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caespitosa reveal sequence
divergences, massive gene
transfer, and uncommon
RNA editing types
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and Quansheng Zhang1*

1Ocean School, Yantai University, Yantai, China, 2No. 6 Geological Team, Shandong Provincial Bureau
of Geology and Mineral Resources, Weihai, China
Introduction: Zostera caespitosa, a rare submerged angiosperm, is considered

endemic to the northwestern Pacific.

Methods: This study assembled and compared the mitochondrial (mt) and

chloroplast (cp) genomes of Z. caespitosa to understand the organelle

evolutionary patterns.

Results and discussion: The cp genome (143,972 bp) was the second smallest

within the seagrasses, whereas themt genomes (192,246 bp) of Z. caespitosa and

other seagrasses were smaller compared to those of other monocotyledons. The

protein-coding genes (PCGs) in the organelle genome exhibit a strong A/U bias

at codon endings, a selection-driven codon bias. The rates of nonsynonymous

(Ka) and synonymous (Ks) substitutions in themt genes of Zosterawere two times

higher than those in the cp genes. Additionally, 50 mitochondrial plastid DNA

(MTPT) segments, totaling 44,662 bp, were identified, constituting 23.23% of the

mt genome, which is significantly higher than those in most land plants.

Phylogenetic analysis of 13 seagrass core cp-PCGs supported previous studies

showing two genera in family Zosteraceae: Phyllospadix and Zostera, the latter

comprising Zostera and Zosterella as subgenera. RNA editing was remarkably

abundant in the 167 mt-PCGs and 172 in cp-PCGs, particularly in the cp genome.

There are 11 different RNA editing types in the cp and 3 in the mt, most of which

are C to U. Unexpectedly rare editing events, such as A to C, A to U, U to A, G to C,

and U to G, have also been found in the cp.
KEYWORDS
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1 Introduction

Zostera caespitosa is a submerged perennial herb belonging to

the class Monocotyledoneae, order Alismatales, family Zosteraceae,

and genus Zostera. The distribution of Z. caespitosa is local, with

only a few populations found along the east coast of Korea, the

southern coast of Japan, and the coastal areas of Liaoning and

Shandong in China (Short et al., 2007; Xu et al., 2021). Z. caespitosa

is among the typical representative species in seagrass beds, playing

a vital role in erosion protection, bacterial suppression, nutrient

cycling, and significantly regulating carbon sequestration

(Fourqurean et al., 2012; Lamb et al., 2017; Unsworth et al.,

2022). However, the increasing pressures from human activities,

such as ocean warming, coastal modification, and water quality

degradation, are causing global seagrass loss (Orth et al., 2006;

Waycott et al., 2009). This marine plant species was listed as

“endangered” on the IUCN and China Biodiversity - Higher

Plants Volume in 2021 and 2022 Red Lists, respectively (Short

et al., 2011; Jiang et al., 2024). Previous studies on Z. caespitosa have

mainly focused on its distribution and biological traits (Short et al.,

2007; Xu et al., 2021; Jiang et al., 2024; Im et al., 2024). Nevertheless,

it lacks basic genetic resources, limiting further research and

conservation efforts.

Mitochondrial (mt) and chloroplast (cp) are endosymbiotic

organelles with independent genetic material separate from those

in the cell nucleus (Birky, 2001). These organelles share common

traits, including replication methods, mutation patterns, and

inheritance mechanisms and are significantly different in land

plants (Sloan et al., 2012; Maréchal and Brisson, 2010; Birky,

1995). Plant mt genomes are typically larger and more complex,

with a wide range of genome sizes (ca. 100–10,000 kb), varied

structures, low density of genes, and numerous repetitive

sequences (Jansen and Ruhlman, 2012), making their

conformation challenging (Gualberto et al., 2014). In contrast,

cp genomes of angiosperms exhibit a relatively simple structure,

typically consisting of approximately 120–130 genes and a smaller

size (~107–218 kb) (Daniell et al., 2016). These genomes comprise

a conserved four-part structure with large single copy (LSC), small

single copy (SSC), and inverted repeats (IRs) region (Henry, 2005;

Jansen and Ruhlman, 2012). Thus, they are ideal systems for

investigating the phylogenetic relationships among different plant

species (Mower and Vickrey, 2018; Nizam et al., 2022). In

addition, the RNA editing process was extremely abundant,

diverse, and remarkably complex in organellar RNAs (Kaur,

2020; Takenaka et al., 2013). To date, no research has been

conducted on identifying RNA editing events through RNA-Seq

read mapping in Z. caespitosa.

Recent developments in sequencing technologies have

significantly increased the number of plant cp and mt genomes.

Currently, the NCBI database contains approximately 13,000 cp

genomes and 673 mt genomes, yet only 285 species have both

genomes assembled (Wang et al., 2024). Although various

evolutionary patterns have been proposed for these genomes,

knowledge gaps persist, primarily due to unequal sampling.

