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Onion crops are affected bymany diseases at different stages of growth, resulting

in significant yield loss. The early detection of diseases helps in the timely

incorporation of management practices, thereby reducing yield losses.

However, the manual identification of plant diseases requires considerable

effort and is prone to mistakes. Thus, adopting cutting-edge technologies such

as machine learning (ML) and deep learning (DL) can help overcome these

difficulties by enabling the early detection of plant diseases. This study presents

a cross layer integration of YOLOv8 architecture for detection of onion leaf

diseases viz.anthracnose, Stemphylium blight, purple blotch (PB), and Twister

disease. The experimental results demonstrate that customized YOLOv8 model

YOLO-ODD integrated with CABM and DTAH attentions outperform YOLOv5

and YOLO v8 base models in most disease categories, particularly in detecting

Anthracnose, Purple Blotch, and Twister disease. Proposed YOLOv8 model

achieved the highest overall 77.30% accuracy, 81.50% precession and Recall of

72.10% and thus YOLOv8-based deep learning approach will detect and classify

major onion foliar diseases while optimizing for accuracy, real-time application,

and adaptability in diverse field conditions.
KEYWORDS

artificial intelligence, disease detection, deep learning, YOLOv8, image
annotation, onion
1 Introduction

Onion (Allium cepa L.) is an important vegetable crop consumed. Onion crop suffer

from multiple diseases throughout its life cycle. The incidence of various diseases

significantly affects the yield and quality of onion crop. Pests and diseases collectively

cause 30-50% bulb yield losses (Larentzaki et al., 2007; Nault and Shelton, 2010). Timely

and accurate identification of plant diseases is of great significance for protecting crop
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safety and controlling the spread of diseases (Iqbal et al., 2018). The

present method of disease identification is based on visual

inspection of symptoms by plant protection experts. The accuracy

of this identification is based on the experience and skill levels of the

expert. To increase the accuracy of disease detection, several

researchers have built disease detection models to classify and

identify plant diseases using image processing techniques,

machine learning, and deep learning algorithms.

Previous reports on plant disease detection in various cropping

scenarios are briefed here, Fuentes et al. (2017) used “deep learning

meta-architectures” to identify nine different kinds of pests and

diseases in tomato plants using pictures taken in camera at different

resolutions. In another study, Cassava leaf diseases were detected

using a Convolutional Neural Networks (CNN) model, trained with

field image dataset (Sambasivam and Opiyo, 2021). Pre-trained

transfer learning techniques such as AlexNet and GoogleNet were

applied to identify soybean diseases (Jadhav et al., 2021). The CNN

model was created to classify purple blotch disease in onion crop by

employing a pre-trained InceptionV3 model (Zaki et al., 2021) A

deep neural network model proposed to automatically detect onion

downy mildew using pictures taken periodically by a field-

monitoring system of onion fields (Kim et al., 2020).

When evaluated on the tomato leaf diseases dataset, the YOLOv5

model exhibited an impressive accuracy rate of 93% (Rajamohanan

and Latha, 2023). YOLOv8 has been used to increase the efficiency

and precision of rust disease classification in fava bean fields (Slimani

et al., 2023). The application of the YOLO model, specifically

YOLOv8 and YOLOv9, for the identification of plant diseases in a

hydroponic setting, was examined. The findings demonstrated that

YOLOv9 outperformed YOLOv8 by a small margin in terms of

detection accuracy, with 88.38% and 87.22%, respectively. For real-

time plant disease detection, YOLOv8 uses less time and processing

resources than YOLOv9 (Tripathi et al., 2024). A combination of

YOLOv5 and YOLOv8 models was more effective for the same

diseases, achieving a detection accuracy between 86.6% and 94.3%,

according to Ahmed and Abd-Elkawy (2024). Further, the diseases

tomato splitting, sun-scaled rot, and blossom end rot were identified

with a 93.6% accuracy using YOLOv8 and YOLOv9 models, as noted

by Zayani et al. (2024). Blossom end rot, splitting, and sun-scaled rot

were detected using the YOLOv8 model with an accuracy of 66.67%,

as reported by Iren (2024).

Deep Learning (DL) has opened new avenues for automatic

plant disease identification through object detection and image

classification. There are two major categories of object detection

models which differs in architecture, time needed, dataset needed

and accuracy. 1) Two stage Models- Fast R-CNN, Faster R-CNN,

Mask R-CNN and 2) one stage includes, YOLO (You Only Look

Once), Retina Net etc.

In this study, we propose cross layer integration of YOLOv8

model for improved accuracy in disease detection. YOLO is a real-

time object detection method that uses a neural network to process

a picture in a single forward pass. YOLO completes bounding box

regression and object recognition in a single step, in contrast to
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conventional object detection techniques, which require several

processing steps. Multiple versions of YOLO have been created,

from YOLOv1 to the recently developed YOLOv11. Every new

version builds upon previous versions, offering more features,

including increased precision, quicker processing, and better

object handling. YOLOv8 is a cutting-edge model for object

recognition that evaluates photographs in the range of 40–155

frames per second (FPS) depending on the configuration. This

novel method of image analysis divides an image into several grid

cells and predicts the bounding box coordinates and class

probabilities using a single neural network. This results in a faster

and more precise disease identification process by enabling more

efficient and accurate image assessment (Orchi et al., 2023).

