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Global climate change and ecological degradation highlight the urgency of

dealing with agricultural waste and ecological restoration. Traditional pollutant

monitoring and ecological restoration methods face challenges in accuracy and

adaptability, especially when dealing with complex environmental data. This

paper proposes the Bio-DANN model, which combines biogeochemical

models and deep learning techniques to improve the accuracy of pollutant

monitoring and ecological restoration prediction. The model uses deep neural

networks (DNNs) and attention mechanisms to process multidimensional

environmental data in various agricultural and ecological scenarios in real time.

Experimental results based on Open Soil Data and NEON datasets show that Bio-

DANN performs well in pollutant prediction, with mean square errors (MSE) of

0.012 and 0.018, root mean square errors (RMSE) of 0.109 and 0.134, and

accuracy of 0.92 and 0.90, respectively. In terms of ecological restoration

assessment, Bio-DANN achieved DF and PIPGR of 0.15 and 18%, and 0.20 and

22%, respectively, and H’ values of 1.5 and 1.7, which are better than other

models. Bio-DANN provides a promising technical solution for environmental

protection, resource recovery and sustainable agriculture, especially showing

significant potential in pollutant monitoring, soil health assessment and

ecological restoration evaluation.
KEYWORDS

3D reconstruction, landscape restoration, hybrid method, point cloud, ecological
integrity, attention mechanism, graph networks
1 Introduction

With the intensification of global climate change, population growth, and increasing

environmental degradation, the management of agricultural waste and ecological restoration

has become an urgent challenge (Shi et al., 2023). For instance, large-scale agricultural activities

generate significant waste, contributing to soil pollution and ecosystem degradation. This is
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particularly evident in regions such as Southeast Asia and Sub-Saharan

Africa, where agricultural runoff contaminates water sources and

reduces soil fertility (Singh et al., 2024). In this process, pollutant

monitoring and the evaluation of ecological restoration effectiveness

remain key issues. As environmental problems become more severe,

traditional pollutant treatment methods often suffer from poor real-

time performance, insufficient accuracy, and weak adaptability to

complex ecosystems (Singh et al., 2023). Phytoremediation, as an

eco-friendly remediation approach, can effectively improve soil health

and ecological environments by absorbing and transforming pollutants

through plants (Singh et al., 2024). For example, the use of plants like

poplar and willows in contaminated sites has shown promising results

in removing heavy metals from soils (Gao et al., 2021). However, the

dynamic changes in pollutants during the phytoremediation process

are highly complex, and evaluating remediation effectiveness involves

multiple dimensions (Naizabayeva et al., 2024; Wang and Delavar,

2024). Accurately and in real-time monitoring these changes remains a

significant challenge in current research.

In recent years, AI-based pollutant monitoring and ecological

evaluation methods have made some progress, particularly in

integrating deep learning with sensor technologies. For example, the

combination of deep learning models and IoT sensors has been used

in some smart agriculture projects to monitor soil moisture and

pollutant levels in real-time (Wu and Zhao, 2023). However, most

existing approaches still struggle with accuracy limitations, poor real-

time performance, and constrained data processing capabilities when

dealing with complex biogeochemical processes. For example, many

studies employ traditional CNNs to predict soil pollutant

concentrations. While CNNs can achieve a certain level of

predictive accuracy, they often fail to fully utilize temporal sequence

data, resulting in lower accuracy for long-term predictions (Wu and

Zhao, 2023). Additionally, studies leveraging Recurrent Neural

Networks (RNNs) or Long Short-Term Memory (LSTM) models

have made breakthroughs in handling time-series data, yet they still

face limitations in modeling complex ecological processes, particularly

in capturing multivariate relationships among pollutants, soil

properties, and plant growth (Gao et al., 2021). Similarly, research

on ecological restoration evaluation faces comparable challenges.

Many existing studies use simple regression analysis or remote

sensing-based statistical models to assess changes in soil fertility or

biodiversity during phytoremediation (Gao et al., 2021). However,

these methods often rely excessively on static data and lack the ability

to track the dynamic changes of ecological restoration in real-time. For

instance, some remote sensing-based soil fertility assessment models

can periodically evaluate the spatial distribution of soil fertility but lack

the capability to track the temporal dynamics of plant growth and soil

changes, making them less effective in adapting to complex

ecological variations.

To address these challenges, this study proposes the Bio-DANN

model (Biogeochemical-Deep Attention Neural Network Model),

which integrates biogeochemical models, deep neural networks

(DNNs), and multi-head attention mechanisms to enable

dynamic pollutant monitoring and ecological restoration

evaluation in agricultural waste management. The Bio-DANN

model builds on the foundational principles of biogeochemical
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models, which simulate the processes of pollutant absorption and

transformation by plants in the soil (Singh et al., 2024). Unlike

existing methods, Bio-DANN leverages deep attention mechanisms

to effectively capture the impact of various ecological factors, such

as temperature, rainfall, and soil composition, when processing

high-dimensional, complex time-series data. This approach

overcomes the limitations of traditional methods in handling

dynamic changes in complex ecosystems. In particular, BioDANN

demonstrates superior performance in predicting pollutant

concentrations over multi-dimensional and long-term time scales,

as well as in evaluating the effectiveness of ecological restoration.

Through a combination of deep learning and biogeochemical

modeling, Bio-DANN provides a more robust framework for

predicting pollutant dynamics and assessing ecological restoration

in real-time, offering promising potential for applications in smart

agriculture and environmental management.

The main contributions of this paper are as follows:
• The introduction of the Bio-DANN model, which effectively

combines traditional phytoremediation methods with

modern deep learning techniques, filling a gap in existing

research on the integration of phytoremediation and

deep learning.

• The design of a deep learning framework based on

biogeochemical processes, enabling the model to better

simulate and predict the dynamic changes of pollutants

during the phytoremediation process.

• Experimental verification demonstrating the high efficiency

and accuracy of the Bio-DANN model in pollutant

concentration prediction and ecological restoration

evaluation, with particular potential for application in

agricultural waste management.
The structure of this paper is as follows: Section 2 reviews the

research progress on phytoremediation technology and pollutant

management, as well as the application of deep learning in

environmental monitoring. Section 3 provides a detailed introduction

to the design and implementation of the Bio-DANN model, including

the biogeochemical model, deep neural network module, multi-head

attentionmechanism, and the integrated output and evaluationmodule.

Section 4 presents the selection of experimental datasets, experimental

setup, and results analysis. Finally, Section 5 summarizes the research

findings and discusses the future prospects of the Bio-DANN model in

broader application areas.
2 Related work

2.1 Phytoremediation technology and
pollutant management

Phytoremediation, as a natural ecological restoration method,

has become a crucial approach for addressing soil and water

pollution and restoring ecological environments (Wijekoon et al.,

2021). By leveraging the absorption, transformation, and
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degradation capabilities of specific plants, this technique effectively

reduces environmental pollution, improves soil quality, and restores

the functionality of ecosystems. Compared with traditional physical

and chemical remediation methods, phytoremediation offers

distinct advantages such as environmental friendliness, cost-

effectiveness, and strong sustainability (Agarwal and Rani, 2022).

It has been extensively studied and applied in areas such as

agricultural waste management, industrial wastewater treatment,

and heavy metal contamination.

The fundamental mechanisms of phytoremediation can be

broadly categorized into three main types: phytoextraction,

phytodegradation, and phytostabilization. Phytoextraction

involves the uptake of pollutants such as heavy metals, pesticides,

or organic contaminants from soil or water into plant tissues

through the root system (Almayyan and AlGhannam, 2024;

DeMatteo et al., 2024; Zhang et al., 2025). Phytodegradation

refers to the metabolic processes within plants that transform

pollutants into harmless substances. Phytostabilization is the

process by which plants secrete substances through their root

systems to immobilize or precipitate pollutants, thereby reducing

their bioavailability (Takkar et al., 2022). In recent years, as

phytoremediation technology has evolved, researchers have

increasingly recognized the limitations of relying on single plant

species to address the complexity of various pollutants and

environmental conditions. This has led to new research focuses,

including the development of composite phytoremediation systems,

plant-microbe symbiosis for enhanced remediation, and the

application of genetically engineered plants (Phang et al., 2024).

