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Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) Unité Mixte de Recherche
(UMR) Le Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Castanet-
Tolosan, France
Sunflower, Helianthus annuus L., is a prominent global oilseed crop with rising

cultivation and appeal as a bee-friendly plant by providing abundant floral

resources for pollinators. Mass-flowering crops can increase the availability of

resources, and sunflower is a good opportunity to relieve pollen scarcity during

the late summer in agricultural landscapes. Yet this should be taken with caution

as they also provide a homogeneous source of nutrition. This study aimed to

review and summarize the nutritional profile of sunflower pollen, nectar, bee

bread, and honey, while assessing their effects on bee survival, development, and

health. Furthermore, we present here the general state of knowledge on

additional pollinator syndromes that extend beyond floral resources, including

those influencing pollinator visual and olfactory attraction. We found that while

sunflower pollen’s nutritional quality is questioned due to lower protein and

amino acid deficiencies, its nutrient content, like nectar sugars, had large

variability. Sunflower pollen consumption showed mixed effects on Apis

mellifera and Bombus species, sometimes negatively impacting development

and survival. However, studies have conveyed a positive impact on bee health as

sunflower pollen consistently reduced the infection intensity of the gut parasite,

Crithidia bombi, in Bombus species. This probes the question on defining the

quality of floral resources, emphasizing the need for caution when categorizing

sunflower as a low quality nutritional resource. This review also outlines the

importance of sunflower nectar characteristics (sugar content and volume) and

floral morphology (flower pigmentation and corolla length) on pollinator

foraging preferences. A prominent knowledge gap persists regarding nectar

chemistry and sunflowers’ extensive volatile profile to better understand the

pollination syndromes that drive its pollinator interactions.
KEYWORDS

floral rewards, Helianthus annuus, nectar, plant-pollinator interactions, pollen,
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2025.1552335/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1552335/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1552335/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2025.1552335&domain=pdf&date_stamp=2025-05-01
mailto:husband.salena@gmail.com
https://doi.org/10.3389/fpls.2025.1552335
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2025.1552335
https://www.frontiersin.org/journals/plant-science


Husband et al. 10.3389/fpls.2025.1552335
1 Introduction

Floral resource availability and nutritional composition play an

essential role in pollinators’ development and survival. Our

understanding of bee nutrition and foraging behaviors

encompasses mainly honey bees, Apis mellifera (Haydak, 1970;

Tsuruda et al., 2021; Winston, 1987) and more recently bumble

bees, Bombus spp (Goulson, 2003; Prŷs-Jones and Corbet, 2011).

Less is known regarding the species-specific balance between

macro- and micronutrients and in regards to wild bee species.

The honey bees’ diet consists mainly of pollen and nectar, including

their stored products in the hive known as bee bread and honey.

Pollen and bee bread are the primary sources of nutrition in the

form of proteins, lipids, vitamins, and minerals that are crucial for

normal growth and development, reproduction, brood rearing, and

health (Winston, 1987). Bee bread differs from freshly collected

pollen as it is stored in the hive with the addition of nectar or honey;

various salivary enzymes; and diverse bacterial species, some

responsible for natural fermentation (Ghosh et al., 2022; Winston,

1987). Nectar fulfils the essential energetic resource requirements,

primarily through glucose, fructose, and sucrose needed for

foraging and flight (Winston, 1987). Honey, stored nectar, is

similarly consumed for its carbohydrates. Honey is characterized

by its high sugar concentration (~80%); diverse sugar spectrum

dependent on the nectar’s floral origin; bee-secreted enzymes; and

antibacterial properties (Crane, 1975; Molan, 1992). All bee

collected and processed products might be applied and shared

within the hive for adult bee and larvae medication (self-

medication, allo-medication), which means they are consumed for

disease prevention or therapy, to cure infected individuals or

boosting the immune system (Erler and Moritz, 2016; Erler et al.,

2024). This hypothesis has been proven experimentally for several

cases using honey bees and bumble bees of different species (see

sections 3.1 and 3.3 of this manuscript).

The nutritional breakdown of pollen and nectar, and

subsequently bee bread and honey, varies depending on the plant

species (Pamminger et al., 2019a, b; Stephen et al., 2024). It is under

current debate how to determine a nutritionally balanced diet for

different pollinators (Bryś and Strachecka, 2024; Vaudo et al., 2024),

yet this remains difficult when their specific nutritional

requirements are still uncertain. The traditional concept, basing

the quality of a pollinator’s diet solely on the crude protein and

essential amino acid content, has been scrutinized for general

validity. Rather, it might be essential to consider other factors

such as protein:lipid ratios which may impact foraging decisions

(Vaudo et al., 2020) and stoichiometric ratios of mineral nutrients

(Filipiak et al., 2017). A rising topic in bee health research is the role

of plant secondary metabolites ingested by bees from pollen, nectar,

honey, and bee bread, including alkaloids, polyphenols, terpenoids,

and many others, but our knowledge is limited to honey bees and

bumble bees (Barberis et al., 2023). Secondary metabolites have

shown to boost cognitive functioning (Baracchi et al., 2017) and

immunity (Palmer-Young et al., 2017); or even restrict development

(Rivest et al., 2024). Secondary metabolites can shape insect

immunity against parasites and pathogens (Erler et al., 2024;
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Fitch et al., 2022). These metabolites can have direct effects on

the host's immune system or exert antimicrobial effects

independently, thereby indirectly enhancing insect fitness. We are

just at the beginning of understanding how these metabolites may

interact with pollinators.

It is acknowledged that mono-diets, consisting of a single pollen

source, are not considered well-balanced and social bees need a mix

of plant sources to balance the nutrients that are missing in some

sources, but present in others, to maintain healthy colonies (Alaux

et al., 2010; Di Pasquale et al., 2013, 2016). A mixed pollen diet is

presumable also important for generalist solitary species, however

research is lacking. Modern agricultural practices, monoculture,

and pollen scarcity, especially in late summer, may be a key factor in

the combined stressors impacting seasonal survival and

contributing to pollinator decline (Balvino-Olvera et al., 2024; Di

Pasquale et al., 2016; Dolezal et al., 2019; Donkersley et al., 2014;

Harris et al., 2024; Lau et al., 2023; Requier et al., 2015, 2017; Wright

et al., 2024). Mass-flowering crops can increase the availability of

resources for flower-visiting insects in agricultural environments

(Di Pasquale et al., 2016; Harris et al., 2024; Holzschuh et al., 2013;

Westphal et al., 2003), especially sunflower (Helianthus annuus L.)

which blooms during the critical summer period (Requier et al.,

2015, 2017). The impact of mass-flowering crops should be put into

perspective since they only offer a homogeneous resource over a

limited period (Di Pasquale et al., 2013, 2016; Goulson et al., 2015;

Potts et al., 2010, 2016). This makes it important to understand in

greater detail the nutritional needs of pollinators, the nutritional

value that large-scale flowering crops can provide, and how it may

impact the development and health of pollinators.

Sunflower is one such late-flowering, large scale crop surpassing

29 Mha and seed production reaching 54 million tons in 2022

(FAO, 2024). Across Europe, the share of sunflower production in

agricultural landscapes is primarily in Eastern and Southern

regions, such as Ukraine, Romania, Bulgaria, France, and Spain

(Figure 1). With the increasing demand of sunflower production

and climate change, there is an expected shift in sunflower

production towards Northern European regions. Sunflower

production relies partly or completely on insect mediated pollen

transfer for oilseed, confection and hybrid seed production

(Chabert et al., 2022; Mallinger et al., 2019; Mallinger and

Prasifka, 2017a; Oz et al., 2009). It is known to attract a diversity

of wild and managed bees (references reviewed in Brown and

Cunningham, 2019; Chabert et al., 2022), with higher diversity

observed in North America, which is the native range of the

Helianthus species (Heiser et al., 1969; Kantar et al., 2015;

Mandel et al., 2011; Seiler and Jan, 2010).

Pollination syndromes is a general term used to describe floral

traits mediating interaction between plants and pollinators

(Knudsen and Tollsten, 1993). Pollen and nectar resources are

called ‘rewards’ or ‘primary attractants’ (Armbruster, 2012;

Shivanna, 2014) and as such were shown, with nectar access, to

influence foraging preference in sunflowers; including preferences

for different cultivars (Bergonzoli et al., 2022; Cerrutti and Pontet,

2016; Freund and Furgala, 1982; Mallinger and Prasifka, 2017b;

Tepedino and Parker, 1982), nectar quantity (Mallinger and
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Prasifka, 2017b), nectar sucrose content (Pham-Delègue et al., 1990,

1994; but see Mallinger and Prasifka, 2017b), pollen production

(Mallinger and Prasifka, 2017b), and nectar access through corolla

length (Ferguson et al., 2021; Mallinger and Prasifka, 2017b; Portlas

et al., 2018). Other flower traits are defined as ‘secondary

attractants’, in the sense that they are cues associated with floral

resources innately or through learning by bees (Armbruster, 2012;

Frachon et al., 2021; Knauer and Schiestl, 2015; Ortiz et al., 2021;

Shivanna, 2014; Wright and Schiestl, 2009). Such floral cues were

associated with bee foraging preferences in sunflower, including

floral volatile organic compounds (VOCs) (Pham-Delègue et al.,

1986, 1990) and floral pigmentation (Todesco et al., 2022). This

makes sunflower a particularly interesting crop which has gained

renewed attention to enrich ecosystems by providing plentiful floral

resources for bees in agricultural dominant landscapes. With the

importance of sunflower in agricultural production and the

substantial increase in cultivation, it is important to grasp the

potential nutritional value of sunflower floral resources for

pollinator communities and the pollinator syndromes which

impact sunflower-pollinator interactions.

The aim of this review is to provide a foundation for sunflower

nutritional research for pollinators and summarize the current state of

knowledge on the chemistry of sunflower floral resources (pollen and

nectar) and processed hive products (honey and bee bread). We also

provide a comprehensive overview on targeted sunflower research

investigating floral resource consumption on bee survival,

development, and health. Furthermore, our review encompasses

pollinator syndromes beyond floral rewards, examining additional
Frontiers in Plant Science 03
factors that may shape pollinator attraction and foraging preferences

in sunflowers. By doing so, this review seeks to identify future research

directions and knowledge gaps to improve our understanding of

sunflower plant-pollinator interactions.
2 Chemistry of sunflower floral
resources, bee bread, and honey

2.1 Pollen

Sunflowers are often considered a “low-quality” resource since

the crude protein content falls on the lower scale (Nicolson and

Human, 2013; Pamminger et al., 2019a). Bee collected sunflower

pollen protein content shows large variance ranging from 7.32–19.4

g/100 g, excluding the outlier 0.49 g/100 g from Stephen et al.