Pretrained object detection models are available in different

repositories these models are trained on large datasets however

training from scratch on custom dataset has added advantage of

avoiding possible learning bias due to objective function difference

and limited design space on networks (Shen et al., 2025).

Grad-CAM visualization technique used to highlight

important regions in image which enhances model trust and

accuracy. AI-driven deep learning models have been widely used

for diagnosing plant diseases in major crops, including rice, wheat,

maize, tomato, banana, apple, grapes, citrus, mango, tea, cucumber,

cassava, ginger, sugarcane, papaya, common bean, and pearl millet.

Many of these studies rely on the PlantVillage dataset, which

includes only a limited selection of diseases from specific crops.

However, onion diseases are not covered in the PlantVillage

database. Onion pathogens and symptoms are unique, and only a

few studies have explored image-based detection, typically focusing

on just one or two diseases. While Jahan M. et al. (2024) conducted

a comprehensive study on onion leaf disease classification and

hierarchical image feature extraction, no credible image-based

detection model currently exists for onion disease identification.

Currently, onion disease diagnosis depends on human

expertise, with accuracy varying based on the specialist’s

experience and skill level. To address this gap, we aim to develop

an automated image-based object detection model for onion disease

diagnosis, designed for deployment in a mobile camera-based

application. This study aims to authenticate a robust onion

disease detection model by analyzing the effectiveness of

YOLOv5, YOLOv8, and customized YOLOv8 models using

different attention modules in detecting onion diseases and

evaluate their performance across different disease categories.

This paper addresses the need of a robust digital guide for

realtime assistance to onion growers upon integration of this model

into smartphone app (iSARATHI) (https://play.google.com/store/

apps/category/FAMILY?hl=en-US). The model was optimized by

integrating CBAM attention after C2f in neck and backbone

network in addition dynamic task align head was replaced with

detection head in YOLOv8 architecture which enhances feature

extraction especially for smaller disease spot detection. The findings

of this study will contribute to advancements in precision

agriculture and smart disease management systems for onions.
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1.1 Brief overview of related research

Leaf disease recognition has been extensively studied using various

computer vision techniques, including traditional machine learning,

deep learning-based CNNs and recent advancements in YOLO

architecture. Most research efforts focus on image classification and

bounding box-based detection using existing datasets. However,

complex leaf diseases often have irregular shapes that bounding

boxes cannot effectively capture. To address this, we integrated

bounding box-based annotations utilizing real-time field data

collected directly from agriculture research field plots which were

then trained with customized YOLOv8, making it a more reliable and

practical solution for farmers and agronomists. An illustration of

previous modalities utilized for plant disease recognition enabled by

object detection algorithms is described in Table 1.
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This table explains both parallels and contrasts among a subset

of previously built plant disease detection models. This manifests

the importance of this research work completed using a dataset

generated in natural settings.
2 Materials and methods

2.1 Study area

The photographs were captured at ICAR-Directorate of Onion

and Garlic Research (DOGR), Pune, Maharashtra, India, centered

at latitude 18°50’27.99”N, longitude 73°53’12.88”E EPSG:4326

WGS 84/UTM zone 43°N over the span of 4 months from

September to December 2023.
TABLE 1 Comparative interpretation of different deep learning models previously used in object detection.

Model Dataset Task Utility Reference

YOLO-ACT
(YOLOv8s)

Open-source dataset of apple leaf
diseases- PlantDoc
and AppleLeaf9

Disease detection Uses cross-layer integration to improve detection accuracy Zhang et al., 2024.

YOLOv8 Roboflow dataset
(Leaf diseases)

Disease detection GOCR EELAN module for enhanced feature extraction and
WSIoU loss function to improve convergence speed and
localization accuracy

Wen et al., 2025.

YOLOv8 Greenhouse vegetable disease
dataset built by collecting
online videos

Disease detection Occlusion perception attention module to diminish
background and HIoU loss function to address regression loss

Wang et al., 2024.

MSAM-YOLO
(YOLOv8)

PlantVillage and other
network datasets

Disease
identification

Multiscale attention mechanism to capture subtle features
of disease

Xie and Ding, 2025

TSBA-YOLO
(YOLOv5)

Custom dataset on Tea leaf
disease created using drone and
mobile photography

Disease detection Feature fusion network and spatial feature fusion to resist
background inference

Lin et al., 2023

YOLOv8 Mixed dataset containing images
collected from the field and
the internet

Detection and
categorization of
tomato fruits

Depthwise separation convolution to reduce computational
complexity and Feature enhancement module to avoid
occlusion due to overlaps in the images

Yang et al., 2023.

YOLOv8n Open source apple leaf disease
dataset -AppleLeaf9

Disease detection C3 Ghost convolution to reduce parameter count and a global
attention mechanism with a bidirectional feature pyramid
network for small lesion detection

Gao et al., 2024.