Seagrasses, comprising approximately 74 species, represent a

crucial transformative event in higher plant evolution (Olsen
Frontiers in Plant Science 02
et al., 2016). Unfortunately, complete organelle genomes have

been published for only five seagrass species: Z. marina, Z.

japonica, Phyllospadix iwatensis, Ruppia sinensis, and Cymodocea

nodosa (Petersen et al., 2017; Chen et al., 2021, 2022, 2023; Ma et al.,

2024). In the Yellow–Bohai Sea, a temperate seagrass habitat in the

North Pacific, five species from three genera (Zostera, Phyllospadix,

and Ruppia) have currently been identified, namely, Z. marina, Z.

japonica, Z. caespitosa, P. iwatensis, and R. sinensis (Xu et al., 2021).

Recent research has extensively used mt and cp genomes to explore

molecular evolution (Li et al., 2023; Huang et al., 2020). As a major

member of the Yellow–Bohai Seas seagrass species, the differences

between the mt and cp genomes of Z. caespitosa remain

uncharacterized, l imiting insights into its origin and

adaptive evolution.

Thus, this study sequenced, assembled, and annotated the

organelle genome of Z. caespitosa. Our objectives were to (1)

describe the features of the organelle genomes; (2) analyze

evolutionary differences in sequences (repeated elements, codon

bias, mutation rate, and phylogenetic relationships); (3) identify

horizontal gene transfer (HGT) events; and (4) explore the

characteristics of RNA editing events.
2 Results

2.1 Composition of the Z. caespitosa
organelle genome

The complete circular mt genome of Z. caespitosa was 192,246

bp long with 45.63% in GC content (Figure 1A). Furthermore, the

mt genome has 86.02%, 13.98%, 0.75%, and 2.71% intergenic

regions, protein-coding genes (PCGs), tRNA, and rRNA,

respectively (Supplementary Table S1). The mt genome encodes

50 genes, namely, 27 PCGs, 20 tRNA, and 3 rRNA (rrn5, rrn18, and

rrn26) (Table 1). The PCGs comprised several genes, including five

ATP synthase (atp1, atp4, atp6, atp8, and atp9), four cytochrome c

biogenesis (ccmB, ccmC, ccmFc, and ccmFn), three cytochrome c

oxidase (cox1, cox2, and cox3), and one ubiquinol cytochrome c

reductase (cob). Additionally, PCGs have one maturase (matR), one

membrane transport protein (mttB), nine NADH dehydrogenase

(nad1, nad2, nad3, nad4, nad4L, nad5, nad6, nad7, and nad9), one

ribosomal protein (SSU) (rps7), and two copies of atp6 and nad4L

genes. Gene nad1, nad2, nad5, and nad7 possessed four introns,

nad4 possessed three introns, and cox2 and ccmFc possessed

one intron.

The complete cp genome of Z. caespitosa was 143,972 bp, and

its typical structure includes an SSC of 12,405 bp, an LSC of 83,313

bp, and two IRs region, each 24,127 bp (Figure 1B and

Supplementary Table S1). Further, a total of 131 genes were

annotated in the Z. caespitosa cp genome, corresponding to 85

PCGs (counting genes in the inverted repeats twice), 38 rRNAs, and

8 tRNAs (Table 2). Seventeen genes had introns in the cp genome

with two introns for three genes (clpP1, rps12, and ycf3) and one

intron for the other 14 (ndhA, ndhB, petB, petD, atpF, rpl16, rpl2,

rpoC1, trnA-UGC, trnG-UUC, trnI-GAU, trnK-UUU, trnL-UAA,

and trnA-UAC).
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2.2 Repeat sequence analysis

A total of 21 and 103 microsatellites [simple repeat sequences

(SSRs)] were identified in the mt and cp genomes, respectively, which

were 1 to 6 bp DNA fragments (Figure 2 and Supplementary Table S2).

Motifs 1, 2, 3, 4, 5, and 6 were 1, 7, 2, 10, 0, and 1 mt repeats,

respectively. In contrast, their cp repeats measured 71, 21, 0, 9, 0, and 2

bp, respectively (Figure 2C). Tetramer SSRs were the most dominant in
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the mt genome (47.6%), whereas monomer SSRs dominated the cp

genome (68.9%). Furthermore, the mt and cp genomes had 110 and 39

tandem repeats, respectively, besides dispersed repeats that were also

prevalent throughout these genomes (Figure 2 and Supplementary

Table S3). The mt and cp genomes had 5,028 and 37 pairs of dispersed

repeats, respectively, depicting significantly higher dispersed repeats in

the mt genome (Figure 2 and Supplementary Tables S4, S5). There

were 0 complementary, 2,847 forward, 2,165 palindromic, and 16
FIGURE 1

The organelle genomes map of Z. caespitosa. (A ,B) represent the mt and cpgenomes, respectively. The genes located inside the circles are
transcribed in a clockwise direction, while those outside the circle are transcribed counterclockwise. Different colored genes represent
different functions.
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reverse repeats in the mt genome, while there were 0 complementary,

15 forward, 19 palindromic repeats, and 3 reverse repeats in the cp

genome (Figure 2D). The organellar genomes lacked complementary

repeats but had the abundant forward and palindromic repeats.
2.3 Codon bias analysis

The different organelles displayed a degree of variation in the

codon usage frequency. The Relative Synonymous Codon Usage

(RSCU) values in the mt genome were 0.49 (GCG in alanine) to 1.5

(CAA in glutamine) and 0.28 (CUG in leucine) to 2.26 (UUA in

leucine) in the cp genome (Figures 3A, B and Supplementary Table S6).