(2024). Interestingly, hand-collected pollen had a higher range

(11.6–26.5 g/100 g) (Table 1). In general, Asteraceae species crude

protein has been reported in lower ranges (Vaudo et al., 2024),

between 12–14% (Roulston et al., 2000) and 5.2–23.7% (Vaudo

et al., 2020). In any case, valuing quality based on protein content

alone should be taken with caution as wide ranges for crude protein

values exists even for commonly reported “high-quality” pollen

sources. For example, the crude protein from Brassica spp. pollen

was reported between 22.2–33.8% by Pamminger et al. (2019a) but

only 13.6% by Vaudo et al. (2020).

Amino acid profiles are important to consider in terms of

protein quality. Based on the essential amino acid requirements
FIGURE 1

Share of sunflower cultivation on agricultural land in 2022. Source: Data extracted from European Commission, Joint Research Centre (JRC) (2022),
for sunflower cultivation in EU 27 member states and Ukraine. (doi: 10.2905/555e5d1d-1aae-4320-a716-2e6d18aa1e7c).
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for honey bees detailed in De Groot (1953), sunflower pollen was

reported to have below required amounts of isoleucine, methionine,

and tryptophan; and occasional deficiencies in arginine and

phenylalanine (Table 2). It is not uncommon for pollen to have

deficiencies in one or more amino acids, as it is the case for plant

species within the Fabaceae and Boraginaceae families (Jeannerod

et al., 2022). This review summarized only protein-bound amino

acids to limit variability, since free amino acids may more readily be

influenced or lost by different methods of pollen handling.

Therefore, the amino acid content is not the absolute content

available to bees, as other studies have shown that free amino

acids contribute an additional 3.49–6.06% depending on species

(McAulay and Forrest, 2019). It is also known that amino acids vary

for the same species depending on analysis method (Jeannerod

et al., 2022). Abiotic conditions, such as fertilization levels, were also

found to be positively correlated with total amino acid content in

pollen (Leach et al., 2021). Therefore, values should be interpreted

with caution as the deficient amino acids may not be realistic in all

natural settings, especially when free amino acid availability and

other environmental factors may impact composition.

Pollen lipid content is another important parameter to consider

for bee nutrition. Not all lipids are synthesized endogenously (Arien

et al., 2018; Winston, 1987), therefore it is vital to investigate their

detailed composition obtained in bees’ diets. The lipid content of

bee-collected sunflower pollen (Table 1), is reported within the

range 1.52–8.26%, excluding the outlier 0.34% from Stephen et al.

(2024). Sunflower lipid content falls on the lower end of the typical

range (1.5–24.6%) found in bee-pollinated crops (Vaudo et al.,

2020). Schulz et al. (2000) conducted a detailed analysis of lipid

compounds in sunflower pollen and detailed 35% terpenes and

terpene esters, 17% diketones, 8% fatty acids (primarily 11-

eicosenoic acid), 8% ketols, 12% diols, 4% dioxoalkanoic acids,
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12% esters, 2% alkanes, and 2% others. Only a few studies analyzed,

in detail, the profile of fatty acid content. Sunflower pollen differed

in their distributions of individual fatty acids (Table 3). For

example, stearic acid content was recorded at 1.72% (Nicolson

and Human, 2013), but was also measured at 31.4% (Kostić et al.,

2020). Palmitic acid had a similar variability between studies.

Furthermore, a-linolenic acid, is the predominant unsaturated

fatty acid (20.5–42.1%) found in sunflower pollen. In fact,

sunflower pollen was reported to have a significantly greater

content of linoleic and a-linolenic acid compared to almond and

mixed pollen sources (Yokota et al., 2024). Sterols (i.e., b-sitosterol
and 24-methylene-cholesterol) are another important group as they

are not synthesized endogenously and are required to be ingested

via bees’ pollen diet (Winston, 1987). Farag et al. (1980) identified

the presence of cholesterol, stigmasterol, and b-sitosterol in

sunflower pollen. More specifically, Takatsuto and Omote (1989)

identified isofucosterol (42%), b-sitosterol (20.4%), 24-methylene-

cholesterol (18.1%), 24-methylene-cholestanol (12.5%), and 23-

dehydrocholesterol (4%). They identified six more phytosterols

but they were all less than 1%. More recent studies on sterol

identification and composition are lacking.

In addition to key macronutrients, pollen offers other important

micronutrients, including minerals and plant secondary

metabolites. Mineral nutrients are important molecular

compounds needed for essential roles in physiological function,

and 12 minerals (C, N, P, K, S, Ca, Mg, Na, Zn, Fe, Mn, and Cu)

have been considered as biologically significant elements (Filipiak,

2019; Lau et al., 2022). In total, 17 minerals, including heavy metals,

were reported present in sunflower pollen (Table 4). Most reported

mineral nutrients had a high degree of variability. Ca, K, and P were

consistently reported as major minerals in multiple studies (> 1000

mg/kg), yet they still had ranges varying 2-fold.
TABLE 1 Literature values of compositional parameters reported for Helianthus annuus bee- and hand-collected pollen and bee bread.

H. annuus Pollen Bee bread
References

Pollen Bee bread

Ash
(g/100 g DM)

BC: 1.61–2.01
HC: 3.45/5.59

1.54
BC: Kostić et al., 2020; Nicolson and Human,
2013**; Taha, 2015; Yang et al., 2013

Nicolson and Human, 2013

Carbohydrates
(g/100 g DM)

BC: 45.2–82.0
HC: 17.7–62.6

80.2
BC: Conti et al., 2016; Kostić et al., 2020; Nicolson
and Human, 2013**
HC: Russo et al., 2019; Treanore et al., 2019

Nicolson and Human, 2013

Crude protein
(g/100 g DM)

BC: (0.49*) 7.32–19.4
HC: 11.6–26.5

13.3

BC: Conti et al., 2016; Kostić et al., 2020; Nicolson
and Human, 2013**; Pernal and Currie, 2000;
Stephen et al., 2024; Taha, 2015; Taha et al., 2019;
Tasei and Aupinel, 2008; Vaudo et al., 2020**;
Yang et al., 2013; Zhou et al., 2024
HC: Russo et al., 2019; Treanore et al., 2019

Nicolson and Human, 2013

Lipids
(g/100 g DM)

BC: (0.34*) 1.52–8.26
HC: 7.46–12.5

4.98

BC: Nicolson and Human, 2013**; Stephen et al.,
2024; Taha, 2015; Vaudo et al., 2020**; Zhou et al.,
2024
HC: Russo et al., 2019; Shakya and Bhatla, 2010;
Treanore et al., 2019

Nicolson and Human, 2013

Moisture content
(g/100 g WM)

BC: 17.7–25.0
HC: 6.78/8.36

16.1
BC: Kostić et al., 2020; Nicolson and Human,
2013**; Pernal and Currie, 2000

Nicolson and Human, 2013
When necessary, data was extracted directly from plots using plotdigitizer.com. BC, bee-collected pollen; DM, dry mass; HC, hand-collected pollen; WM, wet mass. *Indicates an outlier;
**Indicates the reference investigated both bee- and hand-collected pollen.
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The composition of plant secondary metabolites in pollen is

becoming a popular topic due to their potential role in plant-

pollinator interactions, bee physiology, and bee health. Sunflower

pollen consists mainly of phenolamides, primarily tricoumaroyl
Frontiers in Plant Science 05
spermidine, a diverse array of flavonoids, and phenolic acids

(Table 5). Among phenolamides, sunflower pollen contains fewer

types overall but is particularly rich in different spermidine isomers,

including high levels of dicoumaroyl spermidine and tricoumaroyl
TABLE 2 Literature values for amino acids reported in Helianthus annuus bee- and hand-collected pollen, bee bread, and honey.

H. annuus:
Amino acids
(g/100 g protein)

Pollen
Bee
bread

Honey
References

Pollen Bee bread Honey

Arginine (3.0)1
BC: 2.56/4.18; 10.5*/16.7*
HC: 4.35/4.38

4.77 0.041; 0.014*/0.057*

BC: McAulay and
Forrest, 2019; Nicolson
and Human, 2013**;
Taha et al., 2019; Yang
et al., 2013

Nicolson and
Human, 2013

Cotte et al., 2004b;
Kečkes ̌ et al., 2013;
Mohammed and
Babiker, 2010

Histidine (1.5)
BC: 4.00/5.66; 6.9*/7.74*
HC: 5.44/5.52

5.75 0.007; 0.011*/0.016*

BC: McAulay and
Forrest, 2019; Nicolson
and Human, 2013**;
Taha et al., 2019; Yang
et al., 2013

Nicolson and
Human, 2013

Cotte et al., 2004b;
Kečkes ̌ et al., 2013;
Mohammed and
Babiker, 2010

Isoleucine (4.0)
BC: 3.04–3.88; 5.1*/14.5*
HC: 3.93/3.95

4.01 0.044; 0.009*

BC: McAulay and
Forrest, 2019; Nicolson
and Human, 2013**;
Taha et al., 2019; Yang
et al., 2013

Nicolson and
Human, 2013

Cotte et al., 2004b;
Mohammed and
Babiker, 2010

Leucine (4.5)
BC: 6.32/6.35; 7.9*/21.7*
HC: 6.35/6.55

6.55 0.051; 0.005/0.031*

BC: McAulay and
Forrest, 2019; Nicolson
and Human, 2013**;
Taha et al., 2019; Yang
et al., 2013

Nicolson and
Human, 2013

Cotte et al., 2004b;
Kečkes ̌ et al., 2013;
Mohammed and
Babiker, 2010

Lysine (3.0)
BC: 4.56–6.29; 7.0*/17.9*
HC: 6.38/6.85

5.98 0.046; 0.007/0.011*

BC: McAulay and
Forrest, 2019; Nicolson
and Human, 2013**;
Taha et al., 2019; Yang
et al., 2013