Pyramid-YOLOv8
(YOLOv8x)

Rice blast disease dataset created
using smartphone

Disease detection Multi attention feature fusion network to enhance
model precision

Cao et al., 2024

CAM-YOLO
YOLOv5)

Lobaro tomato dataset Detection
and classification

Convolutional block attention module and Distance
oversection over union to detect overlapped and small objects

Appe et al., 2023

YOLOv8 Sourced from Kaggle Classification Anchor boxes were added to align with size and shape of
disease patterns

Ghafar et al., 2024

EggplantDet
(YOLOv8)

Custom dataset consisting
images collected by inspection
robots and smartphones

Disease detection FasterNet for efficient feature extraction and Tripple Attention
Mechanism for small object detection

Liu and Wang, 2025

Alpha-ElOU-
YOLOv8
(YOLOv8n)

Custom dataset of rice leaf
disease images

Disease detection Uses EloU and alpha loss function instead of box loss function
to enhance model performance

Trinh et al., 2024

YOLOv8 Custom dataset of tomato leaf
disease images

Disease detection Uses Grouped Depthwise Convolutions and Squeeze and
Excitation blocks to improve model accuracy

Shen et al., 2025
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2.2 Image collection

The photographs were taken in a natural environment using a

Nikon D7500 DSLR camera with 4000 x 6000 pixels resolution and

a Moto g72 smartphone with an image resolution of 3000 x 4000

pixels. The camera was positioned 0.3 to 0.5 m away from the

plants. Images of both healthy and diseased plants were obtained.

Onion plants were photographed in multiple orientations so that

the main features of the disease, such as texture, coloration, shape

and morphology depended on the extent of the damage. Four major

diseases of onion, such as Anthracnose, Twister disease,

Stempylium blight and Purple blotch were the focus of model

development. Figure 1 depicts images of the above-mentioned

diseases taken from the symptomatic onion plants.
2.3 Data preprocessing

From the captured images, 1000 images were chosen to generate

a dataset for this study. Among the 1000 images, 800 images were

equal number of diseased plants infected by Anthracnose,

Stemphylium blight, Purple blotch and Twister disease; and the

remaining 200 images were from healthy onion plants. A computer

vision platform ‘Roboflow’ was used to manually label the disease

symptoms. Roboflow supports various annotation formats

(bounding boxes, polygons, masks, keypoints) for diverse

computer vision tasks (https://roboflow.com/formats). Real-time

collaboration ensures consistent annotations, while pre-labeling

with existing models greatly reduce human effort. The images

were uploaded batch-wise and image annotation was done using

such as bounding box feature. Figure 2 shows the manually

annotated images that were resized to a resolution of 640 x 640.

Data augmentation techniques, such as flipping, rotation and

scaling, were utilized to enhance the dataset and mitigate

overfitting. The images were augmented with a 50% probability of

horizontal flip, and salt-and-pepper noise was applied to 0.1% of the

pixels. After augmentation 1391 images were used for training the

model, 189 for validation and 100 for test.
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2.4 Model training and architecture of
YOLO

The YOLOv8 and YOLOv5 network are similar, consisting

mainly of the backbone, neck and head. YOLO is an object

detection algorithm that can identify and detect objects in an

image. By applying the selected YOLO models to the preprocessed

dataset, these YOLO models will train the data to detect object.

YOLO models were employed for training because of its advanced

capabilities for real-time object detection and superior

performance in terms of speed and accuracy. YOLOv8 is a state-

of-the-art object detection, segmentation, and classification

algorithm developed by Ultralytics. It builds on previous YOLO

versions with improved accuracy, speed, and flexibility. Key

features include anchor-free detection, a dynamic backbone, and

a unified framework for multiple vision tasks. YOLOv8

isoptimized for real-time applications and supports deployment

on edge devices. The training process involved the data pre-

processing methods and the data.yaml file, a configuration file

integral to the YOLOv8 framework, which is programmatically

generated to encapsulate essential metadata about the dataset,

including class labels, directory paths for training, validation, and

testing datasets, as well as the number of instances per class. The

file served as a critical input for the YOLOv8 pipeline, enabling

streamlined preprocessing and facilitating efficient integration of

the model with the dataset during the training process. The

models were fine-tuned over 50 epochs with a batch size of 16,

utilizing the Adam optimizer and a learning rate scheduler for

optimal convergence. Here, Adam optimizer was used since it

enhances YOLOv8 for onion disease detection by handling small,

variable symptoms like browning and lesions. Its adaptive

learning rates help the model adjust to image variations, while

its robustness ensures reliable training even with noisy or

incomplete data. Adam’s fast convergence makes it ideal for

real-time disease detection, enabling timely agricultural

decisions (Ghafar et al., 2024). Figure 3 shows a block diagram

of the training and testing frameworks of the proposed model. The

architecture of a basic object detection model consists of a
FIGURE 1

Images of diseased and healthy onion plants (A) Healthy plant (B) Anthracnose (C) Stemphylium (D) Purple blotch (E) Twister disease.
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backbone, a neck and a head (Figure 4). Meaningful feature

extraction from the input is the responsibility of the backbone,

which is also referred to as a feature extractor. The neck operates

as a bridge between the backbone and the head, executing feature

fusion processes and integrating contextual information. The head

was responsible for producing outputs, bounding boxes, class

predictions, and confidence scores for detected objects. The

primary features of YOLOv5 and YOLOv8 include anchor-free

detection, mosaic data augmentation, C2f module, decoupled

head, and a modified loss function (Sandhya and Kashyap,

2024). Mathematical equations of YOLOv8 are given below:

1. Object detection problem formulation:

Object detection is treated as a regression problem, where the

goal is to predict both the class of an object and its bounding box

from a given input image. Each bounding box represented by four

coordinates
Frontiers in Plant Science 05
    x,  y − coordinates of  center of  bounding  box

w,  h − width and height of  bounding  box,  relative the entire image  

Class prediction: for each bounding box YOLO predict the

probability distribution over the class labels.
C – no of classes,

S – no of cell grid in image,

B – no of bounding boxes per cell.
2. YOLOv8 Architecture:

Backbone: The backbone extracts features from the input image

using a convolutional neural network (CNN). YOLOv8 employs the

CSPDarknet architecture with ELAN (Efficient Layer Aggregation

Networks), which enhances gradient flow and efficiency
FIGURE 2

Annotated images.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1551794
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Raj et al. 10.3389/fpls.2025.1551794
FIGURE 3

Block diagram of the complete flow of YOLOv8 model trained and tested on our dataset.
FIGURE 4

Schematic diagram of yolov8s model.
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F = Backbone(I) (1)

Where F is a feature map, and I is the input image (Equation 1).

Neck: The neck helps in multi-scale feature aggregation and

uses Path Aggregation Network (PAN) which combines features

from different scales for better object detection across various sizes.

F _ neck = Neck(F) (2)

Where F_neck is the feature map passed to the detection head

(Equation 2).

Detection Head: The head predicts object bounding boxes, class

scores, and confidence scores using anchor-free detection approach.

YOLOv8 divides the image into a grid and predicts bounding boxes

and their corresponding class probabilities for each cell.

The output of each cell is vector ½x, y,w, h, p1, p2, p3,…pc�,
Where, x, y,w, h are the bounding box coordinates, pi is the class

probability for class i, C is the number of object classes.

3. Mathematical formulation for YOLOv8

Both YOLOv5 and YOLOv8 follows the regression approach to

predict bounding boxes and class probabilities. The loss function

use to training is a combination of several components:

Bonding Box Loss: The difference between the predicted and

ground truth bounding box coordinates is measure using the IoU

(intersection over Union) loss, typically combined with a smooth

L1 loss.

bpred = (x, y,w, h) predicted bounding box and

bgt = (xgt ,  ygt ,  wgt ,  hgt) corresponding ground truth.

The loss can be written as: during network training, the loss

function is a tool used to represent the difference between predicted

and actual values. It plays crucial role in training of disease

detection models. In YOLOv5s and YOLOv8s multiple loss

functions are combined for training bounding box regression,

classification, and confidence. The loss function use are as follows:

Lossbox =  lcoordoiIobj½(xi − xi,gt)
2 + (yi − yi,gt)

2�

+  lwhoiIobj½(wi − wi,gt)
2 + (hi − hi,gt)

2� (3)

Where, Iobj is the indicator function (equal to 1 if an object is

present, and 0 otherwise), and lcoord , lwh are the weights that

balance different components of the loss (Equation 3).

Classification Loss: YOLOv8 also predict the class probabilities

for each bounding box. The loss for class prediction is computed

using binary cross-entropy

Losscls =   −ocyclslog(pcls) (4)

where ycls is the true class label and pcls is the predicted

probability for the class (Equation 4).

As shown in Equation 5, the total loss is a combination of

classification and box regression losses.

Lossconf = Losscls + Lossbox (5)

4. CIoU (intersection over Union):

The CIoU is a crucial part of the bounding box prediction, and

it measures the overlap between predicted and ground truth boxes.
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Its used to determine whether a predicted bounding box is

considered a correct detection or not.

CIoU =  1 − IoU +  
r2(bcenter , b

gt
center)

C2 + a : υ (6)

Where represents the intersection over Union, is the distance

between the center point of the predicted box and the ground truth

box, c is the diagonal length of the smallest enclosing box covering

both the predicted and ground truth box, υ is the aspect ratio

consistency term and a is the probability coefficient (Equation 6).

dfl =  −on
i=1wilog(pi) (7)

Where wi is the weight usually adjusted according to the

position of the true bounding box. pi is the probability of each

class in the predicted probability distribution (Equation 7).

Convolutional Block Attention Module

Convolutional Block Attention Module (CBAM) is an attention

module for convolutional neural networks. CBAM is simple yet

effective attention module for feed-Forword convolutional neural

networks (Figure 5). Given an intermediate feature map, the

module sequentially infers attention maps along two separate

dimensions, channel and spatial, then the attention maps are

multiplied to the input feature map for adaptive feature

refinement. CBAM combine channel and spatial attention

mechanism, effectively identified the key features in the images

while suppressing irrelevant noise. This dual attention mechanism

notably enhances the accuracy and efficiency of detection (Woo

et al., 2018).

Channel Attention (CAM) identifies “what” features are

important by analyzing channel-wise relationships. It applies both

average and max pooling to capture global context, processes them

through a shared MLP with bottleneck reduction (e.g., reducing

channels by ratio r=16), and generates a channel attention mask via

sigmoid activation. This mask highlights informative channels

while suppressing less relevant ones.