Only UGG (tryptophan) and AUG (start codon) had RSCU values 1 in

the mt and cp genome; the rest were >1 or <1, indicating a general

preference for codons in PCGs. The RSCU values of 30 codons in the

mt and 29 codons in the cp genomes exceeded 1, indicating that these

codons showed biased usage. The Z. caespitosa organellar genomes

have a strong A/U preference in codon usage.

Effective codon numbers versus the third position GC content

(ENC-GC3s) plots are commonly used to assess factors influencing

codon usage patterns. The mt and cp genomes exhibited similar bias

patterns, with most PCG genes deviating from the standard curve

and a minority positioned on or close to it (Figures 3C, D and

Supplementary Table S7). Respiration caused the remarkably

pronounced deviations in mt, while photosynthesis primarily
TABLE 1 List of genes encoded by the mt genome of Z. caespitosa.

Group of genes Gene name

ATP synthase atp1, atp4, atp6(×2), atp8, atp9

Cytohrome c biogenesis ccmB, ccmC, ccmFca, ccmFn

Ubichinol cytochrome
c reductase

cob

Cytochrome c oxidase cox1, cox2a, cox3

Maturases matR

Transport
membrane protein

mttB

NADH dehydrogenase
nad1d, nad2d, nad3, nad4c,
nad4L(×2), nad5d, nad6, nad7d, nad9

Ribosomal proteins (LSU)

Ribosomal proteins (SSU) rps7

Succinate dehydrogenase

Ribosomal RNAs rrn18, rrn26, rrn5

Transfer RNAs

trnA-UGCa, trnC-GCA(×3), trnD-GUC, trnE-UUC
(×3),
trnL-CAA, trnM-CAU, trnN-GUU, trnQ-UUG
(×3),
trnR-ACG, trnT-GGU, trnW-CCA, trnY-GUA,
trnfM-CAU(×2)
F
rontiers in Plant Science
Genea: Gene with one intron.
Genec: Gene with three introns.
Gened: Gene with four introns.
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TABLE 2 List of genes encoded by the cp genome of Z. caespitosa.

Category Gene group Gene name

Photosynthesis Subunits of
photosystem I

psaA, psaB, psaC, psaI, psaJ

Subunits of
photosystem II

psbA, psbB, psbC, psbD, psbE, psbF,
psbH, psbI, psbJ, psbK, psbL,
psbT, psbZ

Subunits of
NADH
dehydrogenase

ndhAa, ndhBa(×2), ndhC, ndhD, ndhE,
ndhF, ndhG, ndhH, ndhI, ndhJ, ndhK

Subunits of
cytochrome b/
f complex

petA, petBa, petDa, petG, petG,
petL, petN

Subunits of
ATP synthase

atpA, atpB, atpE, atpFa, atpH, atpI

Large subunit
of rubisco

rbcL

Subunits
photochlorophyllide
reductase

–

Self-
replication

Proteins of large
ribosomal subunit

rpl14, rpl16a, rpl2a(×2), rpl20, rpl22,
rpl23(×2), rpl33, rpl36

Proteins of small
ribosomal subunit

rps11, rps12b(×2), rps14, rps15(×2),
rps18, rps2, rps3, rps4, rps7(×2), rps8

Subunits of
RNA polymerase

rpoA, rpoB, rpoC1a, rpoC2

Ribosomal RNAs rrn16(×2), rrn23(×2), rrn4.5(×2),
rrn5(×2)

Transfer RNAs trnA-UGCa(×2), trnC-GCA, trnD-
GAC, trnE-GAA, trnF-GAA, trnG-
GCC, trnG-UCCa, trnH-CAC, trnH-
GUG, trnI-GAUa(×2), trnK-UUU a,
trnL-UAAa, trnL-UAG, trnL-UUG(×2),
trnM-AUG(×3), trnM-CAU, trnN-
AAC(×2), trnP-CCA, trnQ-UUG, trnR-
CGU(×2), trnR-UCU, trnS-GCU, trnS-
UCC, trnS-UGA, trnT-UGU, trnV-
GAC(×2), trnV-UACa, trnW-CCA,
trnY-UAC