Nicolson and
Human, 2013

Cotte et al., 2004b;
Kečkes ̌ et al., 2013;
Mohammed and
Babiker, 2010

Methionine (1.5)
BC: 0.24/0.31; 1.2*/7.61*
HC: 0.54

0.27 0.039; 0.004*

BC: McAulay and
Forrest, 2019; Nicolson
and Human, 2013**;
Taha et al., 2019; Yang
et al., 2013

Nicolson and
Human, 2013

Cotte et al., 2004b;
Mohammed and
Babiker, 2010

Phenylalanine (2.5)
BC: 0.76/3.90; 4.6*/15.1*
HC: 3.90/3.91

3.94 0.044; 0.021/0.093*

BC: McAulay and
Forrest, 2019; Nicolson
and Human, 2013**;
Taha et al., 2019; Yang
et al., 2013

Nicolson and
Human, 2013

Cotte et al., 2004b;
Kečkes ̌ et al., 2013;
Mohammed and
Babiker, 2010

Threonine (3.0)
BC: 2.80–4.38; 4.3*/13.2*
HC: 4.29/4.30

4.51 0.040; 0.011/0.038*

BC: McAulay and
Forrest, 2019; Nicolson
and Human, 2013**;
Taha et al., 2019; Yang
et al., 2013

Nicolson and
Human, 2013

Cotte et al., 2004b;
Kečkes ̌ et al., 2013;
Mohammed and
Babiker, 2010

Tryptophan (1.0)
BC: 0.17–1.83; 3.61*/7.0*
HC: 0.26

0.14 0.002*

BC: McAulay and
Forrest, 2019; Nicolson
and Human, 2013**;
Taha et al., 2019; Yang
et al., 2013

Nicolson and
Human, 2013

Cotte et al., 2004b

Valine (4.0)
BC: 4.17–5.46; 6.4*/17.8*
HC: 4.33/4.63

4.44 0.049; 0.006/0.013*

BC: McAulay and
Forrest, 2019; Nicolson
and Human, 2013**;
Taha et al., 2019; Yang
et al., 2013

Nicolson and
Human, 2013

Cotte et al., 2004b;
Kečkes ̌ et al., 2013;
Mohammed and
Babiker, 2010
When necessary, data was extracted directly from plots using plotdigitizer.com. BC, bee-collected pollen; HC, hand-collected pollen. 1Number in parenthesis represent the minimal requirements
for honey bees based on De Groot (1953); *Units (µg/mg) **Indicates the reference investigated both bee- and hand-collected pollen.
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spermidine (Qiao et al., 2023; Zhang et al., 2022). Flavonoids and

phenolic acids are other major groups of metabolites present in

sunflower pollen, particularly compounds such as apigenin,

luteolin, kaempferol, quercetin glycosides, ferulic acid, and p-

coumaric acid have been consistently reported (Table 5). In

diverse samples of pollen from various floral resources, flavonoids

accounted for more than half of the 467 total polyphenols

(Rocchetti et al., 2019), and the predominant flavonoids between

different floral pollen samples were mainly quercetin, isorhamnetin,

and kaempferol glycosides (Qiao et al., 2023). It is important to keep

in mind that the overview presented in this review does not indicate

the specific isomers of each metabolite present. In fact, Qiao et al.

(2023) found that the phenolics and flavonoids present were always
Frontiers in Plant Science 06
cis/trans isomers and not in the free form. Whether this may have

an impact on biological activity of these metabolites and may

further influence plant-pollinator interactions is beyond the scope

of this review. However, it is an interesting question that could arise

when understanding the full picture of nutrition combined with

how chemical variances could impact managed and wild bees’

foraging preferences.

In general, both macro- and micronutrients in sunflower pollen

is highly variable, making it difficult to establish a complete picture

of its nutritional profile. Inconsistency exists between studies and

could be due to differences in methods used for chemical analysis

(e.g., Westreich and Tobin, 2021), pollen handling and storage,

intraspecific variation, and/or due to an environmental × genotype
TABLE 3 Literature values for fatty acids reported in Helianthus annuus bee- and hand-collected pollen and bee bread.

H. annuus: Pollen Bee bread
References

Pollen Bee bread

TFA
(µg/mg)

BC: 37.1
HC: 24.2–124

BC: Nicolson and Human, 2013**
HC: Ferguson et al., 2024

EFA
(µg/mg)

HC: 26.9–51.3 HC: Ferguson et al., 2024

SFA (% of total FA)

Heneicosanoic BC: 17.1 BC: Kostić et al., 2020

Lauric
BC: 2.94/33.2
HC: 29.4/35.0

28.7
BC: Nicolson and Human, 2013**; Yang
et al., 2013

Nicolson and Human, 2013

Myristic
BC: 1.17/4.60
HC: 5.27/7.93

5.20
BC: Nicolson and Human, 2013**; Yang
et al., 2013

Nicolson and Human, 2013

Palmitic
BC: 12.5–43.8
HC: 21.2–23.0

26.0

BC: Kostić et al., 2020; Nicolson and Human,
2013**; Yang et al., 2013
HC: Lin and Mullin, 1999; Shakya and
Bhatla, 2010

Nicolson and Human, 2013

Pentadecanoic BC: 18.24 BC: Kostić et al., 2020

Stearic
BC: 1.72–31.4
HC: 1.96–5.06

2.12

BC: Kostić et al., 2020; Nicolson and Human,
2013**
HC: Lin and Mullin, 1999; Shakya and
Bhatla, 2010

Nicolson and Human, 2013

UFA (% of total FAs)

a-Linolenic
BC: 20.5–42.1
HC: 16.9–22.9

19.9

BC: Kostić et al., 2020; Nicolson and Human,
2013**; Yang et al., 2013
HC: Lin and Mullin, 1999; Shakya and
Bhatla, 2010

Nicolson and Human, 2013

Eicosenoic
BC: 7.25
HC: 5.78–10.5

7.38
BC: Nicolson and Human, 2013**
HC: Shakya and Bhatla, 2010

Nicolson and Human, 2013

Lignoceric HC: 2.63 HC: Shakya and Bhatla, 2010

Linoleic
BC: 4.45–11.9
HC: 3.57–19.7

4.80

BC: Nicolson and Human, 2013**; Yang et al.,
2013
HC: Lin and Mullin, 1999; Shakya and
Bhatla, 2010

Nicolson and Human, 2013

Oleic
BC: 4.10–5.87
HC: 4.06–13.3

5.91

BC: Nicolson and Human, 2013**; Yang et al.,
2013
HC: Lin and Mullin, 1999; Shakya and
Bhatla, 2010

Nicolson and Human, 2013
When necessary, data was extracted directly from plots using plotdigitizer.com. BC, bee-collected pollen; EFA, essential fatty acids; FA, fatty acids; HC, hand-collected pollen; SFA, saturated fatty
acids; TFA, total fatty acids; UFA, unsaturated fatty acids. **Indicates the reference investigated both bee- and hand-collected pollen.
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TABLE 4 Literature values for mineral content in Helianthus annuus bee- and hand-collected pollen and honey.

H. annuus:
Minerals (mg/kg)

Pollen Honey
References

Pollen Honey

Ag 0.015 Oroian et al., 2015

Al 0.998–13.56
Ördög et al., 2017; Oroian et al., 2015;
Sahinler et al., 2009

As 0.005/0.034 Ördög et al., 2017; Oroian et al., 2015

B HC: 73.57–116.0 9.470 HC: Filipiak et al., 2022 Ördög et al., 2017

Ba 0.022/0.349 Oroian et al., 2015; Sahinler et al., 2009

Be 0.001 Oroian et al., 2015

Ca
BC: 1400–2086
HC: 2059–3264

54.28–163.9
BC: Pernal and Currie, 2000; Stanciu
et al., 2011; Taha, 2015
HC: Filipiak et al., 2022

Oroian et al., 2015; Pătruică et al., 2022;
Sakač et al., 2019; Tantidanai-Sungayuth
et al., 2012

Cd 0.0001–0.061
Ördög et al., 2017; Oroian et al., 2015;
Pătruică et al., 2022; Sahinler et al., 2009

Co HC: 0.012–0.092 0.002–0.010 HC: Filipiak et al., 2022
Ördög et al., 2017; Oroian et al., 2015;
Sahinler et al., 2009

Cr HC: 0.036–0.177 0.003–0.108 HC: Filipiak et al., 2022
Oroian et al., 2015; Pătruică et al., 2022;
Sahinler et al., 2009

Cs 0.007 Oroian et al., 2015

Cu
BC: 6.970/10.00
HC: 17.04–197.2

0.025–5.037
BC: Pernal and Currie, 2000; Taha, 2015
HC: Filipiak et al., 2022

Ördög et al., 2017; Oroian et al., 2015;
Pătruică et al., 2022; Sahinler et al., 2009

Fe
BC: 27.42–343.5
HC: 24.57–211.7

0.143–24.01
BC: Pernal and Currie, 2000; Stanciu
et al., 2011; Taha, 2015
HC: Filipiak et al., 2022

Ördög et al., 2017; Oroian et al., 2015;
Pătruică et al., 2022; Sahinler et al., 2009;
Sakač et al., 2019

Ga 0.021 Oroian et al., 2015

K
BC: 2900–6233
HC: 3901–7970

21.89–849.4
BC: Pernal and Currie, 2000; Stanciu
et al., 2011; Taha, 2015
HC: Filipiak et al., 2022

Ördög et al., 2017; Oroian et al., 2015;
Pătruică et al., 2022; Sahinler et al., 2009;
Sakač et al., 2019; Tantidanai-Sungayuth
et al., 2012

Li 13.68 Oroian et al., 2015

Mg
BC: 376.9–2705
HC: 711.6–1070

2.700–63.77
BC: Pernal and Currie, 2000; Stanciu
et al., 2011; Taha, 2015
HC: Filipiak et al., 2022

Ördög et al., 2017; Oroian et al., 2015;
Pătruică et al., 2022; Sahinler et al., 2009;
Sakač et al., 2019; Tantidanai-Sungayuth
et al., 2012

Mn
BC: 12.00/18.77
HC: 24.70–36.42

0.038–1.001
BC: Pernal and Currie, 2000; Taha, 2015
HC: Filipiak et al., 2022

Ördög et al., 2017; Oroian et al., 2015;
Pătruică et al., 2022; Sahinler et al., 2009

Mo 0.010 Ördög et al., 2017

Na
BC: 46.00–6345
HC: 7.958–33.66

8.049–154.1
BC: Pernal and Currie, 2000; Taha, 2015
HC: Filipiak et al., 2022

Oroian et al., 2015; Pătruică et al., 2022;
Sahinler et al., 2009; Tantidanai-
Sungayuth et al., 2012

Ni HC: 0.018–0.246 0.003–0.202 HC: Filipiak et al., 2022
Ördög et al., 2017; Oroian et al., 2015;
Pătruică et al., 2022; Sahinler et al., 2009

P
BC: 2500
HC: 4952–5933

0.0001
BC: Pernal and Currie, 2000
HC: Filipiak et al., 2022

Sahinler et al., 2009

Pb 0.040–0.131
Ördög et al., 2017; Oroian et al., 2015;
Pătruică et al., 2022

Rb 1.097 Oroian et al., 2015

S BC: 1600 BC: Pernal and Currie, 2000

(Continued)
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interaction of the pollen producing plant. For example, pollen

protein content of Brassica varied from 8.9–31.3% depending on

if the pollen was intact or disrupted (Lau et al., 2022). Additionally,

a meta-analysis by Ruedenauer et al. (2019), found that variation of

pollen nutrients did not clearly correlate with phylogenetic

relatedness. Zimmermann et al. (2017) found that pollen of Poa

alpina and P. hybrida had higher levels of proteins and P. hybrida

had higher carbohydrates in warmer compared to colder climates.