Average Pooling:

Fc
avg =

1
H  �WoH

i=1oW
j=1F

c(i, j) (8)

Output: F_avg (Equation 8)

Max Pooling as shown in Equation 9:

Fc
max = maxFc(i, j) (9)

Shared MLP(Bottelneck): with reduction ratio r:

MLP(Fpool) =  W1   (ReLU(W0Fpool)) (10)

Where: W0 ∈  R(C=r)�C weight for dimension reduction,

W0 ∈  R(C=r)�C weight for dimension restoration (Equation 10).

Combine and Activate:

Sum the MLP outputs and apply sigmoid(s ) to generate the

channel attention mask M_c (Equation 11):

Mc(F) =  s   (MLP(Favg) +   (MLP(Fmax) (11)
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Apply to input features:

F0 = Mc   (F)  ⊗ F (12)

Where: denote ⊗ the element wise multiplication

(Equation 12).

Average pooling capture global context, while max pooling

preservers salient features combine both improves robustness.

Bottleneck (r=16) balances efficiency and effectiveness by

reducing MLP parameters. Sigmoid normalizes the attention

weights to [0,1], acting as a soft feature selection.

Spatial Attention module (SAM) Formulas: spatial attention

module is comprised of a three-fold sequential operation. The first

part of it is called the channel pool, where the input tensor of

dimensions (C×H×W) is decomposed to 2 channels, i.e. (2×H×W),

where each of the two channels represents max pooling and average

pooling across the channels. This serve as the input to the

convolutional layer which output a 1-channel feature map, i.e. the

dimension of output is (1×H×W).
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Given the channel-refined feature map F’ ∈ R^(C×H×W) from

CAM: the spatial attention mechanism follows these steps

Compute average-pooled features across channels as shown in

Equation 13:

F
0
avg =  AvgPoolchannel(F

0 ) ∈ R1�H�W (13)

Equation 14 shows, where each spatial position (i,j) is the mean

of all channels

F
0
avg(i, j) =  

1
C
 oc

c=1F
0
c,i,j (14)

Equation 15 shows compute max-pooled features across channels:

F
0
max =  maxPoolchannel(F

0 ) ∈ R1�H�W (15)

Where each spatial position (i,j) is the maximum across

channels (Equation 16)

F
0
max(i, j) = maxCc=1   F

0
c,i,j (16)
FIGURE 5

Schematic diagram of Yolov8+CBAM.
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Concatenate pooled features

In Equation 17 stack F
0
avg   and F

0
max along the channel

dimension:

F
0
concat = Concat(F

0
avg ,   F

0
max) ∈ R2�H�W (17)

Apply convolution to generate spatial attention pass the

concatenated features through a 7×7 convolutional layer followed

by sigmoid activation

Ms(F
0) =  s   (f7�7(F

0
concat)) ∈ R1�H�W (18)

In Equation 18 Where: f7�7 is a convolution with single output

channel, s   is the sigmoid function, normalizing attention weight

to [0,1]

Apply attention to the refined feature map multiply the spatial

attention map  Ms   with channel-refined feature map F0

F00 = Ms(F
0)  ⊗ F 0 (19)

Where denote ⊗ the element wise multipl icat ion

(Equation 19).

Dynamic Task-Aligned Head (DTAH)

The Dynamic Task-Aligned Head (DTAH) is designed to address

the inherent misalignment between classification and localization task

in object detection (Feng et. al., 2021). Traditional decoupled heads

process these tasks in parallel, leading to discrepancies in feature

learning where classification focuses on discriminative local features,

while localization requires global spatial context for precise bounding

box regression. In domain disease detection, the accuracy of both task

is indispensable. DTAH mitigates this issue through three

key innovation:

1. Task interaction module: A shared feature extractor using

grouped convolutions to explicitly model interactions between

classification and localization tasks. This module generates task aware

features by using multi-level spatial and semantic information, ensuring

that both tasks operate on aligned feature representations.

Finteract =  s   (W2 ∗ReLU(W1 ∗ Fin)) o ̇ Fin (20)

Where in Equation 20:

Fin ∈ RH�W�C Input backbone features.

W1,W2: Grouped convolutional kernels

s : Sigmoid activation for attention gating.

o ̇: Element-wise multiplication.

2. Deformable Localization branch: Incorporates deformable

convolutional (DCN) in the localization pathway to dynamically

adjust receptive fields based on object geometry. This allows the

model to adapt to irregular disease pattern by predicting per pixel

sampling offsets, enhancing boundary precision.

For adaptive spatial sampling, deformable convolutions predict

offsets Dpk for each kernel position pk

Fdeform =ok
k=1wk : Finteract(p + pk + Dpk) (21)

Where in Equation 21: Dpk =Woffset*   Finteract (offset prediction)
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wk: Learnable kernel weights.

3. Unified optimization:

A joint loss function balances classification accuracy and

localization precession with additional alignment loss term that

panelizes spatial mismatches between task specific features.

The total loss combines task specific objectives with an

alignment penalty as shown in Equation 22.

LDTAH =   l1Lcls +   l2Lreg +   l3  jjMcls −  Mreg jj2   (22)

Where:

Lcls: Focal loss classification.

Lreg : Distr ibut ion Foca l Loss (DFL) for bounding

box regression.