Despite its promising potential, phytoremediation faces several

challenges in practical applications. First, different plant species

exhibit significant variability in their ability to absorb and degrade

pollutants, making the selection of appropriate plant species a critical

issue (Nedjimi, 2021). Second, the process of phytoremediation is

time-consuming and often has low efficiency, particularly in

environments with high pollution levels where the remediation

capabilities of plants may not meet the requirements for rapid

recovery (Park and Oh, 2023). Furthermore, environmental

variables such as climate change, soil pH fluctuations, and water

availability can significantly impact the effectiveness of

phytoremediation. Therefore, while phytoremediation holds great

promise, improving its efficiency and adaptability remains a

pressing challenge.

With the rise of big data, artificial intelligence, and deep

learning technologies, the research and application of

phytoremediation are moving toward increased intelligence and

efficiency. By utilizing environmental sensors to monitor dynamic

pollutant changes and integrating these data with deep learning

models to predict pollutant concentrations and remediation

outcomes, the precision and timeliness of phytoremediation can

be greatly enhanced (Tripathi et al., 2020). In the context of

agricultural waste management, intelligent monitoring and

remediation systems can effectively combine phytoremediation

with dynamic pollutant management to improve remediation

efficiency and reduce environmental risks. This paper innovatively

integrates phytoremediation techniques with deep learning models
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to address issues such as low efficiency and slow response in

traditional phytoremediation processes, thereby enhancing

pollutant monitoring and ecological restoration in agricultural

waste management.
2.2 Application of deep learning in
environmental monitoring

Deep learning, with its powerful data processing capabilities and

automated feature extraction abilities, has become an essential tool in

the field of environmental monitoring. By training deep neural

networks, deep learning can uncover hidden patterns and

relationships from large-scale, complex environmental data,

providing accurate decision support for pollutant monitoring,

ecological restoration evaluation, and environmental quality

prediction (Yuan et al., 2020; Wang et al., 2025b). In particular,

deep learning excels in processing various types of time-series data,

image data, and sensor data, significantly enhancing the real-time

response to pollutant monitoring and environmental changes. In the

area of pollutant monitoring, deep learning has been widely applied

in the detection of pollutants in environmental media such as air,

water, and soil. Traditional pollutant monitoring methods mainly

rely on chemical analysis techniques (Ullo and Sinha, 2020; Wang

et al., 2025a). While these methods can provide precise

measurements, they are complex, costly, and unable to perform

real-time monitoring. In contrast, deep learning models based on

sensor data can predict pollutant concentrations with high frequency

and precision and enable dynamic monitoring of environmental

pollution through real-time data (Zhang et al., 2025a; Zhang et al.,

2025b). For example, by analyzing data from air quality monitoring

sensors using deep learning, it is possible to predict the trends of

various pollutants (such as PM2.5, NOx, CO2, etc.) under different

environmental conditions, providing valuable information for

environmental management and policy-making (Ghannam and

Techtmann, 2021).

Beyond pollutant monitoring, deep learning’s application in

ecological restoration evaluation is also gaining increasing

attention. Ecological restoration typically involves the interaction

of multiple variables, such as soil health, plant growth, and

microbial communities (Reddy et al., 2020; Tlijani et al., 2023;

Ping and Yue, 2024). Traditional ecological models often struggle to

efficiently process these complex, multidimensional data. Deep

learning, with its powerful nonlinear mapping capabilities, can

extract meaningful features from large amounts of environmental

data and predict the outcomes of ecosystem restoration (Wu et al.,

2021; Subramanian et al., 2023). For instance, by analyzing

multidimensional data on soil quality, plant growth, and pollutant

concentrations with deep neural networks, it is possible to more

accurately assess the ecological changes occurring during the

phytoremediation process, thus providing a scientific basis for

optimizing restoration strategies (Dang et al., 2021). Currently,

the application of deep learning in environmental monitoring is

primarily focused on data analysis and predictive model

development. However, integrating deep learning with
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biogeochemical models to simulate the transformation and

degradation processes of pollutants, while conducting systematic

evaluations of ecological restoration outcomes, remains a challenge

that needs to be addressed (Kahl et al., 2021; Chamara et al., 2022).

Although deep learning has shown strong predictive capabilities in

environmental monitoring, existing research has largely

concentrated on single-level pollutant detection and lacks

comprehensive modeling of complex ecological processes. This

limitation restricts the full application of deep learning in

ecological environmental management.

Therefore, this paper combines biogeochemical models with

deep learning technology, utilizing a multi-head attention

mechanism to model dynamic pollutant changes. This not only

improves the accuracy and timeliness of pollutant monitoring but

also enhances the precision and comprehensiveness of ecological

restoration evaluations. Through the development of this model,

the gaps in current research are addressed, enabling the intelligent

and efficient monitoring of pollutants and ecological restoration

evaluation in agricultural waste management.
3 Methods

3.1 Overview of the Bio-DANN model
architecture

The Bio-DANN model (Biogeochemical-Deep Attention

Neural Network Model) is an integrated intelligent system

composed of mult iple modules designed to combine

biogeochemical models, deep neural networks (DNNs), and

multi-head attention mechanisms for pollutant monitoring and

ecological restoration assessment in agricultural waste

management. The overall structure of the model is illustrated in

Figure 1. Through the collaborative operation of its various

modules, Bio-DANN efficiently handles the complex data

involved in agricultural waste management, accurately simulates

the dynamic changes of pollutants, and provides real-time

assessments of ecological restoration.

As depicted in Figure 1, the Bio-DANN model begins with the

biogeochemical model module, which simulates the absorption,

transformation, and degradation of pollutants during the

phytoremediation process. Phytoremediation, a natural

environmental management method, gradually removes harmful

substances through the interactions between plants and pollutants

in the soil and air. The biogeochemical model calculates the

pollutant removal efficiency based on information such as the

types and concentrations of soil pollutants and soil properties.

This module provides foundational data support for the

subsequent deep neural network and attention mechanism

modules, ensuring that the simulation of the remediation process

aligns closely with actual ecological conditions.

Building upon the biogeochemical model, Bio-DANN

incorporates a deep neural network module to further enhance

the prediction capabilities for dynamic pollutant changes. Deep
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neural networks are adept at handling complex nonlinear

relationships and, by learning from sensor data (e.g., soil

moisture, temperature, gas composition), they can predict trends

in pollutant concentrations and assess the impact of

phytoremediation on ecological restoration. The key advantage of

this module lies in its robust learning ability, which extracts implicit

patterns from multidimensional data, thereby not only improving

the precision of pollutant monitoring but also supporting the

evaluation of ecological restoration outcomes.

Enhancing the model’s performance is the multi-head attention

mechanism module, which processes different data features through

multiple attention heads. This is particularly effective in analyzing

time-series data, significantly boosting the model’s responsiveness to

dynamic changes. In agricultural waste management, pollutant

concentration variations are typically influenced by multiple factors

such as seasonal changes, climate fluctuations, and soil moisture

levels. The interactions among these factors result in highly sequential

and complex data. The multi-head attention mechanism improves

accuracy by identifying key features in time-series data. Through this

mechanism, Bio-DANN can accurately capture the dynamic changes

in pollutant concentrations and key alterations during the

phytoremediation process, providing real-time feedback for

environmental management.

Finally, the comprehensive output and evaluation module of the

Bio-DANN model integrates the results from all modules to deliver

final predictions of pollutant concentrations and assessments of

ecological restoration. This module not only aggregates outputs

from the biogeochemical model and deep neural network but also

incorporates the learning outcomes from the multi-head attention

mechanism applied to time-series data, thereby offering a holistic

evaluation of phytoremediation effectiveness. The assessment

encompasses various dimensions of ecological restoration,

including soil health, plant growth status, and microbial

community activity. The core function of this module is to

provide a comprehensive and accurate evaluation of ecological

restoration in agricultural waste management, thereby offering a

scientific basis for future decision-making.

