.62 50.29 45.66 78.61 76.39 50.46 60.44 59.93
Bold fonts indicated the best performance.
FIGURE 7

The heatmap visualization of all models.
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The effect of MobileViT was slightly better than ViT.

MobileViT combined the characteristics of ViT and convolutional

networks, aiming to balance the global perceptual ability of

Transformers with the efficient computation and local feature

extraction ability of CNNs. This combination to some extent

mitigated the drawback of ViT focusing only on global features.

However, by observing the result of MobileViT in Figure 7, we

found that some heatmaps displayed overly smooth activation

regions, which might have reflected a ‘blurring’ phenomenon in

the model’s feature recognition process, meaning that the model

failed to distinguish between different structures and boundaries in

the image. Specifically, the global attention of the Transformer

layers might have to some extent suppressed the local sensitivity of

the convolutional layers, leading to visually smoother and blurrier

feature representations. This was detrimental to the model’s focus

on wheat ears and their pathological features.

RepLKNet was a convolutional neural network that used large

kernel convolutions to expand the model’s receptive field and

improve its ability to capture image features. This structure could

better capture long-range dependencies in images, establish a

good semantic space, and thus be able to locate wheat ears in

complex backgrounds. Although the RepLKNet model

successfully located the overall position of wheat to some extent,

the range and contours of its activation areas were obviously larger

than the actual wheat area in some samples. This might have been

because RepLKNet used large kernel convolutions, which had a

relatively wide receptive field. While this wide receptive field

helped capture global semantic information in images, it might

have also led to a decrease in accuracy in detail localization,

especially in tasks that required precise delineation of small or fine

features, which was detrimental in the severity discrimination task

of FHB.

MobileNet achieved high recognition accuracy. However, as

shown in the MobileNet column in Figure 7, it performed

particularly poorly in the moderate class. The reason might have

been that in the two examples of the moderate class, the spatial

distribution of wheat was complex, and MobileNet was designed

to be lightweight and efficient, it might not have been able to

capture certain details and semantic information in complex

images, especially for tasks that required understanding global

context and were easily interfered by irrelevant background

information. For example, MobileNet focused on the leaves,

which was due to the model’s failure to capture semantic

information in the image, being interfered by irrelevant

background information. Through the comparison in Figure 7,

FHBNet could more completely and accurately extract wheat ears

compared to other state-of-the-art models, which was important

for further locating lesions on wheat ears and identifying the

severity of FHB.

Additionally, our core advantage lied in the model’s ability to

directly learn features related to the severity of FHB from raw RGB

images, without relying on annotated pixel-level annotations. This

significantly reduced the cost of data labelling, while also enhancing
Frontiers in Plant Science 12
the model’s feasibility for practical applications (Kumar and

Kukreja, 2022). Furthermore, the end-to-end nature of the model

allowed for easy integration into existing agricultural monitoring

systems, facilitating real-time disease prediction.

Despite the significant achievements of FHBNet in this study,

there were still areas that warranted further exploration and

improvement. First, under certain disturbances, there were still

instances of missed detection of infected wheat spikes. As shown in

Supplementary Figure S2, awns and weeds extensively cover the

diseased spikes, and their color resembled that of the disease traits,

making them difficult to distinguish. This complicated FHBNet to

accurately assess the severity of FHB. In order to further enhance

the prediction performance and robustness of FHBNet, we would

further enhance the ability of extracting fine-grained features. For

instance, to reduce the background interference on predictions, one

could try the multi-granularity feature fusion approach (Xu et al.,

2024; Su et al., 2024). Alternative approaches to enhance feature

learning can also refer to knowledge distillation (Liu et al., 2024;

Zhang et al., 2024). Second, FHBNet had a higher computational

load compared to classic lightweight models and required more

computing resources. Potential future directions for this research

involve minimizing the model size through model compression and

model pruning techniques to enable integration into edge

devices (Yan et al., 2024; He et al., 2022). Such integration could

aid in the onsite selection of FHB resistant varieties, thereby

improving breeding efficiency. Last, optimizing the model for

embedded devices could broaden its application in precision

agriculture scenarios.
5 Conclusion

The model proposed in this study has achieved notable success

in extracting FHB resistance phenotypes, providing a reliable basis

for screening wheat resistant varieties. This research outcome is not

only of theoretical importance but also provides practical decision

support for wheat breeding, accelerating disease-resistant breeding

efforts, and potentially providing new breakthrough directions for

agricultural production.
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