Mcls, Mreg   : spatial attention maps from each task.

li: Balancing weights.

The DTAH architecture is implemented as a lightweight yet

powerful replacement for conventional decoupled heads in Figure 6.

Supplementary Figure S1 is visualization of overall architecture of

proposed onion foliar disease detection model based on yolov8

integrated with CBAM (convolutional block attention module) and

DTAH (Dynamic Task-Aligned Head). The diagram shows CBAM

is embedded within the C2f blocks for enhanced feature extraction,

and DTAH is added at the end of improve detection accuracy with

deformable convolutional.
2.5 Model evaluation parameters

F1 Score: To evaluate the detection performance, metrics like

precision, recall, and F1 score are used. For each class:

Precision: The fraction of true positive prediction among all

positive predictions (Equation 23).

Precision =  
TP

TP + FP
(23)

Recall: The fraction of true positive predictions among all actual

positives (Equation 24).

Recall =  
TP

TP + FN
(24)

F1 Score: The harmonic means of precision and recall

(Equation 25):

F1 Score = 2 �  
Precision � Recall 
Precision + Recall

(25)

TP (True Positive) refers to the number of correctly identified

positive samples.

TN (True Negative) refer to the number of correctly identify

negative samples.

FP (False positive) represent the number of negative samples

incorrectly identified as positive.

FN (False Negative) refer to the number of positive sample

incorrectly identified as negative.
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3 Experimental results and analysis

3.1 Dataset distribution

The distribution of the dataset and number of instances were

calculated and the results shown in Figure 7. Figure 7A shows a bar

chart of instances per class. The classes represented were healthy,

Anthracnose, Purple blotch (PB), Stemphylium blight and Twister

disease. The training dataset is well balanced with each class having

comparable number of instances Anthracnose (421), healthy (420), PB
Frontiers in Plant Science 10
(379), Stemphylium blight (420) and twister (416) this balanced class

distribution ensure that no single class dominates the dataset, reducing

the risk of model bias. It enhances the model ability to generalize across

different disease categories, leading to improve training and prediction

accuracy. Figure 7B shows the bounding-box distribution. Distinct

colors were used to depict boxes, which may indicate distinct classes. In

some images, items were frequently found in the center, as indicated by

the overlap and concentration of boxes in the center which could lead

to a central bias in the model. Figures 4C and 7D show a heatmap of

bounding box centers (x, y) and a heatmap of bounding box
FIGURE 6

Schematic diagram of yolov8+DTAH.
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dimensions (width and height) respectively. The heat map shows that

the majority of the objects are situated close to the center of the image,

and the majority of items in the dataset are comparatively small, as

evidenced by the large concentration of bounding boxes with smaller

width and height values. Uniformity in object dimensions could lead to

quicker model convergence but may not generalize well to real-world

data with varied object sizes. The correlogram of the custom dataset

(Supplementary Figure S2) highlights the model’s detection confidence

across image regions. This analysis could help us adjust the parameters

of the object identification model, such as adjusting anchor sizes,

balancing the dataset, or employing data augmentation to lessen the

central bias.
3.2 Training and validation performance
metrics

The performance metrics of the model are shown in Figure 8.

With all training losses such as box, classification, and DFL
Frontiers in Plant Science 11
(Distribution Focal Loss) gradually declining, the improved

YOLOv8s model exhibits learning to predict more precise

bounding box details, suggesting enhanced object localization and

classification on training data. indicating that the model is generally

effective on unseen data. CABM and DTAH attention mechanisms

were applied to improvise overall precision and accuracy in disease

detection by localization of smaller disease spots in the image. Grad

cam heatmaps were adapted for comparative visualization of

detection accuracy (Figure 9). The overall performance

demonstrates that the model is capable of accurate detection

while maintaining sensitivity to true positives. Overall, the model

showed good convergence and encouraging outcomes.
3.3 Model performance measure

The comparative evaluation of various YOLO architectures on

the onion leaf disease detection dataset reveals significant

performance variations across different model configurations
A B

DC

FIGURE 7

Labels and label distribution, (A) Bar Chart of instances per class, (B) Bounding box distribution, (C) Heatmap of bounding box centers, (D) Heatmap
of bounding box dimensions.
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(Figure 10). The dataset comprises five classes (Anthracnose,

Healthy, PB, Stemphylium, Twister) with 189 validation images

containing 257 total instances. The results demonstrate that

YOLOv8 with DTAH achieved the best balance of performance

metrics, attaining the highest mAP50 (0.773) while maintaining

competitive inference speed (8.1ms). however base YOLOv8s model

shows significant improvement over YOLOv5s (+7.5% in mAP50),

and the DTAH modification provides an additional 4% boost in

mAP50. Notably, the DTAH variant achieves the highest recall

(0.727) among all models, indicating better detection capability for

difficult cases (Table 2).