Ultimately, with more extensive and reliable chemical analysis and

synergistic protocols (e.g., Villagómez et al., 2023), future research

could address if a unique physiochemical profile for sunflower

pollen in different locations and cultivars could be determined.

This would be immensely beneficial to predict the nutritional

availability in sunflower cultivation environments for neighboring

pollinator populations.
2.2 Nectar

Nectar chemistry studies are largely focused on sugar contents,

as sugar is one of the major attractants to pollinators and is the

primary energy source for foraging bees. Sunflower nectar volume

and sugar mass per floret are strikingly variable across studies.

Nectar volume was reported to range from 0.002–0.59 ml/floret in
the staminate (male) floret stage and from 0.00–1.13 ml/floret in the

pistillate (female) floret stage (Table 6). Sugar mass was also

reported to range from 34.0–216 mg sugar/floret in the staminate

stage and from 23.3–491 mg sugar/floret in the pistillate stage

(Table 6). In terms of individual sugars, sunflower nectar is

generally characterized by higher glucose (46.0–50.1%) and

fructose (49.9–54.0%), and lower sucrose contents, yet some

genotypes have exhibited high sucrose contents reaching up to

62% (Aquino et al., 2021; Mallinger and Prasifka, 2017b; Pham-

Delègue et al., 1990, 1994; Prasifka et al., 2023; Vear et al.,

1990) (Table 6).

High variance reported for nectar volume and sugar content

comes with no surprise as many studies have suggested that these

characteristics are strongly influenced by abiotic factors and

genotype. Studies have shown that floret stage (staminate vs.
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pistillate) (Chabert et al., 2020; Hadisoesilo and Furgala, 1986),

vapor pressure deficit (Chabert et al., 2020), time of day (Chabert

et al., 2020; Neff and Simpson, 1990; Thakur et al., 2005),

temperature (Chabert et al., 2020; Prasifka et al., 2023), and

fertilization treatment (Bergonzoli et al., 2022) can impact nectar

volume and/or sugar concentration. Furthermore, during a long

term evaluation of sunflower hybrids (2002–2010), Terzić et al.

(2017) found that the growing condition caused the largest

variation in nectar production. Nectar extraction, whether by

centrifugation, washing method, or microcapillary method, is also

suggested to influence nectar volume and sugar concentration, in

which all three methods were conducted in the literature for

sunflower nectar extraction (Table 6). For example, Mesquida

et al. (1988) compared centrifugation and micropipette extraction

for Brassica napus and found centrifugation artificially diluted the

nectar samples by 4 to 6 times.

It is known that nectar contains many non-sugar metabolites,

such as amino acids, lipids, vitamins, minerals, plant secondary

metabolites, hormones, and proteins (Roy et al., 2017). Sunflower

nectar chemistry in terms of non-sugar metabolites is lacking. It is

not new knowledge that nectar contains amino acids (Baker and

Baker, 1973). To the best of our knowledge, only one study

identified the amino acid phenylalanine in sunflower nectar

(Palmer-Young et al., 2019) and only a few studies investigated

the secondary metabolite composition, in which they found various

alkaloids, flavonoids, and terpenoids (Gekière et al., 2022; Palmer-

Young et al., 2019) (Table 5). Noticeably, Helianthus nectar had a

relatively high concentration of alkaloids compared to the other

nectar sources (Palmer-Young et al., 2019). The composition of

different secondary metabolites among plant structures has been

found to vary. Palmer-Young et al. (2019) found that among nectar,

flower, and pollen sources from 26 floral species, nectar contained

the highest proportion of free amino acids and terpenoids.

Nonetheless, it is important to emphasize that total amino acid

content is still far higher in pollen (Nicolson, 2022) and some non-

sugar metabolites in nectar might result from pollen contamination.

However, Palmer-Young et al. (2019) reported that 18% of the

metabolites in nectar were unique from those found only in pollen

or shared between pollen and nectar. This presents an intriguing
TABLE 4 Continued

H. annuus:
Minerals (mg/kg)

Pollen Honey
References

Pollen Honey

Se 0.014/0.045 Ördög et al., 2017; Oroian et al., 2015

Sr HC: 1.009–5.934 0.351 HC: Filipiak et al., 2022 Oroian et al., 2015

Tl 0.002 Oroian et al., 2015

U 0.001 Oroian et al., 2015

V HC: 0.014–0.068 0.795 HC: Filipiak et al., 2022 Oroian et al., 2015

Zn
BC: 31.61/37.00
HC: 57.28–144.3

0.038–3.241
BC: Pernal and Currie, 2000; Stanciu
et al., 2011; Taha, 2015
HC: Filipiak et al., 2022

Ördög et al., 2017; Oroian et al., 2015;
Pătruică et al., 2022; Sahinler et al., 2009;
Sakač et al., 2019; Tantidanai-Sungayuth
et al., 2012
BC, bee-collected pollen; HC, hand-collected pollen.
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TABLE 5 Identified plant secondary metabolites reported in the literature from Helianthus annuus pollen, nectar, and honey.

H. annuus metabolites Pollen Nectar Honey

l., 2019

Emin Duru et al., 2023

Mattonai et al., 2016; Milosavljević et al., 2021

Bobis ̧ et al., 2021; Kečkes ̌ et al., 2013; Milosavljević et al.,
2021; Oroian and Sorina, 2017; Tomás-Barberán
et al., 2001

Bobis ̧ et al., 2021; Kečkes ̌ et al., 2013; Milosavljević et al.,
2021; Oroian and Sorina, 2017
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A) Phenolamides

acylated putrescine Palmer-Young et al., 2019 Palmer-Young et al., 2019

dicoumaroyl putrescine Qiao et al., 2023

dicoumaroyl spermidine Kyselka et al., 2018

dicoumaroyl feruloyl spermidine Gekière et al., 2022 Gekière et al., 2022

tricoumaroyl spermidine
Adler et al., 2020; Gekière et al., 2022; Kyselka et al.,
2018; Li et al., 2021; Lin and Mullin, 1999; Palmer-Young
et al., 2019; Qiao et al., 2023

Gekière et al., 2022; Palmer-Young et a

triferuloyl spermidine Khongkarat et al., 2022

tetracoumaroyl spermine Gekière et al., 2022; Li et al., 2021; Qiao et al., 2023 Gekière et al., 2022

tricoumaroyl feruloyl spermine Gekière et al., 2022 Gekière et al., 2022

B) Polyphenols

i. Flavonoids

a. Anthocyanins Sharma, 2019

b. Flavan-3-ols

catechin

c. Flavanones

eriodictyol Kostić et al., 2019

naringenin Kostić et al., 2019

pinocembrin

d. Flavanonols

taxifolin Kostić et al., 2019

e. Flavones

acacetin Kostić et al., 2019

apigenin Fatrcová-Šramková et al., 2016; Kostić et al., 2019
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TABLE 5 Continued

H. annuus metabolites Pollen Nectar Honey

Bobis ̧ et al., 2021; Kečkes ̌ et al., 2013; Milosavljević et al.,
2021; Oroian and Sorina, 2017; Tomás-Barberán
et al., 2001

Bobis ̧ et al., 2021; Kečkes ̌ et al., 2013; Oroian and Sorina,
2017; Tomás-Barberán et al., 2001

Bobis ̧ et al., 2021; Kečkes ̌ et al., 2013; Milosavljević et al.,
2021; Oroian and Sorina, 2017

Milosavljević et al., 2021; Oroian and Sorina, 2017

Bobis ̧ et al., 2021; Kečkes ̌ et al., 2013; Milosavljević et al.,
2021; Oroian and Sorina, 2017

Bobis ̧ et al., 2021; Emin Duru et al., 2023; Kečkes ̌ et al.,
2013; Milosavljević et al., 2021; Oroian and Sorina, 2017;
Tomás-Barberán et al., 2001

Emin Duru et al., 2023; Kečkes ̌ et al., 2013

Emin Duru et al., 2023; Oroian and Sorina, 2017

Bobis ̧ et al., 2021; Dimitrova et al., 2007; Kečkes ̌ et al.,
2013; Kunat-Budzyńska et al., 2023; Milosavljević et al.,
2021; Oroian and Sorina, 2017; Tomás-Barberán
et al., 2001
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B) Polyphenols

chrysin

genkwanin Kostić et al., 2019

luteolin
Fatrcová-Šramková et al., 2016; Kostić et al., 2019; Li
et al., 2021

f. Flavonols

galangin Kostić et al., 2019

isorhamnetin Kostić et al., 2019

isorhamnetin-3-o-glucoside Kostić et al., 2019

isorhamnetin-3-o-rutinoside Kostić et al., 2019

kaempferol Kostić et al., 2019; Li et al., 2021; Sharma, 2019

quercetin
Fatrcová-Šramková et al., 2016; Kostić et al., 2019; Li
et al., 2021; Sharma, 2019

quercetin-3-o-galactoside Kostić et al., 2019

quercetin-3-o-glucoside Lin and Mullin, 1999; Qiao et al., 2023

quercetin-o-glycoside Palmer-Young et al., 2019 Palmer-Young et al., 2019

quercetin-3-o-hexoside Adler et al., 2020

quercetin-(o-malonyl)-glycoside Palmer-Young et al., 2019 Palmer-Young et al., 2019

quercetin-3-o-(6-o-malonyl)-hexoside Adler et al., 2020

quercetin-3-o-rhamnoside Kostić et al., 2019

quercetin-3-o-rutinoside Kostić et al., 2019

myricetin Li et al., 2021

ii. Phenolic acids

caffeic acid Kostić et al., 2019
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H. annuus metabolites Pollen Nectar Honey