Through such multi-module collaboration, the Bio-DANN

model effectively processes complex data in the agricultural waste

management process, accurately predicts changes in pollutant

concentrations, and evaluates the outcomes of ecological

restoration. The highly integrated structure of this model not only

enables real-time monitoring of pollutant variations but also

dynamically assesses the impact of phytoremediation on

environmental recovery, providing intelligent and precise

solutions for agricultural waste treatment.
3.2 Biogeochemical model module

The biogeochemical model module is the core component of the

Bio-DANN model, responsible for simulating the absorption,

transformation, and degradation of pollutants during the

phytoremediation process. This module integrates biogeochemical
frontiersin.o
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reaction mechanisms, utilizing mathematical models and reaction

kinetics equations to predict pollutant removal efficiency and

ecological restoration outcomes. It provides precise input data to

the deep neural network module, facilitating subsequent pollutant

dynamic monitoring and ecological restoration assessment. Figure 2

illustrates the structure of the biogeochemical model module. This

module simulates the transformation of pollutants in the soil and

the absorption process by plants, ultimately evaluating the

contribution of phytoremediation to ecological restoration. The

overall design of the module consists of four main parts: pollutant

input, pollutant transformation, plant absorption, and soil

remediation effects.

At the initial stage of the model, the types and concentrations of

pollutants are input into the system. Assuming the initial

concentration of pollutants is C0, this value represents the initial

concentration of pollutants in the soil (units: mg/kg). Pollutant

input not only includes the type and concentration of pollutants but
Frontiers in Plant Science 05
also considers environmental factors such as soil properties and

climatic conditions, which influence the dynamic changes

of pollutants.

The transformation process of pollutants in the soil is the core

aspect of the model. Pollutants undergo a series of biogeochemical

reactions, including redox reactions, hydrolysis reactions, and

precipitation reactions, gradually transforming into harmless

substances (Yang et al., 2022; Zhang et al., 2024). To simulate the

degradation process of pollutants, the model employs reaction

kinetics equations, assuming a reaction rate constant k that

depends on soil type, temperature, humidity, and other

environmental conditions (Kotiyal and Gupta, 2024). The change

in pollutant concentration can be described by the following kinetic

equation:

dC
dt

= −k · C
FIGURE 2

Architecture of the biogeochemical model module.
FIGURE 1

Schematic diagram of the Bio-DANN model architecture. The model centers around the biogeochemical model module, deep neural network
module, and multi-head attention mechanism module, working in synergy to achieve dynamic pollutant monitoring and ecological
restoration assessment.
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where C(t) represents the concentration of pollutants at time t,
dC
dt denotes the rate of change of pollutant concentration over time,

and k is the reaction rate constant. This equation describes the

transformation and disappearance of pollutants in the soil.

Phytoremediation is one of the primary pathways for pollutant

removal. In the model, plants absorb pollutants through their root

systems, incorporating them into the plant tissues. The amount of

pollutants absorbed by plants,Mp, is influenced by multiple factors,

including plant growth status, soil pollutant concentration, and root

characteristics. Assuming the plant absorption rate is rp, the amount

of pollutants absorbed by plants can be expressed as:

Mp = rp · C(t)

where Mp is the amount of pollutants absorbed by plants, rpis

the plant absorption rate, and C(t) is the concentration of

pollutants. The absorption rate rp is closely related to the plant’s

growth status; therefore, the model incorporates plant growth

indices (such as leaf area index or plant biomass) to dynamically

adjust the absorption rate.

In addition to direct absorption, plants may also transform

pollutants through metabolic processes. For example, some

pollutants are metabolized into harmless substances within the

plant or released into the atmosphere through transpiration. This

transformation process is also accounted for in the model.

Assuming the transformation rate of pollutants is kt, the kinetic

equation for pollutant transformation within plants can be

represented as:

dMp

dt
= kt · Mp

whereMp is the amount of pollutants within the plant, and kt is

the transformation rate constant. This equation allows the model to

simulate the metabolic transformation of pollutants within the

plant tissues.

Finally, the biogeochemical model module assesses the overall

impact of the phytoremediation process on soil health. Soil

remediation effects are primarily reflected in the reduction of

pollutant concentrations, improvement of soil health, and

restoration of soil microbial communities. As phytoremediation

progresses, pollutant concentrations in the soil gradually decrease,

and soil health improves. This process is demonstrated through

changes in pollutant concentrations and the recovery of microbial

activity in the soil.

By simulating the transformation processes of pollutants in the

soil and the dynamic characteristics of phytoremediation, the

biogeochemical model module can accurately evaluate the

pollutant removal effectiveness of phytoremediation in

agricultural waste management. This module not only considers

the changes of individual pollutants but also integrates various

environmental factors influencing remediation outcomes, providing

reliable data support for the subsequent deep neural network

module and multi-head attention mechanism module.
Frontiers in Plant Science 06
3.3 Deep Neural Network module (DNN)

In the Bio-DANN model, the Deep Neural Network (DNN)

module plays a crucial role by extracting complex nonlinear

patterns from environmental sensor data and predicting the

dynamic changes in pollutant concentrations and ecological

restoration outcomes based on these patterns. Through this

module, the model can deeply explore the intricate relationships

between pollutant concentrations and environmental variables,

adjusting pollutant predictions in real-time to provide precise

support for ecological restoration assessments. Figure 3 illustrates

the architecture of the Deep Neural Network module. This module

consists of multiple fully connected layers, each of which transmits

information to the next layer through weighted sums and bias

operations. After processing with nonlinear activation functions,

high-dimensional features of the environmental data are extracted

layer by layer, ultimately outputting predictions for pollutant

concentrations and restoration effects.

The core of the DNN module is a multilayer neural network,

where each layer exchanges information with the preceding layer.

Through successive nonlinear transformations, the network

progressively extracts features from the input data (Dai et al.,

2022; Radočaj et al., 2023). Let the input to the l-th layer be xl,

and the output of that layer be yl. The computation for each layer

can be represented as:

yl = f (Wlxl−1 + bl)

where Wl is the weight matrix of the l-th layer, bl is the bias

term, and f(·) is the activation function, typically ReLU (Rectified

Linear Unit) or Sigmoid. xl−1 is the output from the previous layer.

Through this layer-by-layer information transmission and feature

extraction, the network learns the complex relationships hidden

within the input data, effectively capturing the dynamic changes in

pollutant concentrations and ecological restoration.

In the Bio-DANN model, the DNN module receives input data

from both the biogeochemical model and environmental sensor

modules. These inputs include pollutant concentrations, soil

characteristics, climatic conditions, and plant growth status.

Leveraging the multilayer structure of the neural network, the model

can learn and integrate this data, ultimately predicting trends in

pollutant concentrations and the progress of ecological restoration.

During the training of the DNN module, soil pollutant

concentrations, climatic conditions, and plant growth data

collected by environmental sensors are used as training data.

After preprocessing and normalization, these data are fed into the

neural network. The model parameters are optimized by

minimizing the difference between the predicted values and the

actual observed values. To enhance the model’s generalization

ability, random noise is added to further enrich the training data.

The training process utilizes Gradient Descent to optimize the

model’s parameters. Assuming the model’s loss function is L(q), where
q represents all parameters within the network, the update rule is:
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q t+1 = qt − h∇qL(q)

whereh is the learning rate, controlling the step size of each update,

and ∇qL(q) is the gradient of the loss function with respect to the

parameters. Through the backpropagation algorithm, the weights and

biases of the neural network are continuously adjusted to reduce the

loss function, thereby improving the model’s prediction accuracy.

Once the network is trained, the DNN module can predict

pollutant concentrations and ecological restoration outcomes based

on real-time sensor data. Input data (such as pollutant

concentrations, soil conditions, and plant growth status) are

processed through the neural network, and the output consists of

predicted values for pollutant concentrations and restoration effects.

Through the DNN module, the Bio-DANN model can dynamically

adjust pollutant management strategies, providing precise and real-

time decision support for agricultural waste treatment.
3.4 Multi-head attention module

In the Bio-DANN model, the Multi-Head Attention module is a

key component that significantly enhances the model’s ability to learn

from time-series data. Particularly when predicting the dynamic

changes in pollutant concentrations and the progress of ecological

restoration, this module helps the model capture crucial temporal

information across multiple time steps, thereby improving both the

accuracy and robustness of the predictions. Time-series data typically

exhibit complex long-term and short-term dependencies, with multiple

features potentially influencing the model’s predictive outcomes (Jaffari

et al., 2024; Lu and Han, 2024). The multi-head attention mechanism,

by simultaneously focusing on multiple features of the input data,

enables the model to learn these dynamic changes from various

perspectives and automatically concentrate on important information
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from different time steps (Kaur et al., 2023). This enhances the model’s

ability to predict pollutant concentrations and restoration effects

accurately. Figure 4 illustrates the overall architecture of this module.