The class-wise mAP50 performance Table 3, Precession recall

curve (Supplementary Figure S3) and normalized confusion matrix

(Figure 11) reveals several important insights about how each

model variant performed across different onion leaf disease

categories. Starting with Anthracnose detection, we observed a

clear progression in performance from the baseline YOLOv5s

(0.620 mAP50) to the enhanced YOLOv8 variants, with the

DTAH modification showing particularly impressive results

(0.786 mAP50) comparatively showing improvement of 17% over

YOLOv5s and 9% over base YOLOv8s. This substantial boost

suggests the deformable attention mechanism in DTAH is

exceptionally well-suited for detecting the irregular lesion patterns

characteristic of Anthracnose. The Healthy class shows more

consistent performance across all models (ranging from 0.716 to

0.784 mAP50), indicating that all architectures can reliably identify

healthy plants, with the CBAM+DTAH attention integrated model

achieving the highest score (0.784).

For PB detection, the base YOLOv8s showed improvement over

YOLOv5s (0.717 vs 0.680), with DTAH providing a modest additional

gain (0.79). Interestingly, the CBAM model showed slightly reduced

performance for this class, suggesting the CBAM attention may be less
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effective for small spot compared to disease patterns. Stemphylium

detection follows a similar pattern, where CABM provides the best

performance (0.742), outperforming even DTAH (0.665).

In contrast, our YOLOv8+DTAH (Dynamic class align head)

modification exhibited superior performance across all metrics,

achieving 77.3% mAP50 with 4.85-6.56% absolute improvement over

the Detectron2 models - while using only 11.1M parameters (69%

fewer than RetinaNet, 75% fewer than Faster R-CNN) Table 4.

Remarkably, this accuracy gain comes with substantially faster

inference speed (123 FPS), making it 1.9-2.8X faster than the

comparative methods. The results demonstrate that the YOLOv8

architecture with DTAH attention mechanisms provides better

feature representation for onion leaf disease detection compared to

traditional two-stage approaches, while maintaining the computational

efficiency crucial for real-world agricultural applications. The

performance advantage is particularly notable given the model’s

compact size, suggesting that the DTAH modification effectively

enhances the network’s capability to recognize varied disease patterns

without requiring larger backbone networks.
4 Discussion

Microclimate alterations across the crop growth cycle greatly

influences productivity and biotic interference in onion crop. Onion

production in Maharashtra has been hampered by diseases such as

Twister-anthracnose complex, Stemphylium blight and Purple

blotch. The twister-anthracnose complex is a devastating disease

in nurseries and bulb crops of onion, which shrink onion yield up to

80-100% (Patil et al., 2018). Purple blotch along with Stemphylium,

affects the leaves and bulbs, culminating in losses up to 97%

(Kareem et al., 2012). Stemphylium causes severe leaf blightening
FIGURE 8

Visual analysis of model evaluation indicators (Precision, recall, and mAP@0.5) during training.
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and incomplete bulb development which results in reduced bulb

size alongside yield loss up to 20% (Correa et al., 2023). Sustainable

technologies such as artificial intelligence, robotics, machine

learning, deep learning etc., can be leveraged to address these

issues effectively by deploying decision support system for timely

implementation of countermeasures. Digital image processing and

unmanned aerial vehicles (UAVs) have been utilized to monitor the

crop and spot trends in biotic and abiotic stress response under

varying scenarios including humid areas, weed growth, deficiency of

vegetation, and poor harvest efficiency in onion farming.

The YOLOv8s Architecture integrated with DTAH attention

mechanism is an Advanced method for object recognition that

evaluates photographs at high speed compared to other deep

learning models. This novel method of image analysis divides an

image into several grid cells and predicts the bounding box

coordinates even for small instances and class probabilities using

a single neural network with better localization of diseased area on

leaf. This results in a faster and more precise disease identification

process by enabling a more efficient and accurate image assessment
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(Zhang et al., 2024). This model manifested highest performance

among five analogous variants of yolo showcasing precision, recall

and mAP50 values of 82%, 72.7% and 77.3% respectively. In similar

context, Lin et al., 2023. Used integrated multiple attention

mechanisms in TSBA-YOLO - an tea leaf disease detection

model-built on base architecture of yolov5 which detected tea leaf

diseases with 85.35% accuracy. In another study, YOLOv7 (YOLO-

T) model build using CBS attention integrated with YOLOv7

resulted in 97.3% detection accuracy while detecting tea leaf

diseases (Soeb et al., 2023). Incorporation of attention

mechanisms has significantly improved precision of leaf disease

detection while reducing possibility of error occurrence because of

variation in disease spot size. (Li et al., 2022; Sun et al., 2023; Wang

and Liu, 2024),)In present study, among the classes, Twister

exhibited the highest performance (Precision: 0.88, Recall: 0.841,

mAP50: 0.848), demonstrating the model’s strong ability to identify

diseased plants. Similarly, PB and Anthracnose showed high

classification accuracy (mAP50: 0.837 and 0.824, respectively),

aligning with findings from prior studies that deep learning
FIGURE 9

Grad CAM heatmap model wise comparison.
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TABLE 2 Comparison of accuracy, precession and recall among yolo models.

Model mAP50 Precision Recall Inference Speed (ms)

YOLOv5s (Base) 0.654 0.665 0.626 9.1

YOLOv8s (Base) 0.729 0.749 0.708 8.4

YOLOv8 + CABM 0.74 0.73 0.7 8.5

YOLOv8 + DTAH 0.772 0.815 0.721 8.1

YOLOv8 + CABM_DTAH 0.75 0.784 0.698 8.9
F
rontiers in Plant Science
 14
TABLE 3 Comparative class wise accuracy.