Other genes Maturase matK

Protease clpP1b

Envelope
membrane protein

cemA

Acetyl-
CoA carboxylase

accD

c-type cytochrome
synthesis gene

ccsA

Translation
initiation factor

infA

other -

Genes of
unknown
function

Conserved
hypothetical
chloroplast ORF

ycf1(×2), ycf2(×2), ycf3b, ycf4
Genea: Gene with one intron.
Geneb: Gene with two introns.
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caused those in cp. The mt PCG gene atp9 has ENC values of 33.25

(less than 35). In the cp genome, PCG genes with <35 ENC included

psbI (33.96), petN (28.65), psaI (34.04), psaJ (33.05), rpl36 (23.23),

and rpl32 (28.76).
2.4 Mutation rate analysis of
Zostera species

To resolve the variations in evolutionary rates across the

organelle genomes of Zostera, we examined the rates of evolution

for the PCGs common to all Zostera species. The rates of

nonsynonymous (Ka) and synonymous (Ks) substitutions of cp

genome is roughly 1/2 of that of the mt genome, indicating that the

cp genome probably suffered strong purifying selection and is more

conserved at the level of PCGs (Figure 4A). The Ka/Ks value also

reveals that the document rate overlaps between loci across the two

organelles. Comparing the Ka/Ks of each gene from both organelles

corroborated that mt genes evolve faster than cp (Figures 4B,C).

Most genes from all major organellar classes are under strong

purifying selection. ATP synthase genes had particularly the

lowest Ka/Ks ratios in the cp genome, while they had the highest

Ka/Ks ratios in the mt genome. In contrast to photosystem genes,

ribosomal genes possibly suffered weaker purifying selection, with

significantly greater Ka/Ks values from mt than cp genes.
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2.5 Phylogenetic analysis

To investigate the phylogenetic relationship of Zosterceae, we

analyzed the shared PCGs of the cp genome of 13 seagrass species.

Spirodela pholyhiza was selected as the outgroup. Because of the high

congruence between the ML and BI analyses of cp genomes, only the

ML topology is presented here. Phylogenomic analysis using common

57 PCGs genes revealed four primary clades: Hydrocharitaceae,

Cymodoceaceae, Ruppiaceae, and Zosteraceae, of which

Cymodoceaceae and Ruppiaceae had a relatively close relationship

(Figure 5). Furthermore, Zosteraceae were divided into three major

clades: Phyllospadix, subgenus Zostera, and subgenus Zosterella. Within

Zosteraceae, Z. caespitosa was more closely related to Z. marina,

followed by Z. nigricaulis, Z. japonica, Z. muelleri, and P. iwatensis.
2.6 Identification of
homologous sequences

Homologous sequences between the mt and cp genomes of Z.

caespitosa were searched to further investigate gene residues from cp

genome in the mt genome. Sequence similarity analysis identified 50

mitochondrial-plastid DNA transfers (MTPTs) in Z. caespitosa

(Figure 6). The MTPTs were 44,662 bp long, accounting for 23.23%

of the mt genome length and 31.02% of the total cp genome
FIGURE 2

Repeat sequences within mt and cp genomes. Colored lines in the inner circle represent dispersed repeats: pink for forward, purple for palindromic,
and orange for reverse repeats. The black line in the first circle marks tandem repeats, while the second circle highlights SSRs. (A, B) show the
physical distribution of repeats in mt and cp genomes, while panels (C, D) illustrate the different types of dispersed repeats and SSRs.
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(Supplementary Table S8). Eleven fragments were longer than 1,000

bp, with the longest being MTPT1 (2,961 bp), which consists of the

rrn4.5, rrn5, and rrn23 genes. Most MTPTs in the mt genome of Z.

caespitosa are derived from the tRNA gene and rRNA gene in the cp

genome. Two proteins (rbcL and rpl23), two rRNA genes (rrn4.5 and

rrn5), and six tRNA genes (trnC-GCA, trnY-UAC, trnT-ACC, trnW-

CCA, trnL-UUG, and trnR-CGU) were fully intact, and others were

partial sequences.
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2.7 RNA editing events

To identify RNA editing events of Z. caespitosa, we mapped

RNA-seq data to the mt and cp genomes. A total of 167 and 172

RNA editing sites were identified in the mt and cp PCGs,

respectively (Figure 7A and Supplementary Tables S9, S10).

Four mt (nad7, cox1, nad4, and cob) and cp genes (matK,

rpoC2, accD, and ndhD) had many editing sites. In addition, the
FIGURE 3

Summary of codon usage in PCGs of the Z. caespitosa organelle genome: (A, B) show RSCU distribution for mt and cp genomes, with horizontal
axes representing 21 amino acids and vertical axes showing RSCU values. (C, D) plot ENC against GC3s for mt and cp genes, respectively. The solid
line represents the expected trend based on GC3s composition. Blue dots indicate respiratory chain or photosynthesis genes, brown dots mark
translation-related/transcription genes, and pink dots represent other genes.
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fewest edits were observed in most cp genes, with only one RNA

editing site. Furthermore, cp PCGs had 11 different types of RNA

editing sites, including 33% of C–U, 21% of U–C, 13% of G–A,

12% of A–G, 7% of C–A, 4% of A–C, 3% of G–C, 3% of G–U, 2%

of A–U, 2% of U–A, and 1% of U–G (Figure 7B). Most mt PCGs

had this C-to-U editing type. Over 62% (106) cp and 34% (57) mt

editing sites exhibited near 100% editing efficiency, indicating a

more efficient editing process than initially expected (Figure 7C).