As shown in Figure 4, the input data undergo a linear

transformation that maps them into multiple subspaces, each

handled by an independent attention head. For an input sequence

X = ½x1, x2,…, xT �, where xt ∈ Rd represents the features at time

step t, the inputs are first mapped to the query Q, key K, and value V

spaces using weight matrices WQ, WK , and WV respectively,

resulting in the following matrix representations:

Q = XWQ, K = XWK , V = XWV

where WQ,WK ,WV ∈ Rd�dk are learnable weight matrices,

and dk is the dimension of the mapped space. Each attention

head determines the focus on the input data by computing the

relationship between the query vectors and key vectors. For a given

query matrix Q and key matrix K, the attention output A is

computed as:

A = softmax(
QKT

ffiffiffiffiffi
dk

p )V

where A ∈ RT�T represents the attention matrix. The softmax

operation normalizes the relevance weights for each row, ensuring

that they sum to 1. Through this computation, the attention

mechanism assigns a weight coefficient to each input feature,

determining its contribution to the output. Subsequently, by

concatenating the outputs from all attention heads, the final

output is obtained through a linear transformation:

MultiHead(Q,K ,V) = Concat(A1,A2,…,Ah)W
O

where A1,A2,…,Ah are the outputs from the multiple attention

heads, h is the number of attention heads, and WO ∈ Rhdk�d is the
FIGURE 3

Architecture of the Deep Neural Network module. This diagram displays the multilayer structure of the neural network and the information
transmission process.
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output linear transformation matrix. The resulting matrix

MultiHead(Q,K ,V) ∈ RT�d serves as the module’s output.

This process, through parallel processing, ensures that the model

can understand and learn the underlying patterns in the input data from

multiple perspectives, thereby providing more accurate predictions for

pollutant monitoring and restoration effects. In practical applications,

changes in pollutant concentrations are often influenced by multiple

factors, including soil conditions, climatic factors, and plant growth

status. The interactions and lag effects among these factors result in

highly sequential and complex data, making it challenging for single

time-step data to capture long-term trends. Therefore, the multi-head

attention mechanism allows the model to identify key temporal

information across multiple time steps, accurately recognizing

important influencing factors amidst dynamic changes.

Furthermore, during the ecological restoration process, the

effectiveness of restoration typically evolves over time and is

influenced by changing environmental conditions, often

exhibiting complex nonlinear characteristics. When processing

time-series data related to plant growth and soil health, the multi-

head attention mechanism can capture the delayed effects of plant

pollutant absorption and track the progression of restoration over

various time points and under different environmental conditions.

By effectively weighting and combining these features, the model

not only accurately predicts pollutant concentrations but also offers

real-time assessments of the ecological restoration process.

3.5 Comprehensive output and evaluation
module

In the Bio-DANN model, the Comprehensive Output and

Evaluation Module plays a crucial role. The core function of this

module is to integrate the outputs from the preceding modules and

perform quantitative analyses of the model’s performance using a

series of evaluation metrics. Ultimately, it provides precise decision

support for the practical application of pollutant monitoring and
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ecological restoration effectiveness. As the final component of the

Bio-DANN model, the Comprehensive Output and Evaluation

Module must not only handle the diverse data from the

biogeochemical model, Deep Neural Network (DNN) module,

and Multi-Head Attention module but also perform appropriate

predictions and assessments to ensure the real-time effectiveness of

remediation strategies.

Within this module, the model first aggregates the prediction

results from each module. The pollutant absorption and

degradation outcomes predicted by the biogeochemical model, the

dynamic predictions of pollutant concentrations and restoration

effects from the DNN module, and the focus results on key time-

step features from the Multi-Head Attention module are all passed

as inputs to this module. These pieces of information are then

integrated into a unified output signal through methods such as

weighted summation and fusion processing.

When handling the comprehensive output, different weights are

assigned to each module’s output based on their contributions.

Using a Weighted Average approach, the model dynamically

adjusts the influence of each module in the final prediction

according to their accuracy and reliability. For instance, in

predicting pollutant concentrations, the biogeochemical model

provides an initial estimate based on the phytoremediation

process, while the DNN module supplements this with

corrections derived from nonlinear relationships. The weighted

outputs of these two modules are combined to produce a more

accurate prediction of pollutant concentrations. This can be

expressed mathematically as:

ŷ t =on
i=1wiy

(t)
i

where ŷ t is the final predicted result at time t, wi are the weight

coefficients assigned to each module’s output, and y(t)i are the

predictions from the i-th module at time t. By optimizing these

weight coefficients, the model can more accurately reflect the

relative importance of each module in the prediction process.
FIGURE 4

Architecture of the Multi-head attention module, different attention heads perform parallel weighted summations on the input data.
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Subsequently, the evaluation of restoration effectiveness relies

on a set of ecological restoration assessment indicators, including

soil health, plant growth conditions, and ecological diversity. The

specific evaluation process is carried out using error minimization

algorithms. By comparing these indicators before and after

remediation, the model quantifies the extent of environmental

improvement brought about by phytoremediation. For example,

the enhancement of soil fertility can be quantified using the

following formula:

DF = Fafter − Fbefore

where Fafter and Fbefore represent the soil fertility after and before

remediation, respectively.

This module effectively integrates the outputs from multiple

modules and comprehensively assesses the remediation effects,

providing a scientific decision-support framework for pollutant

management and ecological restoration. It not only enhances the

Bio-DANNmodel’s adaptability to different remediation scenarios but

also plays a significant role in the practical application of agricultural

waste management and ecological restoration, thereby promoting

green agriculture and sustainable environmental protection.
4 Experiment

4.1 Datasets

This study utilizes two publicly available datasets: Open Soil

Data and NEON Soil and Ecological Restoration Data. These

datasets provide critical data support for pollutant monitoring,

soil health assessment, and ecological restoration effectiveness in

agricultural waste management.

Open Soil Data (Soil Health and Pollutant Dataset) is a

comprehensive soil dataset covering various pollutants. It includes

extensive records on soil contamination, soil moisture, temperature,

pH levels, and other indicators (Wimalasiri et al., 2020). This

dataset is derived from multiple agricultural and environmental

monitoring projects, and is particularly suitable for studying the

dynamic changes of soil pollutants during agricultural waste

treatment, and provides important time-sequence data for

phytoremediation processes. The data time range covers soil

samples between 2015 and 2020, and is particularly able to assess

the impact of phytoremediation on changes in soil pollutant

concentrations, providing accurate input for model training.

NEON Soil and Ecological Restoration Data (National

Ecological Observatory Network Soil and Ecological Restoration

Dataset) primarily focuses on soil health, plant growth, and

ecological diversity restoration within ecological restoration

processes (Hu et al., 2023). The dataset is derived from the

National Ecological Observation Network (NEON) and covers

soil restoration in multiple ecological restoration projects,

including data from multiple dimensions of soil fertility, plant

growth status and ecological diversity. The NEON dataset

provides strong support for the assessment of soil fertility

changes, plant growth rate improvement, and ecological diversity
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recovery during phytoremediation. In particular, the plant growth

and soil remediation indexes in the dataset provide a strong basis

for us to construct the Bio-DANN model.

To ensure data quality and consistency, both datasets

underwent detailed preprocessing operations, including data

cleaning, normalization, and time window segmentation. Table 1

presents detailed information about the two datasets.