Bobis ̧ et al., 2021; Emin Duru et al., 2023; Kečkes ̌ et al.,
2013; Milosavljević et al., 2021

Dimitrova et al., 2007

Emin Duru et al., 2023

Bobis ̧ et al., 2021; Dimitrova et al., 2007; Emin Duru
et al., 2023; Kečkes ̌ et al., 2013; Kunat-Budzyńska et al.,
2023; Mattonai et al., 2016; Milosavljević et al., 2021;
Oroian and Sorina, 2017; Tomás-Barberán et al., 2001

Dimitrova et al., 2007; Emin Duru et al., 2023; Mattonai
et al., 2016; Tomás-Barberán et al., 2001

Emin Duru et al., 2023; Kečkes ̌ et al., 2013; Oroian and
Sorina, 2017

Bobis ̧ et al., 2021; Dimitrova et al., 2007; Emin Duru
et al., 2023; Mattonai et al., 2016; Milosavljević
et al., 2021

Emin Duru et al., 2023

Emin Duru et al., 2023

Dimitrova et al., 2007

Bobis ̧ et al., 2021; Dimitrova et al., 2007; Emin Duru
et al., 2023; Kečkes ̌ et al., 2013; Milosavljević et al., 2021

Emin Duru et al., 2023

Dimitrova et al., 2007; Kunat-Budzyńska et al., 2023

Emin Duru et al., 2023; Milosavljević et al., 2021

Emin Duru et al., 2023

Emin Duru et al., 2023

Bobis ̧ et al., 2021; Tomás-Barberán et al., 2001
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B) Polyphenols

chlorogenic acid

cinnamic acid

o-coumaric acid

p-coumaric acid Kostić et al., 2019; Kyselka et al., 2018

ferulic acid Kostić et al., 2019; Kyselka et al., 2018

gallic acid

p-hydroxybenzoic acid

p-hydroxyphenylacetic acid

p-hydroxyphenylethanol

neochlorogenic acid Kostić et al., 2019

phenylacetic acid

protocatechuic acid Kostić et al., 2019

rosmarinic acid

syringic acid

vanillic acid

vanillin

iii. Others

aesculin Kostić et al., 2019

coumarin

phloretin Kostić et al., 2019

pinobanksin
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question regarding these unique nectar metabolites and whether

they play a specific role in plant-pollinator interactions. This topic is

almost unexplored for sunflower nectar.

Nectar is a complex topic, which is likely why we have yet to

fully understand the extent of its components, mechanisms that

govern its chemistry, and subsequent impacts on ecological

interactions. Nectar chemistry contains more than just macro-

and micronutrients, but it also contains nectar specific proteins

(nectarins) in which a majority play key antimicrobial roles for

nectar protection (Heil, 2011; Nepi, 2017; Roy et al., 2017).

Recently, using LC-MS/MS-based comparative proteomic

analysis, 144 proteins were identified in nectar of various species

of Nicotiana (Silva et al., 2020). This study exemplifies how vast

protein diversity is in nectar. They also found several proteins in

nectar with roles in metabolic processes, such as regulating organic

acids (malate dehydrogenase) and carbohydrate metabolism

(sucrose synthase, fructokinase, and a-galactosidase). Thus,

proteins in nectar impact its chemistry, which may influence its

nutritional value for pollinators. Refocusing on sunflowers,

unfortunately, no studies have identified or described their nectar

proteins. Therefore, this would be an essential addition to the

comprehensive view on the nutritional aspects of its floral

resources and sunflower-pollinator interactions.
2.3 Bee bread

When considering honey bee nutrition, it is important to

address both raw and processed floral resources. Sunflower bee

bread is relatively understudied and only one study addressed its

compositional parameters (Table 1), amino acids (Table 2), and

fatty acids (Table 3) compared to fresh pollen. For example,

Nicolson and Human (2013) found a significantly higher arginine

concentration in bee bread, while all other macronutrient properties

remained unchanged. In a separate study, Kaplan et al. (2016)

analyzed sunflower bee bread and the protein content was 24.26 g/

100 g, which falls on the higher end of pollen crude protein content.

However, their bee bread samples contained only 45.4% H. annuus

pollen. Whether the pollen nutritional value changes throughout

the storage process is still controversial. Studies have shown no

nutritional value differences (Herbert and Shimanuki, 1978;

Fernandes-da-Silva and Serrão, 2000) or slightly decreased

nutrition (Mayda et al., 2020). These studies did not compare

fresh pollen and bee bread from the same plant source or

sometimes failed to indicate the botanical origin, which is

important to consider when discussing nutritional variance.

Recently, Bayram et al. (2021) compared pollen and bee bread

from similar plant sources and found a significantly higher

concentration of protocatechuic acid, 2,5-dihydroxybenzoic acid

and kaempferol in bee bread. Whereas, Degirmenci et al. (2024) and

Mayda et al. (2020) found that the total phenolic content decreased.

To the best of our knowledge, no studies have investigated mineral

compounds and plant secondary metabolites specifically for

sunflower bee bread. Similar to pollen content, it can be inferred

that many factors can impact its chemical composition; for
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TABLE 6 Literature values for volume and sugar characteristics of nectar collected from different floret stages (staminate, pistillate, or not specified)
of Helianthus annuus.

H. annuus: Staminate Pistillate Not specified
References

Staminate Pistillate Not specified

Nectar volume
(ml/floret)

(I) 0.002–0.59
(I) 0.00–0.34
(II) 0.71–1.13

(I) 0.08–0.37; 0.10–0.78*
(II) 0.02–0.16

(I) Chabert et al., 2020;
Neff and Simpson, 1990;
Vear et al., 1990

(I) Mallinger and
Prasifka, 2017b; Neff
and Simpson, 1990;
Prasifka et al., 2023
(II) Hadisoesilo and
Furgala, 1986

(I) Atlagić et al., 2003*;
Ion et al., 2007;
Joksimović et al., 2003*;
Pham-Delègue et al.,
1991; Zajácz et al., 2006
(II) Tepedino and
Parker, 1982

Sugar mass1

(mg sugar/floret)
(I) 34.0–216
(III) 76.0

(I) 23.3–92.4
(II) 303–491

(I) 40.0–250
(II) 7.32–69.0
(III) 258–740

(I) Chabert et al., 2020;
Vear et al., 1990
(III) Thakur et al., 2005

(I) Mallinger and
Prasifka, 2017b
(II) Hadisoesilo and
Furgala, 1986

(I) Ion et al., 2007; Neff
and Simpson, 1990;
Pham-Delègue et al.,
1991; Zajácz et al., 2006
(II) Tepedino and
Parker, 1982
(III) Bergonzoli et al.,
2022; Jocković
et al., 2025

Sugar content
(°Brix)

(I) 14.6–50.1
(I) 58.5–65.6
(II) 33.5–47.3

(I) 17.8–71.7
(II) 32.0–39.0

(I) Chabert et al., 2020
(I) Prasifka et al., 2023
(II) Hadisoesilo and
Furgala, 1986

(I) Aquino et al., 2021;
Ion et al., 2007; Pham-
Delègue et al., 1991;
Zajácz et al., 2006
(II) Tepedino and
Parker, 1982

Sugar spectrum (%)

Glucose (I) 46.0–50.1
(I) 16.5–59.0
(III) 23.3–45.6

(I) Vear et al., 1990

(I) Abrol and Kapil,
1991; Aquino et al.,
2021; Neff and Simpson,
1990
(III) Bergonzoli et al.,
2022; Jocković
et al., 2025

Fructose (I) 49.9–54.0
(I) 9.58–46.6
(III) 43.9–53.0

(I) Vear et al., 1990

(I) Abrol and Kapil,
1991; Aquino et al.,
2021; Neff and Simpson,
1990
(III) Bergonzoli et al.,
2022; Jocković
et al., 2025

Sucrose (I) 0.00–1.80 (I) 0.53–62.14
(I) 4.30–66.7
(III) 1.35–2.91

(I) Vear et al., 1990
(I) Mallinger and
Prasifka, 2017b; Prasifka
et al., 2023

(I) Abrol and Kapil,
1991; Aquino et al.,
2021; Neff and Simpson,
1990
(III) Bergonzoli et al.,
2022; Jocković
et al., 2025

Raffinose (III) 2.70–6.93
(III) Bergonzoli
et al., 2022

Mannitol (III) n.d.–15.5
(III) Bergonzoli
et al., 2022

Oligosaccharides
(DP4 and DP5)

(III) 9.69–15.3
(III) Bergonzoli
et al., 2022
F
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Nectar collected by (I) capillary method, (II) centrifugation, and (III) washing method.
When necessary, data was extracted directly from plots using plotdigitizer.com. n.d., not detectable; DP4 and DP5: polysaccharides with 4 or 5 sugar units. 1To obtain comparable sugar
concentration values, sugar mass was calculated based on the equation M = V·C·(0.000046·C + 0.009946) (Cruden and Hermann, 1983), where M = sugar mass in µg (or mg), V = nectar volume
in nL (or µL) and C = sugar concentration in g/100 g (or °Brix). *Units (mg/floret).
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example, botanical origin, geographic location, climate, abiotic and

biotic stressors, bee bread fermentation length, season, and even the

presence and composition of the microbiome communities. There

remains a significant gap in research comparing the compositional

differences between pollen and bee bread and most research

regarding such resource compositions are viewed through the

human perspective. Whether these differences make raw or stored

resources more nutritious for pollinators, especially bees, remains

relatively unexplored.
2.4 Honey

Inside the honey bee hive, the conversion of nectar to honey

offers many advantages as a stored energy and nutrient source. It

serves to maintain colonies though the winter months and aids

nurse bees with an in-hive source for their own care and for feeding

the larval brood (Crane, 1975; Winston, 1987). When classifying

honey, it is of course important to consider both the chemical and

physical properties and potentially one of the most important

factors is the nectar chemistry from where it originates (Crane,

1975). It is critical to consider that physicochemical properties of

honey differ based on natural variation; thus the entire physical and

chemical picture of honey are matched to the ‘ideal reference model’

of that botanical source (Persano Oddo and Bogdanov, 2004). The

reference model of classifying honey has further challenges as the

legislation for honey criteria and standards depend on the country

(Thrasyvoulou et al., 2018). Sunflower honey has generally been

described as having high glucose content (Cotte et al., 2004a; Juan-

Borrás et al., 2014; Persano Oddo et al., 1995; Persano Oddo and

Piro, 2004), proline, and acidity values (Persano Oddo and Piro,

2004). Pollen content of sunflower honey was also found with

extreme variability from 20–90% (Persano Oddo and Piro, 2004).