Most importantly, 92.21% and 55.81% in mt and cp occurred

above the first two bases of the codon, changing the corresponding

amino acids (Supplementary Tables S9, S10). We further

examined the number of the amino acid changes and found that

95.2% (159) in mt and 57.6% (99) in cp caused amino acid

alterations. The most frequent amino acid changes in the Z.

caespitosa organelle genome were from Pro to Leu and Ser to

Leu (Figures 7D, E).
Frontiers in Plant Science 07
3 Discussion

3.1 The structure and size of the organelle
genomes in Z. caespitosa

Studying the genomes of plant organelles enhances our

comprehension of their functions, inheritance patterns, and

replication mechanisms, while also offering valuable insights into

their evolution and adaptation (Wang et al., 2024). This study

successfully de novo assembled the complete organelle genomes of

Z. caespitosa. Consistent with the common structure of organelle

genomes in seagrass (Petersen et al., 2017; Chen et al., 2021), both

genomes are circular, sized at 192,246 bp and 143,972 bp,

respectively. However, a recent study found varying degrees of

genome size, completeness, and fragmentation in the seagrass mt

genomes, which are attributed to recombination (Ma et al., 2024).
FIGURE 4

(A) The density distribution of Ka/Ks. (B, C) Boxplots show the median Ka/Ks for classes of mt and cp genes across the Zostera species.
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FIGURE 6

Homologous sequences between organelle genomes are shown as blue (mt) and green (cp) arcs. The inner arcs represent MTPT fragments, while
outer gray and black labels indicate partial and intact genes, respectively.
FIGURE 5

The ML tree of 13 seagrasses based on all shared cp-PCGs.
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Compared to the cp genome, the larger mt genome is due to a high

abundance of repetitive sequences, particularly dispersed repeats

(the mt genome contains 5,028 dispersed repeats, and cp has 37)

(Supplementary Tables S4, S5). Similar disparities in repeat content

have been observed in Dystaenia takeshimana (Park and Park,

2023). The length of the Z. caespitosa mt genome is well among the

ranges reported for seagrasses (Chen et al., 2022). Notably,

seagrasses’ mt genomes were smaller compared to those of other

monocotyledons (Supplementary Table S11). Several factors,
Frontiers in Plant Science 09
including horizontal gene transfer (HGT), the number of repeated

sequences, and the gain or loss of large intrageneric fragments,

influence variations in plant mt genome sizes (Wu et al., 2022).

Furthermore, the cp genome of Z. caespitosa contains a

distinctive quadripartite organization, with two IRs, an LSC, and

an SSC, similar to the structural characteristics of cp genomes of

other angiosperms (Daniell et al., 2016). This genome is the second

smallest within the Zosteraceae family, with cp genomes ranging

from 143,877 bp in Z. marina to 178,261 bp in Thalassia hemprichii
FIGURE 7

The features of RNA editing sites identified in PCGs of the organelle genome include (A) the number of RNA editing sites in each PCG; (B) types of
RNA editing; (C) efficiency of RNA editing; and (D, E) the number of amino acid changes in mt and cp, respectively.
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(Chen et al., 2023). This difference may be caused by very short ycf1

genes in the IR regions in Z. caespitosa (Olsen et al., 2016). The

lengths of the cp genomes in the same family were similar

(Supplementary Table S11), suggesting that the cp genome size

variability is linked to phylogenetic relationships and evolutionary

history (Zheng et al., 2017). Additionally, the expansion and

contraction of the SC border and IR regions are major factors

contributing to size variations in cp genomes, influencing their

evolutionary rate (Dodsworth et al., 2015).
3.2 Codon usage pattern analysis
in Z. caespitosa

Codon usage bias in genes, a notable evolutionary feature,

occurs in various prokaryotic and eukaryotic organisms (Wang

et al., 2023). These biases result from a complex interaction of

natural selection, genetic drift, and mutational forces across long

evolutionary periods (Chen et al., 2004; Zhang et al., 2022).

According to angiosperm organelle genomes, this research

showed that most codons ending with A/U have >1 RSCU

values, possibly because of composition bias toward a high A/T

ratio (Duan et al., 2021). This pattern is likely due to the structural

stability of polyA and polyT, compared to polyC and polyG

(Gragg et al., 2002).