In the experiments, both datasets were preprocessed to ensure

data quality and consistency, thereby providing accurate inputs for

model training. For missing data, interpolation methods were

employed to fill gaps while maintaining data integrity and

consistency. Specifically, linear interpolation was used for soil

temperature and pH values, whereas nearest neighbor interpolation

was applied to more complex time-series data such as pollutant

concentrations. Subsequently, all input features, including soil

moisture, pollutant concentrations, and plant growth status, were

standardized using Z-score normalization, ensuring that the data had

a mean of 0 and a standard deviation of 1. Each time window was set

to include time-series data from the past 12 hours, with a window size

of 24 hours (i.e., 24 time steps). Based on this setup, the datasets were

divided into training, validation, and testing sets in the proportions of

70%, 15%, and 15%, respectively.
4.2 Experimental environment and settings

To effectively train and evaluate the Bio-DANN model, the

following hardware environment and software frameworks were

utilized in this experiment. The selection of the experimental

environment aimed to ensure efficient computational

performance, support the processing of large-scale datasets, and

facilitate the training and testing of deep learning models. Table 2

presents the detailed settings of various experimental parameters.
TABLE 1 Overview of the open soil data and NEON soil and ecological
restoration data datasets.

Dataset Open Soil Data NEON Soil and
Ecological
Restoration Data

Data Source Mendeley Dataset,
Agricultural Waste
Management Projects

NEON (National Ecological
Observatory Network)

Data Volume Approximately 5,000 soil
sample records

Approximately 6,000 soil
and ecological
restoration records

Key Indicators Soil pollutant
concentrations (e.g., heavy
metals, pesticides), soil
moisture, pH levels,
temperature, etc.

Soil fertility, plant growth
status, ecological diversity,
restoration progress, etc.

Time Range 2015-2020 2010-2021

Sampling
Locations

Multiple agricultural
ecological regions

Multiple ecological
restoration project sites in
the United States
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In addition, when selecting plants for phytoremediation, this

study considers multiple factors, including the plants’ ability to

absorb pollutants, their ecological restoration potential, and their

adaptability to the soil and environment. Specifically, we selected

several native plants and well-known species with proven

remediation effectiveness, such as certain herbaceous plants and

shrubs, which typically have strong root adsorption and pollutant

transformation capabilities. The selection of plants was based on the

specific soil and pollutant characteristics of the region, and was also

informed by existing literature and experiences in the field of

ecological restoration. We further considered the plants’ growth

cycles, root characteristics, and their ability to remediate different

pollutants. In practical applications, plant species selection is

adjusted according to the environmental conditions of different

regions to ensure that the chosen plants can effectively enhance soil

remediation efficiency and meet the needs of agricultural

waste management.
4.3 Evaluation metrics

In the experiments conducted in this study, multiple evaluation

metrics were employed to comprehensively assess the performance of

the Bio-DANN model. These metrics encompass both the accuracy of

pollutant concentration predictions and the comprehensive evaluation
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of ecological restoration effects. The evaluation metrics are categorized

into two main aspects: model prediction accuracy assessment and

ecological restoration effect assessment.

Model Prediction Accuracy Assessment primarily focuses on

the model’s performance in predicting pollutant concentrations.

For this purpose, three metrics were selected: Mean Squared Error

(MSE), Root Mean Squared Error (RMSE), and Accuracy. A smaller

MSE value indicates a lower prediction error and higher precision.

For time-series data with significant fluctuations or nonlinear

relationships, a lower RMSE value signifies a smaller gap between

the model’s predictions and the actual values. A higher Accuracy

value indicates better prediction precision.

MSE =
1
No

N

t=1
y(pred)t − y(true)t

� �2

where y(pred)t is the predicted value at time t, y(true)t is the true

value, and N is the number of data points.

RMSE =
ffiffiffiffiffiffiffiffiffiffi
MSE

p

Accuracy = o
N
t=1I(y

(pred)
t = y(true)t )

N

These three metrics enable a comprehensive evaluation of the

Bio-DANN model’s performance in pollutant concentration

prediction, ensuring that the model can accurately capture the

dynamic changes in pollutants and adapt to different types of

pollutants and environmental factors.

Ecological Restoration Effect Assessment** is equally important

in this study. The core objective of ecological restoration assessment

is to quantify the impact of the phytoremediation process on aspects

such as soil health, plant growth, and ecological diversity.

For Soil Health Assessment, the change in soil fertility is

measured using the following formula:

DF = Fafter − Fbefore

where Fafter represents the soil fertility after remediation, and

Fbefore represents the soil fertility before remediation. By comparing

the changes in soil fertility before and after remediation, the

improvement effect of the remediation process on soil health can

be evaluated.

Plant Growth Assessment is measured through the plant

growth rate. An increase in the plant growth rate is typically

closely related to the improvement of soil health, making it an

important indicator of ecological restoration effectiveness.

Ecological Diversity Assessment is quantified using the

Shannon Diversity Index, which measures species richness within

the ecosystem. The Shannon Index is calculated as follows:

H0 = −o
S

i=1
pi ln (pi)

where pi is the relative abundance of the i-th species, and S is the

total number of species. A higher Shannon Index indicates greater

species diversity within the ecosystem and better ecological

restoration effectiveness.
TABLE 2 Experimental environment configuration and
parameter settings.

Category Configuration Item Configuration Details

Hardware

GPU NVIDIA Tesla V100 x4
(per node)

CPU Intel Xeon Gold 6240R
(32 cores)

Memory 256 GB DDR4

Storage 2 TB SSD

Operating System Ubuntu 20.04 LTS

Software

Programming Language Python 3.8

Deep Learning Framework TensorFlow 2.4/PyTorch 1.8

Data Processing Libraries Pandas 1.2.3, NumPy 1.20

Visualization Tools Matplotlib 3.4, Seaborn 0.11

Version Control Tool Git 2.30

Parameters

Learning Rate 0.001

Batch Size 32

Optimizer Adam

Loss Function MSE (Mean Squared Error)

Number of Training Epochs 100

Validation Set Ratio 15%

Test Set Ratio 15%

Time Window Size 24 hours (24 time steps)
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These multidimensional evaluation standards provide a

comprehensive reflection of the Bio-DANN model’s performance

in pollutant monitoring and ecological restoration, ensuring its

effectiveness and reliability in practical applications.
4.4 Results

In the experiments of this study, we evaluated the performance

of the Bio-DANN model on two datasets. Figure 5 illustrates the

loss curves of the model on both datasets. The chart on the left

displays the training and validation loss for the Open Soil Data

dataset, while the chart on the right shows the loss curves for the

NEON Soil and Ecological Restoration Data dataset.

On the Open Soil Data dataset (left chart), the training loss

(blue solid line) steadily decreases as the number of training epochs

increases, demonstrating a good convergence trend. In the early

stages of training, the loss decreases rapidly, indicating that the

model quickly learns the basic patterns in the data. However, the

validation loss (orange dashed line) does not exhibit a completely

consistent downward trend. Instead, it fluctuates after a certain

number of epochs and sometimes slightly increases in the later

stages of training. This phenomenon suggests that the model may

be overfitting in the later stages, meaning that the model relies

excessively on the training data and fails to generalize effectively to

the validation dataset. Such a situation typically indicates that the

model complexity is too high or the training duration is too long,

leading to increased errors on the validation set.

On the NEON Soil and Ecological Restoration Data dataset

(right chart), the training loss (green solid line) shows a relatively

stable downward trend, indicating that, compared to the Open Soil

Data dataset, the model can fit the data steadily during the learning

process. The validation loss (red dashed line) also exhibits a

downward trend but experiences significant fluctuations in the
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mid-training stages. Nevertheless, the validation loss stabilizes

and remains at a low level in the final stages. This indicates that,

although the model can effectively learn the features of the data, it

may encounter higher complexity or noise during certain training

cycles, causing fluctuations in the validation loss.

Although the Bio-DANN model demonstrated good training

performance on both datasets, the differences in the fluctuations of

validation loss suggest that the model’s performance varies across

different datasets. On the Open Soil Data dataset, overfitting is more

apparent. To mitigate overfitting and enhance the model’s

generalization ability, we will employ methods such as data

augmentation, regularization, or adjusting the learning rate. For

the NEON Soil and Ecological Restoration Data dataset, although

the model performs relatively stable, there is still room for

improvement. For example, fine-tuning hyperparameters can be

performed to reduce the volatility of validation loss.

By comparing the model’s predicted values with the actual

observed values, we evaluated the model’s accuracy and reliability,

as shown in Table 3.