However, this could be explained by country regulation as Germany

requires > 50% pollen content, whereas Greece requires > 20%

(Thrasyvoulou et al., 2018).

In general, based on our compilation of sunflower honey

studies, the general sugar content ranged from 73.1–80.8% and

sixteen different sugars have been identified (Table 7). Threonine

(Cotte et al., 2004b) and phenylalanine (Kečkes ̌ et al., 2013) were
also reported higher in sunflower honey compared to other honey

types (Table 2), and K and Mg were higher compared to rapeseed

and black locust honeys (Ördög et al., 2017) (Table 4). In contrast to

pollen, nectar, and bee bread, many studies have investigated the

specific secondary metabolites found in sunflower honey. The

metabolite profile is diverse, primarily consisting of polyphenols,

specifically flavonoids and phenolic acids (Table 5). The

compounds identified varied between studies and sunflower

honey samples. Mattonai et al. (2016) consistently found p-

hydroxybenzoic acid, p-coumaric acid, ferulic acid, and

naringenin in all sunflower honey samples. The overall

concentration of flavonoids and phenolics (Table 8) had large

ranges from 19.5–269 mg QE/100 g and 6.90–854 mg GAE/100 g,

respectively. This also depended on the study as Pătruică et al.

(2022) found higher concentration of phenolic acids in Romanian
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sunflower honey compared to other literature sources. As noted,

honey is characterized by its’ antioxidant and antimicrobial

properties, with the latter discussed in greater detail in a

subsequent section. Interpreting honey’s antioxidant properties is

challenging due to the lack of standardized methods and the use of

various methodologies with differing units (Table 9). Castiglioni

et al. (2017) observed that antioxidant levels varied depending on

the free radical scavenging assay, such that some samples showing

significant differences in ABTS but not in DPPH. This highlights the

need for standardized procedures, as antioxidant values can only be

relatively compared under consistent testing conditions.

As mentioned, summarizing sunflower honey’s characteristics

is challenging due to the many physical and chemical properties

considered in honey classification, inconsistencies reported across

studies, and differing country legislations. Furthermore, honey

characteristics are impacted by the botanical origin, year and their

interaction (Vıĵan et al., 2023); intra-sample variation (Mattonai

et al., 2016), and climate (Kečkes ̌ et al., 2013). It is also known that

sugars in honey can be influenced by factors such as the ripening

period and storage conditions (Crane, 1975). Many studies lack

clarity regarding their processing methods, ripening duration, and

storage conditions before measuring sugar characteristics; which

further complicates the overall picture.
3 Sunflower as a nutritional resource
for bee development and health

3.1 Pollen

The increasing cultivation of sunflowers across Europe

highlights the need to understand their nutritional impact on

pollinator communities and identify areas for further research.

Sunflower pollen is often reported as a low quality nutritional

resource for honey bees, as a result of lower levels of protein

(Nicolson and Human, 2013; Pamminger et al., 2019a) and a few

essential amino acids reported below minimum requirements for

honey bees (Nicolson and Human, 2013; Taha et al., 2019). One

commonly used method for testing the nutritional quality of pollen

is done by using controlled feeding cage assays and are primarily

focused on the western honey bee, Apis mellifera; the common

eastern bumble bee, Bombus impatiens; and the buff-tailed bumble

bee, B. terrestris, which is not surprising due to their economic

importance, commercial rearing and availability. Figure 2

summarizes the results from literature investigating sunflower

pollen diets on bee reproductive, development, and health

parameters, including antiparasitic, antimicrobial, and antiviral

effects. Cage experiments with a pure sunflower pollen diet often

resulted in negative reproductive parameters for B. terrestris,

including reduced mass and production of larvae and pupae; and

reduced male emergence (Gekière et al., 2022; Regali and Rasmont,

1995; Tasei and Aupinel, 2008). In queen-right B. terrestris colonies,

Zhou et al. (2024) found negative developmental effects in those fed

sunflower and buckwheat pollen, including decreased worker mass

and number, reduced wing length, and absence of a reproductive
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phase. On the contrary, one study investigated B. impatiens and

found an increase in egg, larvae, and pupae production (Giacomini

et al., 2018). Negative impacts on development were also observed

by reduced fat body content in B. terrestris (Gekière et al., 2022) and

reduced hypopharyngeal gland protein content or volume in A.

mellifera (Omar et al., 2017; Pernal and Currie, 2000). However,

varying results were found for worker ovary development within A.

mellifera and B. impatiens. Even more interesting was the extensive

inconsistency of worker survival within and between the

investigated bee species.

Overall the variable results, partial investigations for A.

mellifera and B. impatiens, and lack of research regarding wild

bee species, the nutritional impact of sunflower pollen is still not

fully understood. In general, there is limited research on the

potential impact of specific nutritional components on
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reproduction, development, cognition, and even foraging

preferences. It was found that a deficiency in omega-3 fatty acid

resulted in smaller hypopharyngeal glands (Arien et al., 2015),

omega-3 and oleic acid deficiencies reduced learning abilities

(Arien et al., 2015; Muth et al., 2018), and high ratios of omega-

6:3 was detrimental to cognitive performance (Arien et al., 2018).

Pollen sterol content was also found to be a key nutrient for

bumble bee larvae growth, likely due to their role in hormone

synthesis and cell membrane function (Moerman et al., 2017).

Regarding pollen mineral nutrients, Filipiak and Filipiak (2020)

found that K deficiency reduced survival and impaired cocoon

development for the mason bee Osmia bicornis.

Assessing colony health encompasses more than just

reproductive and developmental metrics, but also evaluating their

resistance and susceptibility to pathogens and parasites. Numerous
TABLE 7 Literature values for sugar characteristics of Helianthus annuus honey.

H. annuus honey % References

Total sugar content 73.1–80.8 Bath and Singh, 1999; Erler et al., 2014; Gherman et al., 2014; Oroian et al., 2017; Oroian and Sorina, 2017

Glucose
31.2–45.0
379*

Bobis ̧ et al., 2021; Cotte et al., 2004a; Devillers et al., 2004; Erler et al., 2014; Gherman et al., 2014; Juan-
Borrás et al., 2014; Kádár et al., 2010; Kunat-Budzyńska et al., 2023; Marić et al., 2021; Mateo and Bosch-
Reig, 1997, 1998; Oroian et al., 2015, 2017; Persano Oddo et al., 1995; Persano Oddo and Piro, 2004; Sakač
et al., 2019; Zhelyazkova and Lazarov, 2017

Fructose
34.6–45.3
400*

Bobis ̧ et al., 2021; Cotte et al., 2004a; Devillers et al., 2004; Erler et al., 2014; Gherman et al., 2014; Juan-
Borrás et al., 2014; Kádár et al., 2010; Kunat-Budzyńska et al., 2023; Marić et al., 2021; Mateo and Bosch-
Reig, 1997, 1998; Oroian et al., 2015, 2017; Persano Oddo et al., 1995; Persano Oddo and Piro, 2004; Sakač
et al., 2019; Zhelyazkova and Lazarov, 2017

Sucrose n.d.–6.46

Bobis ̧ et al., 2021; Cotte et al., 2004a; Devillers et al., 2004; Erler et al., 2014; Gherman et al., 2014; Isopescu
et al., 2014; Juan-Borrás et al., 2014; Kádár et al., 2010; Kunat-Budzyńska et al., 2023; Manolova et al., 2021;
Mateo and Bosch-Reig, 1997, 1998; Milosavljević et al., 2021; Persano Oddo et al., 1995; Sahinler et al.,
2009; Sari and Ayyildiz, 2012; Zhelyazkova and Lazarov, 2017

Erlose 0.20–0.69 Devillers et al., 2004; Gherman et al., 2014; Kunat-Budzyńska et al., 2023

Fucose 0.35 Kunat-Budzyńska et al., 2023

Isomaltose n.d.–0.31
Cotte et al., 2004a; Erler et al., 2014; Gherman et al., 2014; Mateo and Bosch-Reig, 1997, 1998; Persano
Oddo et al., 1995

Kojibiose 1.55/1.58 Mateo and Bosch-Reig, 1997, 1998

Laminaribiose 0.50 Cotte et al., 2004a

Maltose 0.90–2.74
Cotte et al., 2004a; Erler et al., 2014; Gherman et al., 2014; Mateo and Bosch-Reig, 1997, 1998; Persano
Oddo et al., 1995

Maltotriose 0.10 Cotte et al., 2004a

Maltulose 0.50–0.77 Cotte et al., 2004a; Mateo and Bosch-Reig, 1997, 1998

Melezitose n.d. Devillers et al., 2004

Neo-kestose 0.10 Cotte et al., 2004a

Palatinose 0.10 Cotte et al., 2004a

Panose 0.10 Cotte et al., 2004a

Raffinose n.d. Devillers et al., 2004

Rhamnose 1.55 Kunat-Budzyńska et al., 2023

Trehalose 0.35/0.60 Cotte et al., 2004a; Gherman et al., 2014

Turanose 0.90–1.10 Cotte et al., 2004a; Erler et al., 2014; Gherman et al., 2014
n.d., not detectable. *Units (g/kg).
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studies have challenged the perception of sunflower pollen as “low-

quality”, as it consistently shows a positive health impact by

reducing the gut parasite Crithidia bombi in Bombus species,

particularly B. impatiens (Figure 2). Sunflower pollen’s impact on

C. bombi has been discovered repetitively for B. impatiens;

nevertheless, variable results were found investigating sunflower

pollen on C. bombi infection intensity in B. terrestris (Gekière et al.,

2022; Vanderplanck et al., 2023) and only one study found variable

results between various wild Bombus species (Fowler et al., 2022a).
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Not much is known regarding the impact on other pathogens or

parasites. Nosema ceranae (recently renamed Vairimorpha ceranae)

cell counts decreased in A. mellifera fed sunflower pollen, but it

increased mortality as if they underwent pollen starvation

(Giacomini et al., 2018). Furthermore, one study reported no

impact on infection intensity of deformed wing virus (DWV) in

sunflower fed honey bees (Palmer-Young et al., 2023).