Class YOLOv5s YOLOv8s YOLOv8+CABM YOLOv8+DTAH YOLOv8+CABM_DTAH

Anthracnose 0.62 0.694 0.74 0.786 0.748

Healthy 0.716 0.741 0.764 0.768 0.784

PB 0.68 0.717 0.649 0.792 0.709

Stemphylium 0.573 0.693 0.74 0.661 0.725

Twister 0.678 0.801 0.811 0.855 0.776
A B

C D

FIGURE 10

(A) Training loss component, (B) Validation mAP50 curve, (C) Precession over epoch curve, and (D)Validation loss componant.
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models perform well in distinct symptom recognition (Mohanty

et al., 2016; Too et al., 2019). However, Stemphylium had the

weakest performance (Precision: 0.854, Recall: 0.585, mAP50:

0.746), with significant misclassification as Purple blotch and

background. This issue could stem from visual similarities among

foliar diseases, as observed in prior research on plant disease

classification (Ferentinos, 2018).

The proposed algorithm effectively detects and identifies onion

diseases by generating an optimal bounding box around the affected

areas. Figure 12. illustrates the results of visualizing the four major

categories of onion diseases, with the bounding box tightly drawn

around the relevant regions. This approach ensures that the training

algorithm learns features exclusively from the affected area within
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the bounding box, enhancing its ability to detect significantly

smaller disease spots accurately. An added advantage of this

method is its high image resolution, which contributes to

precision. An image input size of 640 × 640 pixels achieves the

highest level of accuracy, as larger input dimensions provide more

detailed information (Chen et al., 2023).

In onion disease detection, image-based approaches have

primarily focused on image classification using deep learning

techniques, including convolutional neural networks (CNNs) and

transfer learning models (references). For example, a recent study

by Jahan M. et al. (2024) explored the use of various pre-trained

CNN architectures, including VGG16, VGG19, ResNet50,

InceptionV3, InceptionResNetV2, and MobileNetV2, for

classifying leaf diseases. Their approach involved extracting

hierarchical image features using convolutional and max-pooling

operations, followed by classification layers. The study also

incorporated soft attention and LSTM layers to improve feature

selection and sequential learning.

The primary focus of this study, however, was on the development

of an onion disease object detection model for mobile camera-based

applications aimed at farmers. The proposed YOLOv8-based model
FIGURE 11

Confusion matrix diagram for the proposed YOLOv8 model.
TABLE 4 Results of other advanced algorithms.

Method mAP50 (%) Params (M) FPS

RetinaNet R-50 70.34 36 65

Faster R-CNN R-101 72.05 44 44

YOLOv8+DTAH 77.3 11.1 123
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(YOLOv8s+DTAH) can be seamlessly integrated into both Android

and iOS platforms using cross-platform frameworks like TensorFlow

Lite or PyTorch Mobile. These frameworks enable efficient

deployment of deep learning models on mobile devices. Similar

applications have already been developed for disease detection in

strawberries (Van Tran et al., 2024) and tomatoes (Zeng et al., 2023)

by leveraging model quantization.

In a related study, Chen et al. (2023) proposed a system that

deployed a CNN-based object detection model on mobile devices

using the Keras platform. This system successfully identified and

localized three types of scale pests in images. Our team has already

deployed YOLOv5 within the iSARATHI mobile application for

onion disease detection, providing farmers with actionable disease

management advisories. The YOLOv8 model in this study builds

upon these advancements, forming a key component of a digital

decision support system.

Beyond disease detection, deep learning (DL) and machine

learning (ML) are also being applied to other areas of precision

agriculture, such as weed control, soil health management, robotic

harvesting, and weather analysis. The growing use of DL in

agriculture has gained traction among researchers, with notable

applications including YOLOv7 for weed detection using

Unmanned Aerial Vehicle (UAV)-collected data (Gallo et al.,

2023) and YOLOv8n and Mask R-CNN models for automatic

identification and digital phenotyping in rapeseed (Wang et al.,
Frontiers in Plant Science 16
2023). The proposed onion disease detection model offers farmers a

valuable tool for identifying affected areas, enabling more efficient

disease control and better crop management.
5 Conclusion and future perspective

It is essential to monitor and manage the diseases at the right time

and place for yield optimization in onion crop. A smart disease

detection and identification system could facilitate trimming the yield

gap, in addition to boosting the affluent lifestyle of farmers and

extension workers. this study delivers YOLO-ODD an improved

YOLOv8s model deployable into a smartphone app and detecting

various onion diseases could be a digital guide for farmers. This model

is able to distinguish between healthy and diseased onion classes and

automatically detects four different kinds of diseases in onions. The

approach works with real-world applications and Internet of Things

(IoT) devices. The suggested algorithm can be used in a mobile

application to help farmers getting help for their crops whenever

they need it. This framework is adaptable to other plants and can be

significantly adjusted to cater for additional crop diseases. More study

initiatives could concentrate on gathering data on temperature and

humidity, pathogenic inoculum, soil, and environmental parameters

via various sensors, merging data from multiple sources, and

developing an early warning model for onion plant diseases.
FIGURE 12

Prediction results from an object detection model.
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