The ENC-GC3 analysis suggests that mutations predominantly

affect genes closely aligned with or overlapping the standard curve in

the ENC-GC3 plot, probably altering their codon bias. Conversely,

genes deviating from this curve are likely influenced by natural

selection (Li et al., 2023; Wright, 1990). This study demonstrates that

the majority of photosynthesis-associated genes in the cp genome and

respiration-related genes in the mt genome of Z. caespitosa depart from

the standard curve, indicating a greater impact of natural selection. This

deviation pattern is consistent across species within the tea plant family

(Li et al., 2023). Additionally, this study reveals that mt genome genes

like atp9, with an ENC value of 33.25, and cp genome genes including

psbI (33.96), petN (28.65), psaI (34.04), psaJ (33.05), rpl36 (23.23), and

rpl32 (28.76), all with ENC values below 35, exhibit mutation-

influenced codon usage biases. In contrast, genes with ENC values

above 35 are predominantly shaped by natural or artificial selection

(Wright, 1990).
3.3 Mutation rate analysis of
Zostera species

The Ka/Ks is employed to evaluate the evolutionary rate of

nucleotides and selective pressure, serving as an important

indicator in species evolution (Li et al., 1985). In this study, the Ka/

Ks of the cp genome is roughly 1/2 of that of the mt genome. The

result was consistent with a previous study on the red alga Porphyra

and phytoplankton Phaeocystis (Haptophyta), which have secondary

cp; their mt mutation rates were higher than their cp rates (Smith

et al., 2012, 2014). However, this trend contrasts most land plants and

green algae, where the Ka/Ks of cp were three times higher than that

of mt (Clegg et al., 1994; Smith, 2015; Smith and Keeling, 2015). The
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mutation rate variation across organisms is unclear but likely reflects

the differences in the efficiency of DNA replication machinery

between organelles and across taxonomic lineages (Drouin et al.,

2008; Zhu et al., 2014; Smith, 2015; Gualberto and Newton, 2017).

Additionally, the endosymbiotic history, specifically the number of

endosymbiosis events, may be important, but their role in influencing

these rates is poorly understood (Smith and Keeling, 2015).
3.4 Phylogenetic relationships in seagrass

Phylogenetic relationships within the family Zosteraceae,

particularly regarding genus Zostera species, have been subjects of

intense debate (Tanaka et al., 2003; Coyer et al., 2013). These studies

used core barcodes to distinguish Zostera species within the

Zosteraceae, which have potential limitations. In response,

researchers have increasingly turned to cp genomes as a super

barcode, which has proven successful in identifying numerous

species and individuals across diverse studies (Kane et al., 2012;

Chen et al., 2019). This study constructed phylogenetic trees based

on common PCGs from 13 seagrass cp genomes. Results showed

monophyly of subgenus Zostera and subgenus Zosterella. Interestingly,

one good phylogenomic bootstrap branch indicated that Z. caespitosa

typically emerged as a sister to Z. marina, demonstrating that Z.

caespitosawasmore closely related to Z. marina than other Zosteraceae

species. Additionally, the results support the infrageneric classifications

proposed by Chen et al., which divide seagrasses into four major clades:

Zosteraceae, Ruppiaceae, Cymodoceaceae, and Hydrocharitaceae, with

Cymodoceaceae and Ruppiaceae showing a relatively close relationship

(Les and Tippery, 2013; Chen et al., 2022).
3.5 Horizontal gene transfers between
organellar genomes in Z. caespitosa

Horizontal gene transfer between mt and cp genomes has been a

significant phenomenon in the long-term evolution of angiosperms

(Sloan andWu, 2014; Gui et al., 2016). This study identified 50 MTPTs

between the cp and mt genomes of Z. caespitosa, with a total length of

44,662 bp, accounting for 23.23% of themt genome. Generally, the ratio

ofMTPTs inmt genomes varies from 0.56% inMarchantia polymorpha

to 10.85% in Phoenix dactylifera (Zhao et al., 2018). The percentage in

the mt genome of Z. caespitosa far exceeds the highest previously

reported rates of approximately 10%–12% in Boea and Cucurbita

(Zhang et al., 2012; Alverson et al., 2010). In the Z. caespitosa and Z.

marinamt genomes, the frequent occurrence of MTPTs is linked to the

recent integration of several large sequence transfers (Petersen et al.,

2017). Among these MTPTs, MTPT1 is the longest. Previous studies

have also documented the presence of large fragments of transferred

cpDNA in mt genomes (Zhu et al., 2023). These large fragments likely

play a significant role in angiosperms evolution by enhancing genetic

diversity. Additionally, the origin of tRNAs in angiosperms mt is

twofold: some are derived from the mt ancestor, while others are

obtained from the cp via HGT (Sprinzl and Vassilenko, 2005). In

addition to gene transfer between mt and cp genomes, HGT most

frequently occurs from organelles to the nuclear genome, resulting in
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the production of nuclear plastid DNA (NUPTs) and nuclear