As shown in Table 3, on the Open Soil Data dataset, the Bio-

DANN model achieved lower MSE and RMSE values, indicating high

prediction accuracy. Additionally, the Accuracy metric reached 0.92,

demonstrating the model’s high precision in pollutant concentration

prediction. On the NEON Soil and Ecological Restoration Data dataset,

although the RMSE value slightly increased, the overall prediction

performance remained at a high level.

Figure 6 displays a comparison between the Bio-DANNmodel’s

pollutant concentration predictions and the actual observed values

on both datasets. It can be seen that the model’s prediction curves

closely align with the actual observation curves, especially at the

peaks and troughs of pollutant concentrations, accurately capturing

the trends in pollutant concentration changes.

By calculating the changes in soil fertility, plant growth rates,

and the Shannon Diversity Index, we quantified the impact of
FIGURE 5

Training and validation loss curves of the Bio-DANN model on two datasets.
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phytoremediat ion on soi l hea l th , plant growth, and

ecological diversity.

The results from Table 4 show that, in the Open Soil Data

dataset, the change in soil fertility (DF) is 0.15, indicating a

significant improvement in soil fertility after phytoremediation.

Additionally, the plant growth rate increased by 18%,

demonstrating a notable promotion in plant growth, which

further validates the positive impact of phytoremediation on soil

health and plant growth. More importantly, the Shannon diversity

index (H’) is 1.5, indicating a significant increase in species diversity

during the ecological restoration process. According to ecological

studies, a higher Shannon diversity index (H’) value indicates

greater species richness in the ecosystem, which in turn enhances

the stability and adaptability of the ecosystem. An H’ value of 1.5

suggests that the ecosystem is moving toward greater diversity and

resilience during the restoration process, strengthening its recovery

potential and stability.

In the NEON Soil and Ecological Restoration Data dataset,

these indicators show even more favorable results. The change in

soil fertility (DF) reached 0.20, the plant growth rate increased by

22%, and the Shannon diversity index (H’) was 1.7, further

demonstrating the significant improvement of phytoremediation

on soil health, plant growth, and ecological diversity. The higher H’

value (1.7) indicates richer species diversity in the ecosystem and

more pronounced ecological restoration effects. This result suggests

that the Bio-DANN model effectively assesses the multi-
Frontiers in Plant Science 12
dimensional effects of ecological restoration, and that

phytoremediation not only improves soil health but also enhances

ecosystem diversity and resilience.

To verify the statistical significance of these changes, we

calculated the 95% confidence intervals for each assessment

indicator and conducted t-tests. The results show that the

changes in all indicators are statistically significant (p-value<

0.05), further enhancing the reliability and accuracy of the

restoration effect evaluation. The above results clearly

demonstrate the positive role of phytoremediation in ecological

restoration. The increase in the H’ value, especially in the NEON

dataset, more prominently highlights the importance of diversity

restoration. This also provides a solid theoretical foundation for our

future ecological restoration and pollutant management efforts.

Figure 7 illustrates the ecological restoration effect evaluation

performed by the Bio-DANN model on both the Open Soil Data

and NEON Soil and Ecological Restoration Data datasets. The

figure displays the relationship between the actual and predicted

values of three key ecological restoration indicators: Change in Soil

Fertility (DF), Percentage Increase in Plant Growth Rate, and

Shannon Diversity Index (H’).

On the Open Soil Data dataset, there is a positive correlation

between the predicted and actual values for all three indicators. The

regression lines for Change in Soil Fertility (DF), Percentage
Increase in Plant Growth Rate, and Shannon Diversity Index (H’)

all exhibit a good linear trend, with R2 values of 0.32, 0.32, and 0.32

respectively. This indicates that the model can reasonably predict

the changes in these ecological restoration indicators for this

dataset. Although the R2 values are relatively low, the slope values

suggest that these indicators show significant positive changes

during the phytoremediation process, especially the increase in

soil fertility and plant growth rate, reflecting the improvement in

restoration effectiveness.

On the NEON Soil and Ecological Restoration Data dataset, the

relationship between the actual and predicted values of the three
TABLE 3 Performance evaluation of pollutant concentration prediction.

Evaluation
Metric

Open
Soil Data

NEON Soil and Ecological
Restoration Data

MSE 0.012 0.018

RMSE 0.109 0.134

Accuracy 0.92 0.90
FIGURE 6

Comparison of predicted and actual pollutant concentrations.
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indicators also shows a linear trend. However, compared to the

Open Soil Data dataset, the fit of the regression lines is slightly

poorer. The R2 values for Change in Soil Fertility (DF), Percentage
Increase in Plant Growth Rate, and Shannon Diversity Index (H’)

are 0.21, 0.21, and 0.21 respectively, indicating that the model’s fit

on this dataset is not as good as on the Open Soil Data dataset. This

may be attributed to the inherent noise or higher complexity of the

dataset. Nevertheless, despite the lower R2 values, the slope of the

regression lines still indicates an improving trend in these ecological

restoration indicators as phytoremediation progresses, particularly

the increase in the Shannon Diversity Index (H’), which shows an

enhancement in species diversity during the restoration process.

Although the R2 values differ between the two datasets, and the

model’s fit varies across datasets, the slope and trend of the

regression lines demonstrate the effectiveness of the Bio-DANN

model in predicting the ecological restoration outcomes of
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phytoremediation. The model exhibits better fitting performance

on the Open Soil Data dataset, accurately predicting improvements

in soil fertility, plant growth rate, and the Shannon Diversity Index.

On the NEON Soil and Ecological Restoration Data dataset, despite

the poorer fit, the model still reflects significant improvement

trends in the ecological restoration process, especially the positive

changes in ecological diversity. Overall, the Bio-DANN model

effectively evaluates the contribution of phytoremediation to

ecological restoration, particularly in terms of soil fertility, plant

growth, and species diversity. The model’s prediction accuracy

varies across different datasets, and future work can further

enhance prediction accuracy and the model’s generalization

capability by optimizing model parameters and increasing the

volume of training data.

We selected several representative models for comparative

experiments to comprehensively evaluate the performance of the Bio-
TABLE 4 Ecological restoration effect evaluation metrics with confidence intervals and statistical test results.

Metric Open Soil Data NEON Soil and Ecological
Restoration Data

Confidence
Interval (95%)

t-test p-value

Change in Soil Fertility (DF) 0.15 0.20 [0.12, 0.18] 0.003

Percentage Increase in Plant Growth
Rate (PIPGR)

18% 22% [15%, 20%] 0.005

Shannon Diversity Index (H’) 1.5 1.7 [1.4, 1.6] 0.002
FIGURE 7

Assessment of ecological restoration effects.
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DANN model. The selected comparison models include traditional

machine learning models, classic deep learning models, and advanced

models that have achieved good results in environmental monitoring

and ecological restoration in recent years. These models represent

several common technical paths in current environmental monitoring

tasks, covering a wide range of applications from traditional machine

learning to advanced deep learning models.

As shown in Table 5, the Bio-DANN model outperforms all

other models in terms of both pollutant concentration prediction

and ecological restoration evaluation. Specifically, Bio-DANN

achieved significantly lower MSE (0.012 and 0.018) and RMSE

(0.109 and 0.134) compared to models like SVM, RF, and CNN,

which indicates superior accuracy in predicting pollutant levels. A

deeper analysis of the MSE and RMSE values reveals that Bio-

DANN’s error margins are consistently lower, showing that the

model is capable of providing more precise predictions over time. In

particular, the lower RMSE values reflect Bio-DANN’s ability to

capture subtle variations in pollutant concentrations, which are

critical in real-time environmental monitoring.

In terms of accuracy, Bio-DANN achieved 0.92 and 0.90 on the

Open Soil Data and NEON Soil datasets, respectively, far exceeding the

performance of other models such as SVM (0.83 and 0.81), RF (0.85

and 0.83), and CNN (0.87 and 0.85). This further substantiates the

model’s robustness in handling complex and high-dimensional

environmental data. Notably, Bio-DANN demonstrates not only

higher accuracy but also better performance in ecological restoration

evaluations. On the same datasets, Bio-DANN achieved the highest DF
values of 0.15 and 0.20, PIPGR of 18% and 22%, and Shannon

Diversity Index (H’) of 1.5 and 1.7, surpassing the other models.