Many studies have tested whether the effect from sunflower

pollen was due to specific pollen nutrient components, such as
TABLE 8 Literature values of compositional parameters reported for Helianthus annuus honey.

H. annuus honey Values References

Acidity (free)
(meq/kg)

13.0–47.3
Bath and Singh, 1999; Devillers et al., 2004; Erler et al., 2014; Lazarević et al., 2012; Marić et al.,
2021; Milosavljević et al., 2021; Oroian and Sorina, 2017; Oroian et al., 2017; Pauliuc and Oroian,
2020; Persano Oddo and Piro, 2004; Sakač et al., 2019; Truzzi et al., 2014; Vıĵan et al., 2023

Acidity (total)
(meq/kg)

23.9–70.0
Bath and Singh, 1999; Erler et al., 2014; Manolova et al., 2021; Persano Oddo et al., 1995; Sahinler
et al., 2009; Sari and Ayyildiz, 2012; Truzzi et al., 2014

Ash (%) 0.10–0.36
Milosavljević et al., 2021; Oroian and Sorina, 2017; Oroian et al., 2017; Pătruică et al., 2022; Persano
Oddo et al., 1995; Sahinler et al., 2009; Sakač et al., 2019; Vıĵan et al., 2023

Electrical conductivity
(mS/cm)

0.19–0.78

Bobis ̧ et al., 2021; Devillers et al., 2004; Juan-Borrás et al., 2014; Kádár et al., 2010; Kunat-Budzyńska
et al., 2023; Lazarević et al., 2012; Manolova et al., 2021; Marić et al., 2021; Mateo and Bosch-Reig,
1998; Milosavljević et al., 2021; Oroian and Sorina, 2017; Oroian et al., 2015, 2017; Pauliuc and
Oroian, 2020; Persano Oddo et al., 1995; Persano Oddo and Piro, 2004; Sahinler et al., 2009; Sakač
et al., 2019; Truzzi et al., 2014; Vıĵan et al., 2023; Zhelyazkova and Lazarov, 2017

HMF
(mg/kg)

1.00–25.5

Bobis ̧ et al., 2021; Devillers et al., 2004; Erler et al., 2014; Isopescu et al., 2014; Juan-Borrás et al.,
2014; Kádár et al., 2010; Manolova et al., 2021; Marić et al., 2021; Milosavljević et al., 2021; Oroian
et al., 2015; Pauliuc and Oroian, 2020; Persano Oddo et al., 1995; Sahinler et al., 2009; Sakač et al.,
2019; Truzzi et al., 2014; Vıĵan et al., 2023; Zhelyazkova and Lazarov, 2017

Moisture content
(%)

14.7–20.4

Bath and Singh, 1999; Bobis ̧ et al., 2021; Devillers et al., 2004; Erler et al., 2014; Isopescu et al., 2014;
Kunat-Budzyńska et al., 2023; Lazarević et al., 2012; Manolova et al., 2021; Marić et al., 2021; Mateo
and Bosch-Reig, 1998; Milosavljević et al., 2021; Oroian and Sorina, 2017; Oroian et al., 2015, 2017;
Pătruică et al., 2022; Pauliuc and Oroian, 2020; Persano Oddo et al., 1995; Sahinler et al., 2009;
Sakač et al., 2019; Sari and Ayyildiz, 2012; Truzzi et al., 2014; Vıĵan et al., 2023; Zhelyazkova and
Lazarov, 2017

Total flavonoid content
(mg QE/100 g)

19.5–269
10.9–63.2*

Bobis ̧ et al., 2021; Erler et al., 2014; Marić et al., 2021*; Pătruică et al., 2022; Predescu et al., 2015*;
Vıĵan et al., 2023*

Total phenolic content
(mg GAE/100 g)

6.90–854
Atanacković Krstonosǐć et al., 2019; Bobis ̧ et al., 2021; Castiglioni et al., 2017; Erler et al., 2014;
Kunat-Budzyńska et al., 2023; Marić et al., 2021; Milosavljević et al., 2021; Pătruică et al., 2022;
Predescu et al., 2015; Sari and Ayyildiz, 2012; Vıĵan et al., 2023
CE, catechin equivalents; GAE, gallic acid equivalents; QE, quercetin equivalents.*Units (mg CE/100 g).
TABLE 9 Literature values of antioxidant capacity measured with various methods reported for Helianthus annuus honey.

H. annuus honey Values References

i. DPPH (IC50)
(g/ml)

0.018–0.322 Atanacković Krstonosǐć et al., 2019; Emin Duru et al., 2023; Marić et al., 2021

ii. DPPH-Vis method
(mmol Trolox equivalents/kg)

0.49 Castiglioni et al., 2017

iii. DPPH-EPR method
(mmol Trolox equivalents/kg)

0.44 Castiglioni et al., 2017

iv. DPPH
(%)

60.2–78.3 Pătruică et al., 2022; Pauliuc and Oroian, 2020; Predescu et al., 2015

v. DPPH
(% inhibition of 2,2-diphenyl-1-picrylhydrazyl)

23.1–65.4 Bobiş et al., 2021; Erler et al., 2014; Sari and Ayyildiz, 2012; Vıĵan et al., 2023

vi. ABTS assay
(mmol Trolox equivalents/kg)

4.70 Castiglioni et al., 2017
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individual fatty acids or secondary metabolites rutin or

tricoumaroyl spermidine (Adler et al., 2020) or other unique

phenolamides (Gekière et al., 2022). Furthermore, Yost et al.

(2023) had the hypothesis that bumble bees fed sunflower pollen

might have an influenced gut microbiome impacting pathogen

resistance. They fed B. impatiens (inoculated with C. bombi) a

solution of guts dissected from bumble bees fed either sunflower or

buckwheat pollen while on a control diet of wildflower pollen.

However, they found no differences in C. bombi cell counts between

the recipient bees fed either gut solution. Interestingly, Giacomini

et al. (2023) found that sunflower pollen consumption upregulated

immune transcripts linked to the maintenance and repair of gut

epithelial cells, theorizing pollen’s role in disrupting infection from

C. bombi by potentially removing or preventing the attachment of

flagellated pathogens. Figueroa et al.’s (2023) clever study design

found that sunflower exines alone reduced infection intensity (along
Frontiers in Plant Science 17
with 4 of 7 additional Asteraceae species compared to non-

Asteraceae pollen); thus, supporting the role of spiny morphology

for infection suppression (Figure 3). Yet, a reduction in C. bombi

infection intensity was not present in all spiny pollen treatments

(Figueroa et al., 2023). If the morphological features play a large role

in infection intensity, further research needs to be done regarding

more pollen external features, for example: spine density, spine

length, and pollen grain size.

With the focus on the morphological aspect of sunflower pollen,

Knoerr et al. (2024) followed up this finding on whether the spiny

structure could result in intestinal damage. They found that

sunflower exines added to diets resulted in no differences in B.

impatiens mortality or intestinal damage, however those fed spines

reduced larval and microcolony weights. As suggested by Knoerr

et al. (2024), these negative findings could be a consequence of

larvae consuming higher amounts of empty exines, rather than full
FIGURE 2

Sunflower pollen diet on bee development and health. Reported literature results on the impact of Helianthus annuus pollen diet on survival, development,
physiological, and health parameters in experimental queen-less cage assays. Arrow thickness indicates the number of studies for the corresponding
parameter (thin: 1 study; medium: 2 studies; thick: > 10 studies). *Measured as protein content or volume; **recently renamed Vairimorpha ceranae;
***DWV, Deformed wing virus transmitted by Varroa destructor. Created in BioRender Reference letters: (a) Adler et al., 2020; (b) Figueroa et al., 2023; (c)
Fowler et al., 2022a; (d) Fowler et al., 2023; (e) Fowler et al., 2022b; (f) Fowler et al., 2020; (g) Gekière et al., 2022; (h) Giacomini et al., 2023; (i) Giacomini
et al., 2021; (j) Giacomini et al., 2018; (k) Human et al., 2007; (l) LoCascio et al., 2019a; (m) LoCascio et al., 2019b; (n) McAulay and Forrest, 2019; (o)
Nicolson et al., 2018; (p) Omar et al., 2017; (q) Palmer-Young et al., 2023; (r) Pernal and Currie, 2000; (s) Regali and Rasmont, 1995; (t) Schmidt et al., 1995;
(u) Tasei and Aupinel, 2008; (v) Treanore et al., 2019; (w) Vanderplanck et al., 2023.
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pollen grains. Likewise, Vanderplanck et al. (2020) found no

intestinal damage in the digestive tract of B. terrestris fed spiny

whole Taraxacum pollen, but they also reported higher larval

ejection compared to non-spiny treatments. Ultimately, the

studies addressing C. bombi are limited mostly to B. impatiens

(Figure 2); therefore, a knowledge gap persists for species specific

interactions. This is particularly relevant given that both sunflower

and B. impatiens are native to North America. Thus far,

developmental parameters appear to be less detrimental, and the

medicinal benefits of sunflower pollen more consistent for B.

impatiens compared to B. terrestris. Further research is needed to

explore these interactions in the context of sunflowers impact on

native vs. non-native pollinators.

Major limitations of the studies summarized in Figure 2 include

their confinement to laboratory environments, the use of queen-less

bumble bee colonies, variations in pollen collection methods used for

feeding (hand- vs. honey bee-collected pollen), and comparisons

between sunflower pollen and other pollen sources that differ in

seasonal availability (often constrained by commercial availability).

This further complicates efforts to obtain a clear picture on the

impacts of sunflower pollen consumption. Only a few studies have

investigated field realistic conditions. Charrière et al. (2010) found no

difference in brood production between their honey bee colonies

placed next to sunflower fields and control colonies placed 3 km

away. Queen production of B. impatiens increased 30% with every

order of magnitude increase in sunflower area (Malfi et al., 2023).