mitochondrial DNA (NUMTs). Recent studies on Thalassia

testudinum have found large, uninterrupted nuclear mitochondrial

DNA sequences (NUMTs), indicating a recent mitochondrial DNA

transfer. In contrast, Z. marina shows fewer such sequences, suggesting

less frequent mitochondrial DNA integration. These large,

uninterrupted NUMTs in T. testudinum may result from genome

instability caused by TE expansion (Ma et al., 2024).
3.6 RNA editing events

Recent studies have demonstrated that RNA editing is prevalent

across plant organelle genes and is crucial in energy metabolism and

regulating genetics (Li et al., 2019) In this study, the RNA-seq data

identified 167 RNA editing sites across mt-PCGs and 172 RNA across

cp-PCGs. The number of editing sites is higher than those reported in

most angiosperm cp genomes (20–60) (Knoop, 2023). Mt genes such

as nad7, cox1, nad4, cob, and cp genes, including matK, rpoC2, accD,

and ndhD had notably high editing frequencies. This study further

investigated the impact of editing on protein structure, confirming that

no new transmembrane domains were created (Supplementary Figures

S1, S2). Additionally, editing nine differential sites (accD-157, accD-624,

accD-1220, rpoC2-2255, rpoC2-2752, rpoC2-2822, mat-748, matK-178,

and matK-799) changed the secondary structure composition

surrounding the editing sites in the cp (Supplementary Figure S3).

Editing 12 different sites (nad7-927, cox1-254, cox1-352, cox1-868,

cox1-1037, cox1-1279, nad4-29, nad4-197, nad4-362, nad4-599, cob-

400, and cob-794) altered the secondary structure composition

surrounding the editing sites in the mt. This editing mechanism

effectively repairs potential defects by disrupting and folding alpha-

helices, enhancing structural protein stability (Yuar and Go, 2008).

Similarly, previous studies revealed C-to-U as the predominant

type of editing in mt-PCGs (98.8%) and pt-PCGs (40%) of Z.

caespitosa (Gray and Covello, 1993). Additionally, Z. caespitosa had

non-canonical edits such as U to C, G to U, C to A, A to G, and G to

A, typically found only in ancestral land plants (Chateigner-Boutin

and Small, 2010; Uthaipaisanwong et al., 2012) Z. caespitosa also

had unexpectedly rare editing events like A to C, A to U, U to A, G

to C, and U to G, not previously reported in other species. These

RNA editing events potentially alter protein structure or interaction

by nonsynonymously replacing conserved amino acids, most

notably changing Pro to Leu and Ser to Leu. These substitution

shifts the physicochemical properties from hydrophilic to

hydrophobic, increasing the hydrophobicity of interface residues,

crucial for protein–protein interactions and enzyme efficiency

(Jobson and Qiu, 2008; Giegé and Brennicke, 1999).
4 Conclusions

This study reported the complete organelle genomes of Z.

caespitosa, enabling their comprehensive comparison. The PCGs in

the organelle genome exhibits a strong A/U bias at codon endings, a

selection-driven codon bias. Themt genome includes abundant cpDNA

transferred fragments, much higher than in most angiosperms. The Ka/
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Ks of the Zostera mt genome are twofold higher than those in the cp

genome. Remarkably, numerous RNA editing events were identified in

cp-PCGs, including five rare types of RNA editing.
5 Materials and methods

5.1 Sample collection and organelle
genome sequencing

Fresh Z. caespitosa leaves were collected from Yantai, China

(121.4534 E, 37.5193 N). Prof. Quansheng Zhang verified the

voucher specimens stored in the Ocean School of Yantai University.

Leaves’ DNA was extracted using the DNA extraction kit (Invitrogen,

CA, USA). DNA library was constructed using the Illumina TruSeq

Library Preparation Kit (Illumina, CA, USA), in accordance with the

manufacturer’s guidelines. These libraries were sequenced using the

Illumina NovaSeq 6000 (Biozeron, Shanghai, China), producing raw

data consisting of 150-bp paired-end reads. Constructing the long

fragment library, its quality was assessed with Qubit, and then it was

sequenced on the ONT platform (Biozeron, Shanghai, China).
5.2 Assembly of Z. caespitosa mt genome

The Illumina sequencing raw data were filtered with Trimmomatic

v0.39 before the mt genome assembly (Bolger et al., 2014). All ONT-

generated long reads were aligned to the Z. marina (NC_035345.1) mt

genome, withMinimap2 v2.10-r761 using its default settings, processed

into a Pairwise Mapping Format (PAF) file (Li, 2018). Homologous

reads with a mapping quality >20 were treated as potential mt

sequences. Subsequently, de novo assembly was performed on the

homologous ONT long reads and the clean paired-end reads using

Canu v2.2 and GetOrganelle v1.7.5 with default settings (Koren et al.,

2017; Jin et al., 2020). BLASTNwas used to align the draft contigs from

Canu and GetOrganelle with the Z. marina mt CDSs to detect the

candidate mt genome contigs. Using overlapping markers as a guide,

the selected contigs were manually joined to generate the complete mt

genome sequences. The circularity of the assembly was confirmed

using the “check_circularity.pl” script, part of the sprai package (http://

zombie.cb.k.u-tokyo.ac.jp/sprai/).