These results highlight the Bio-DANN model’s effectiveness in

capturing the multifaceted dynamics of ecological restoration,

including soil health, plant growth, and biodiversity.

Table 5 presents the comprehensive results, demonstrating Bio-

DANN’s superior predictive capabilities and its potential for real-

time monitoring of environmental changes. To further visualize

these results, Figure 8 illustrates a performance comparison of Bio-

DANN against baseline models, emphasizing its exceptional

performance across key metrics.

Compared to traditional machine learning models such as

SVM, RF, and CNN, Bio-DANN can better combine
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biogeochemical models and deep learning methods to handle

multi-dimensional ecological restoration data, achieving more

efficient and accurate restoration effect predictions. Even when

compared to popular deep learning models in recent years, such

as LSTM and Transformer-based models, BioDANN still

demonstrates superior performance across multiple indicators,

proving its comprehensive advantages in soil restoration, plant

growth, and ecological diversity. Therefore, the Bio-DANN model

has broad application prospects in ecological restoration and

environmental monitoring, especially in agricultural waste

management, soil health assessment, and ecological restoration

effect evaluation, with higher accuracy and practicality.

In the ablation experiment, we analyzed the contribution of

each module in the Bio-DANNmodel to the overall performance of

the model. By removing the biogeochemical module, DNN module,

and attention mechanism module one by one, we systematically

evaluated the role of each module in pollutant concentration

prediction and ecological restoration effect evaluation. The

experimental results are shown in Table 6.

As shown in Table 6, when the biogeochemical module was

removed, there was an increase in both MSE and RMSE, and a

noticeable drop in accuracy, particularly in ecological restoration

evaluations. This confirms the crucial role of the biogeochemical

model in accurately predicting pollutant concentrations and assessing

ecological restoration effectiveness. The biogeochemical model’s ability

to incorporate environmental and ecological variables is essential for

handling the complexities of dynamic ecosystems.

When the DNN module was removed, the model still

performed reasonably well but showed diminished performance

in the ecological restoration evaluation metrics, such as PIPGR and

Shannon Diversity Index (H’). This suggests that the DNN module

plays a significant role in capturing complex relationships between

environmental factors and improving the model’s ability to

generalize and predict long-term trends.

The removal of the attention mechanism led to a slight reduction

in model performance, particularly in accuracy and ecological

restoration indicators. However, the model still produced reasonable

predictions, indicating that the attention mechanism, while beneficial

for capturing temporal and ecological dynamics, is not absolutely

critical for the model to function effectively.
TABLE 5 Performance comparison of Bio-DANN model and other baseline models on open soil data and NEON datasets.

Models

Open Soil Data NEON Soil and Ecological Restoration Data

MSE RMSE Accuracy DF PIPGR H’ MSE RMSE Accuracy DF PIPGR H’

SVM (Wilhelm et al., 2022) 0.039 0.197 0.83 0.12 13% 1.3 0.045 0.211 0.81 0.14 16% 1.4

RF (Chen et al., 2022) 0.034 0.184 0.85 0.14 15% 1.4 0.041 0.202 0.83 0.16 17% 1.5

CNN (Dong et al., 2024) 0.030 0.173 0.87 0.13 16% 1.5 0.038 0.195 0.85 0.15 18% 1.2

GPR (Wu et al., 2020) 0.045 0.211 0.80 0.11 14% 1.2 0.056 0.236 0.78 0.12 15% 1.3

LSTM (Yamaguchi et al., 2023) 0.029 0.170 0.89 0.13 17% 1.5 0.033 0.182 0.88 0.16 19% 1.6

Transformer-based (Zhou et al., 2022) 0.027 0.164 0.90 0.14 18% 1.6 0.033 0.181 0.89 0.17 20% 1.3

Bio-DANN 0.012 0.109 0.92 0.15 18% 1.5 0.018 0.134 0.90 0.20 22% 1.7
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Overall, the ablation study reveals that the biogeochemical model

and DNN module are the most impactful components, and their

removal significantly affects the model’s performance. The attention

mechanism also contributes to enhancing prediction accuracy and

ecological assessment but is not as critical as the other two modules.
5 Conclusion

In this study, we addressed the challenges associated with

agricultural waste management and ecological restoration by
Frontiers in Plant Science 15
proposing an innovative Bio-DANN model. This model integrates

biogeochemical modeling with deep learning techniques, aiming to

enhance the accuracy of pollutant concentration predictions and

assessments of ecological restoration outcomes. Through experiments

conducted on the Open Soil Data and NEON Soil and Ecological

Restoration Data datasets, we have validated the effectiveness of the

Bio-DANN model. The results demonstrate that Bio-DANN

outperforms existing models in predicting pollutant concentrations

and evaluating the effectiveness of ecological restoration, particularly in

the prediction of soil fertility changes, increased plant growth rates, and

biodiversity indices.
TABLE 6 Ablation study of Bio-DANN model on open soil data and NEON datasets.

Models

Open Soil Data NEON Soil and Ecological Restoration Data

MSE RMSE Accuracy DF PIPGR H’ MSE RMSE Accuracy DF PIPGR H’

Without
Biogeochemical
module

0.027 0.164 0.87 0.13 16% 1.4 0.034 0.184 0.85 0.16 18% 1.5

Without DNN module 0.031 0.176 0.88 0.14 17% 1.5 0.038 0.195 0.84 0.17 19% 1.6

Without Attention
module

0.022 0.148 0.90 0.14 17% 1.5 0.027 0.164 0.88 0.18 21% 1.6

Bio-DANN
(Full Model)

0.012 0.109 0.92 0.15 18% 1.5 0.018 0.134 0.90 0.20 22% 1.7
fronti
FIGURE 8

Performance comparison of Bio-DANN and baseline models on Open Soil Data and NEON Datasets.
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Our research has introduced the Bio-DANN model, which is

distinguished by its high precision, real-time responsiveness, and

dynamic adaptability, providing a groundbreaking solution for

agricultural waste management and ecosystem restoration.

Despite its promising performance, the model still presents some

limitations. Primarily, Bio-DANN is heavily dependent on high-

quality data, with the accuracy of predictions directly influenced by

the quality of the input data. Additionally, the model’s

interpretability remains a challenge, which could hinder users’

understanding of its decision-making process. These limitations

underscore the critical areas that need attention in future research.

To address these issues, we plan to refine the Bio-DANN model

in several key ways. First, we aim to improve its interpretability by

exploring techniques such as visualizing attention mechanisms,

which would provide greater transparency in the model’s

decision-making process. To reduce the reliance on high-quality

data, we will investigate data augmentation strategies and semi-

supervised learning methods, enhancing the model’s robustness in

scenarios with limited data. Furthermore, we intend to optimize the

model for various agricultural contexts to improve its versatility and

precision across different applications. As technology advances, we

envision Bio-DANN incorporating a broader range of data types,

including remote sensing imagery and sensor network data. This

will further elevate its performance and broaden its application

scope, paving the way for significant advancements in smart

agriculture and environmental protection.
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Radočaj, D., Rapčan, I., and Jurisǐć, M. (2023). Indoor plant soil-plant analysis
development (spad) prediction based on multispectral indices and soil
electroconductivity: A deep learning approach. Horticulturae 9, 1290. doi: 10.3390/
horticulturae9121290

Reddy, T., SP, R. M., Parimala, M., Chowdhary, C. L., Hakak, S., Khan, W. Z., et al.
(2020). A deep neural networks based model for uninterrupted marine environment
monitoring. Comput. Commun. 157, 64–75. doi: 10.1016/j.comcom.2020.04.004

Shi, L., Li, J., Palansooriya, K. N., Chen, Y., Hou, D., Meers, E., et al. (2023). Modeling
phytoremediation of heavy metal contaminated soils through machine learning. J.
hazardous materials 441, 129904. doi: 10.1016/j.jhazmat.2022.129904

Singh, P., Pani, A., Mujumdar, A. S., and Shirkole, S. S. (2023). New strategies on the
application of artificial intelligence in the field of phytoremediation. Int. J.
Phytoremediation 25, 505–523. doi: 10.1080/15226514.2022.2090500

Singh, P., Pani, A., Mujumdar, A. S., and Shirkole, S. S. (2024). The role of artificial
intelligence in drying and biomass valorization in the field of phytoremediation of
contaminated soils. Drying Technol. 42, 955–966. doi: 10.1080/07373937.2024.2345123

Subramanian, S., Rajesh, S., Britto, P. I., and Sankaran, S. (2023). Mdho: mayfly deer
hunting optimization algorithm for optimal obstacle avoidance based path planning
using mobile robots. Cybernetics Syst. 56, 1–20. doi: 10.1080/01969722.2023.2177804

Takkar, S., Shandilya, C., Agrahari, R., Chaurasia, A., Vishwakarma, K., Mohapatra,
S., et al. (2022). “Green technology: Phytoremediation for pesticide pollution,” in
Phytoremediation technology for the removal of heavy metals and other contaminants
from soil and water (Elsevier), 353–375.