The alignment of long ONT reads and short Illumina to the mt

genomes was performed using BWA, removing multi-mapped reads,

unmapped reads, and PCR duplicates. Coverage information for themt

genomes was obtained by sorting the Binary Alignment/Map (BAM)

files, and the accuracy was manually checked using the Integrative

Genomics Viewer (IGV) with the BAM files as references.
5.3 Assembly of Z. caespitosa cp genome

Quality control was performed on the raw sequencing reads using

FastQC, followed by trimming of redundant reads or low-quality reads

(Q < 20) using Trimmomatic v0.39 (Bolger et al., 2014). The trimmed

reads were assembled using GetOrganelle (v1.7.5) with default

parameters (Jin et al., 2020). The Z. marina (NC_036014.1) cp
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genome sequence served as the reference for re-assembly, generating

multiple potential cp genome assemblies. The final cp genome

assembly’s accuracy, especially regarding the IR order and continuity,

was checked andmanually corrected as needed, using BLASTN (E-value

cutoff of 10{sp}−5{/sp}) against reference cp genomes. The

“check_circularity.pl” script from the sprai package was used to

evaluate the circularity of the cp assembly. The boundaries of the SSC,

LSC, IR, and regions were determined using BLASTN self-alignment.
5.4 Mt and cp genome of Z.
caespitosa annotation

The mt and cp genes were annotated using GeSeq (Tillich et al.,

2017) and BLASTN, with Z. marina (NC_035345.1) and Z. marina

(NC_036014.1) as references, respectively. Exon/intron and start/stop

codons boundaries in PCGs were manually corrected with Snap Gene

Viewer, using reference gene models for guidance. The Organellar

Genome DRAW (OGDRAW) software was used to visualize the mt

and cp genomes graphically (Greiner et al., 2019). These mt and cp

genome sequences are available in GenBank with the accession

numbers PP566026 and PP566025, respectively.
5.5 Repeat sequence analysis

Here, SSRs were identified using the MISA tool (Beier et al.,

2017), with the minimum repeat numbers set to 10, 5, 4, 3, 3, and 3

for mono-, di-, tri-, tetra-, penta-, and hexa-nucleotides,

respectively. Dispersed repetitive, including forward (F), reverse

(R), complementary (C), and palindromic (P) repeats, were

identified using the REPuter software (Kurtz et al., 2001). The

analysis was conducted with a 30-bp minimum repeat length, a 90-

bp maximum repeat size, and a Hamming distance threshold of

three. The detection of tandem repeats was performed using

Tandem Repeats Finder (Benson, 1999).
5.6 Codon usage bias analysis

Phylosuite (v1.1.16) was used to extract the PCGs from mt and cp

genomes. The codon preference of PCGs in these genomes was assessed

using MEGA (v7.0), and RSCU values were calculated (Kumar et al.,

2016). CodonW (v1.4.4) was employed to calculate the ENC-GC3

values, and the data were visualized with ggplot2 in R package.
5.7 Selective pressure estimation and
phylogenetic analysis

Using MAFFT version 7.427 (Katoh and Standley, 2013), the core

PCG sequences were aligned, and the Ka/Ks ratios for Z. caespitosa, Z.

marina, and Z. japonica were calculated via the MLWL-based Ka/Ks

Calculator (Wang et al., 2010). Python and R software were used to

visualize the plots. The core CDSs of 13 seagrass cp genomes were

aligned using MAFFT, and the alignments were used to construct
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Bayesian trees with MrBayes 3.2. The most suitable nucleotide

substitution model was chosen through ModelFinder (Nguyen et al.,

2015). Further,ML analyses were performedwith IQ-TREE version 1.5.5

(Nguyen et al., 2015) utilizing ultrafast bootstrap (1,000 replicates) and a

partitionmodel. Finally, the trees were visualized using normal tree tools.
5.8 Gene transfer between mt and
cp genomes

The mt and cp genome sequences for Z. caespitosa were aligned

using the BLASTn tool, with the default parameters. Subsequently,

the distribution of MTPTs was displayed using TBtools, which

integrates the Circos package (Chen et al., 2020). Additionally,

GeSeq was used to annotate the MTPTs, and duplicates, such as the

two MTPTs in the cp genome’s IRs, were excluded.
5.9 Identification of RNA editing events

RNA editing events in the PCGs of the Z. caespitosa organelle

genomes were identified using RNA-seq and genomic sequencing data.

Quality control of the raw RNA reads was conducted via FastQC using

default parameters. The RNA-seq reads were then mapped to the cp

and mt genomes of Z. caespitosa using Tophat (Trapnell et al., 2009).

Picard (https://github.com/broadinstitute/picard) was employed to

remove duplicate records from the resulting BAM files. Next,

single-nucleotide polymorphisms (SNPs) were identified using

GATK (McKenna et al., 2010) and Samtools (Li et al., 2009) for

genotyping analysis. The IGV was used to examine the mapped

reads. The efficiency of RNA editing was quantified as the ratio of

edited reads to total mapped reads (Li et al., 2009).
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