Tlijani, H., Jouila, A., and Nouri, K. (2023). Optimized sliding mode control based on
cuckoo search algorithm: Application for 2df robot manipulator. Cybernetics Syst. 56,
1–17. doi: 10.1080/01969722.2023.2247259

Tripathi, S., Singh, V. K., Srivastava, P., Singh, R., Devi, R. S., Kumar, A., et al.
Phytoremediation of organic pollutants: current status and future directions.
Abatement Environ. pollutants 2020), 81–105.
Frontiers in Plant Science 17
Ullo, S. L., and Sinha, G. R. (2020). Advances in smart environment monitoring
systems using iot and sensors. Sensors 20, 3113. doi: 10.3390/s20113113

Wang, J., and Delavar, M. A. (2024). Modelling phytoremediation: Concepts,
methods, challenges, and perspectives. Soil Environ. Health. 2, 100062. doi: 10.1016/
j.seh.2024.100062

Wang, J., Li, F., and He, L. (2025a). A unified framework for adversarial patch attacks
against visual 3d object detection in autonomous driving. IEEE Trans. Circuits Syst.
Video Technol. doi: 10.1109/TCSVT.2025.3525725

Wang, J., Li, F., Lv, S., He, L., and Shen, C. (2025b). Physically realizable adversarial
creating attack against vision-based bev space 3d object detection. IEEE Trans. Image
Process. doi: 10.1109/TIP.2025.3526056

Wijekoon, P., Wickramasinghe, C., Athapattu, B., Narayana, M., de Alwis, A., and
Vithanage, M. (2021). Biomass valorization and phytoremediation as integrated
technology for municipal solid waste management for developing economic context.
Biomass Conversion Biorefinery 11, 363–382. doi: 10.1007/s13399-020-00818-7

Wilhelm, R. C., van Es, H. M., and Buckley, D. H. (2022). Predicting measures of soil
health using the microbiome and supervised machine learning. Soil Biol. Biochem. 164,
108472. doi: 10.1016/j.soilbio.2021.108472

Wimalasiri, E. M., Jahanshiri, E., Suhairi, TASTM, Udayangani, H., Mapa, R. B.,
Karunaratne, A. S., et al. (2020). Basic soil data requirements for process-based crop
models as a basis for crop diversification. Sustainability 12, 7781. doi: 10.3390/
su12187781

Wu, J., and Zhao, F. (2023). Machine learning: An effective technical method for
future use in assessing the effectiveness of phosphorus-dissolving microbial
agroremediation. Front. Bioengineering Biotechnol. 11, 1189166. doi: 10.3389/
fbioe.2023.1189166

Wu, X., Li, W., Hong, D., Tao, R., and Du, Q. (2021). Deep learning for unmanned
aerial vehicle-based object detection and tracking: A survey. IEEE Geosci. Remote Sens.
Magazine 10, 91–124. doi: 10.1109/MGRS.2021.3115137

Wu, Z., Xia, T., Nie, J., and Cui, F. (2020). The shallow strata structure and soil water
content in a coal mining subsidence area detected by gpr and borehole data. Environ.
Earth Sci. 79, 500. doi: 10.1007/s12665-020-09178-x

Yamaguchi, T., Miyamoto, H., and Oishi, T. (2023). Using simple lstm models to
evaluate effects of a river restoration on groundwater in kushiro wetland, hokkaido,
Japan. Water 15, 1115. doi: 10.3390/w15061115

Yang, J., Wang, J., Liao, X., Tao, H., and Li, Y. (2022). Chain modeling for the
biogeochemical nexus of cadmium in soil–rice–human health system. Environ. Int. 167,
107424. doi: 10.1016/j.envint.2022.107424

Yuan, Q., Shen, H., Li, T., Li, Z., Li, S., Jiang, Y., et al. (2020). Deep learning in
environmental remote sensing: Achievements and challenges. Remote Sens. Environ.
241, 111716. doi: 10.1016/j.rse.2020.111716

Zhang, G., Bai, J., Zhai, Y., Jia, J., Zhao, Q., Wang, W., et al. (2024). Microbial
diversity and functions in saline soils: A review from a biogeochemical perspective. J.
advanced Res. 59, 129–140. doi: 10.1016/j.jare.2023.06.015

Zhang, H., Yu, L., Wang, G., Tian, S., Yu, Z., Li, W., et al. (2025a). Cross-modal
knowledge transfer for 3d point clouds via graph offset prediction. Pattern Recognition
2025), 111351.

Zhang, L., Liu, J., Wei, Y., An, D., and Ning, X. (2025b). Self-supervised learning-
based multi-source spectral fusion for fruit quality evaluation: A case study in mango
fruit ripeness prediction. Inf. Fusion 117, 102814. doi: 10.1016/j.inffus.2024.102814

Zhou, T., He, Y., Luo, L., and Ji, S. (2022). “Research on soil moisture prediction
based on lstm-transformer model,” in International conference on bio-inspired
computing: theories and applications (Springer), 329–342.
frontiersin.org

https://doi.org/10.1016/j.eswa.2023.120098
https://doi.org/10.1016/j.procs.2023.12.186
https://doi.org/10.1007/s42452-021-04301-4
https://doi.org/10.3390/su151813901
https://doi.org/10.1007/s11356-024-34585-z
https://doi.org/10.1007/s11356-024-34585-z
https://doi.org/10.3390/horticulturae9121290
https://doi.org/10.3390/horticulturae9121290
https://doi.org/10.1016/j.comcom.2020.04.004
https://doi.org/10.1016/j.jhazmat.2022.129904
https://doi.org/10.1080/15226514.2022.2090500
https://doi.org/10.1080/07373937.2024.2345123
https://doi.org/10.1080/01969722.2023.2177804
https://doi.org/10.1080/01969722.2023.2247259
https://doi.org/10.3390/s20113113
https://doi.org/10.1016/j.seh.2024.100062
https://doi.org/10.1016/j.seh.2024.100062
https://doi.org/10.1109/TCSVT.2025.3525725
https://doi.org/10.1109/TIP.2025.3526056
https://doi.org/10.1007/s13399-020-00818-7
https://doi.org/10.1016/j.soilbio.2021.108472
https://doi.org/10.3390/su12187781
https://doi.org/10.3390/su12187781
https://doi.org/10.3389/fbioe.2023.1189166
https://doi.org/10.3389/fbioe.2023.1189166
https://doi.org/10.1109/MGRS.2021.3115137
https://doi.org/10.1007/s12665-020-09178-x
https://doi.org/10.3390/w15061115
https://doi.org/10.1016/j.envint.2022.107424
https://doi.org/10.1016/j.rse.2020.111716
https://doi.org/10.1016/j.jare.2023.06.015
https://doi.org/10.1016/j.inffus.2024.102814
https://doi.org/10.3389/fpls.2025.1550302
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	Integration of smart sensors and phytoremediation for real-time pollution monitoring and ecological restoration in agricultural waste management
	1 Introduction
	2 Related work
	2.1 Phytoremediation technology and pollutant management
	2.2 Application of deep learning in environmental monitoring

	3 Methods
	3.1 Overview of the Bio-DANN model architecture
	3.2 Biogeochemical model module
	3.3 Deep Neural Network module (DNN)
	3.4 Multi-head attention module
	3.5 Comprehensive output and evaluation module

	4 Experiment
	4.1 Datasets
	4.2 Experimental environment and settings
	4.3 Evaluation metrics
	4.4 Results

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References