Considering sunflowers apparent medicinal properties, an increase in

sunflower area was also associated with reduced C. bombi prevalence,

however no effect on Apicystis bombi or the black queen cell virus

(BQCV) was found (Malfi et al., 2023). It was also found that every

10-fold increase in sunflower area decreased C. bombi infection

intensity 23.2% (Giacomini et al., 2018) and a two-fold increase in

sunflower area resulted in a 28% decrease in Varroa mite infestation

for A. mellifera, without effects on Nosema ceranae (Palmer-Young

et al., 2023). These studies are difficult to associate these effects solely

to sunflower resource availability. Either these studies did not

consider how much sunflower pollen was collected or they found

relatively low quantities. Malfi et al. (2023) recorded that only 8.5% of

bumble bees carried sunflower pollen compared to 46% carrying

other Asteraceae pollen, but this was proportional to the Helianthus

annuus cover compared to other flowering sources. Charrière et al.

(2010) found that their treatment colonies placed at the edge of

sunflower fields collected only 2.2–3% sunflower pollen in 2003, and

11–38% in 2004, depending on the colony and location, as they

favored other sources despite sunflower abundance. This highlights a

key point that should not be overlooked, such that lab experiments

only provide a snapshot on how colony health may be impacted.

They do not show colonies ability to compensate for nutritional

imbalances or the realistic conditions that pollinators forage on a

diversity of pollen sources. As previously mentioned, it is known that

mono-diets are not considered well-balanced diets for social bees

(Alaux et al., 2010; Di Pasquale et al., 2013, 2016; Leponiemi et al.,

2023), presumably also not for solitary bees. Given that bees forage

from a variety of pollen sources, it’s unclear if a single source, like

sunflower pollen, can be classified as health detrimental or beneficial.
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3.2 Nectar

When assessing the nutritional impact of floral resources on

bees, it is crucial to consider more than just pollen. Bees’ diets also

include nectar, and some species consume bee bread and honey, all

of which contribute to their overall nutrition. Except the basic

nutritional summary, no studies have investigated sunflower nectar

consumption on pollinator nutrition. Nectar nutritional studies

often focus on the predominant secondary metabolites found in

nectar from various plant species, using commercially sourced

metabolites for experimentation. The consumption of anabasine,

catalpol, nicotine, and thymol reduced the cell count of C. bombi

infection in B. impatiens (Richardson et al., 2015); as well as a

reduced fecal intensity of C. bombi from an alkaloid, gelsemine,

found in nectar (Manson et al., 2010). Moreover, abscisic acid

enhanced immune responses in Apis mellifera (Negri et al., 2015).

On that note, it cannot be ignored that metabolites in sunflower

nectar could also contribute to bee physiology and health, though

we first need to understand the composition of non-sugar

metabolites offered.
3.3 Bee bread and honey

Stored pollen and nectar in the hive provide essential support to

workers, offering resources during times of need and aiding honey

bee workers which are conducting their roles inside the hive. Of

course, the question arises on whether these stored resources might

offer an advantage in their nutritional nature compared to raw

nectar and pollen. As previously mentioned, bee bread is debated on

whether it differs in nutritional quality compared to pollen. Only

one study investigated sunflower pollen vs. bee bread and found no

impacts on A. melliferas’ survival or extraction efficiency (digestion

efficiency of individual pollen grains), meaning that pollen was not

digested better in either fresh or stored form (Nicolson et al., 2018).

Despite some studies supporting the notion that pollen and bee

bread do differ (see section 2.3), there is no current support

indicating this difference has realistic impacts for bee fitness.

Similarly, this knowledge gap holds true for sunflower honey.

Honey offers unique properties in terms of its antimicrobial nature.

The antimicrobial properties come from its’ high sugar content

which results in an osmotic pressure dehydrating bacterial cells

(Molan, 1992); an accumulation of hydrogen peroxide from the

glucose oxidase system (White et al., 1963); and the presence of

phenolic acids and flavonoids (Čižmárik and Matel, 1970; Ferreres

et al., 1994). An expansive nutritional profile for sunflower honey

exists, presumably since honey is consumed by humans. Our

knowledge on how honey’s high antimicrobial and antioxidant

properties can enhance honey bee health is limited. Studies have

shown that sunflower honey displays mild antimicrobial activity

against Staphylococcus aureus (Emin Duru et al., 2023), Escherichia

coli, Candida parapsilopsis, C. albicans, Listeria monocitogenes, and

Bacillus cereus (Pătruică et al., 2022). Thus, it is hypothesized that

honey could have medicinal properties against bee relevant bacteria

or pathogens. Gherman et al. (2014) observed in a choice assay
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using honey bees, that honey bees infected with Nosema ceranae

increasing preferred sunflower honey with increasing infection

intensity compared to honeydew honey. Furthermore, they also

showed that sunflower honey fed honey bees had significantly lower

N. ceranae spore load compared to honeydew honey. In a bacterial

growth inhibitory study, sunflower honey inhibited American

foulbrood bacterial strains more effectively than black locust

honey and completely inhibited Paenibacillus alvei growth; yet,

black locust honey was more effective on reducing European

foulbrood related bacteria (Erler et al., 2014). Based on this study,

the antimicrobial and antibiotic properties of honey seems to be

honey and bacterial strain specific. It could be worth exploring how

the availability of various floral resources and subsequent honey

types present in a honey bee hive might drive the pathogen

susceptibility of a colony, or whether they can selectively

consume honey of a certain nature depending on need.

Understanding this interaction could provide useful colony health

indicators for scientists and beekeepers.
4 Drivers of sunflower-pollinator
interaction

4.1 Floral morphology and pigments

This review has primarily focused on sunflower pollination

syndromes that provide nutrition to pollinators, primarily bees.

However, pollinator preferences and foraging decisions are

influenced by the association of the reward, potentially the

nutritional quality, and to certain floral traits (i.e., flower size,

color, scent, etc.) (Chittka and Raine, 2006; Frachon et al., 2021;

Knauer and Schiestl, 2015). Sunflower ligules, the modified petals

on the outermost part of the inflorescence, often appear yellow or

orange due to the presence of secondary metabolites, primarily

carotenoids (responsible for yellow to orange pigmentation) and

flavonoids. Flavonoids are a diverse group of phenolic secondary

metabolites encompassing anthocyanins (orange, blue, purple, or

even black hues), and other groups, such as flavonols and flavones,

which provide pale yellow hues or are mostly colorless to the human

eye (reviewed by Iwashina, 2015). The regulation of ligule color in

sunflower has been recently proposed to be governed by the

HaMYBA-HabHLH1 and HaMYBF complex which regulates

anthocyanin and flavonol accumulation, respectively (Jiang et al.,

2024). Likewise, Ma et al. (2024) reported HanMYB1 plays a role in

regulation of anthocyanin accumulation. They found that

chrysanthemin and epigallocatechin are major anthocyanins in

red sunflowers and rutin and kaempferol are major flavones and

flavonols in yellow sunflowers. See Galiseo et al.’s (2024) review on

the identified carotenoid compounds found in H. annuus.

Flower pigments that are most interesting to pollinator attraction

are the ultraviolet (UV)-absorbing pigments that are not visible to

humans, but are responsible for UV patterns on flowers called nectar

guides (Leonard and Papaj, 2011; Penny, 1983; Todesco et al., 2022).

UV-absorbing pigments accumulate in the ligules base and the

outermost edge reflects UV radiation resulting in a bullseye pattern
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visible to foraging bees (Moyers et al. 2017; Todesco et al. 2022). These

UV-absorbing pigments consist primarily from flavonols and flavones.

In particular for sunflower, biosynthesis of flavonol glycoside pigments

is governed by the transcription factor, HaMYB111 (Todesco et al.,

2022). In an elaborate study to test bullseye pattern size and pollinator

attraction, Todesco et al. (2022) found that within 1484 individuals

from 106 H. annuus populations, individuals with intermediate UV

patterns had the highest pollinator visitation rates compared to small or

large patterns (Figure 3). Similarly, Rudbeckia flowers with smaller

bullseye patterns (reduced nectar guides) had significantly less

pollinator visitation (Horth et al., 2014).

Accumulation of these flavonoids have been shown to vary

tremendously in the Helianthus genus and between H. annuus

individuals (Scogin, 1978; Todesco et al., 2022). Thus, questions

arise regarding their ecological significance. Todesco et al. (2022)

found that the bullseye patterns are correlated to geoclimate factors,

which is not surprising as flavonols are involved in mitigating

abiotic stressors (reviewed in Shomali et al., 2022). Larger UV

bullseyes were present in colder environments; however the

variability in size was predominantly correlated to lower humidity

climates. This suggests flavonoids’ dual role for pollinator attraction

and water conservation in sunflowers.

Floral color and nectar guides facilitate visual identification, but

upon floral visitation there are additional features that can enable

easier access to the floral reward. The sunflower inflorescence consists

of many individual flowers, disc florets, each formed by a corolla

composed of 5 fused petals. Inside the corolla are the male and female

reproductive parts and the nectary is at the base (Sammataro et al.,

1985). Many studies have found that the corolla length of sunflower

has an impact on pollinator visitation frequency (Figure 3). Shorter

corollas, thus easier nectar access, increased both wild bee and honey

bee visits (du Toit and Coetzer, 1991; Ferguson et al., 2024; Mallinger

and Prasifka, 2017b; Portlas et al., 2018). Ferguson et al. (2021) also

found that bee community differed based on corolla length relative to

tongue length. Most bees preferred shorter corollas, whereas Bombus

spp. showed a preference for sunflower lines with larger florets.

Significant foraging preferences relative to corolla length was also

reported dependent on the year or sowing period (Ferguson et al.,

2021, 2024).

Ultimately, sunflower-pollinator interactions have been shown

to be impacted by floral UV patterns and corolla length, but

research is lacking in regards to other floral traits. For example,

sunflowers are known to have a high density of glandular trichomes

present on both leaves and florets, and have been shown to produce

allelochemicals which may be important for plant defense again

pathogens and herbivores (Brentan Silva et al., 2017). Sesquiterpene

lactones are present in glandular trichomes of sunflower and have

been shown to defend against insect pests (Chou and Mullin, 1993;

Mullin et al., 1991; Prasifka et al., 2015). Little research has been

done on trichomes impact on pollinators. It has been theorized that

oleiferous trichomes in Bulbophyllum saltatorium might play a role

in attracting pollinators (Stpiczyńska et al., 2018). This is an

important future topic to address through the pollinator

perspective, as we cannot exclude the influence of sunflower

trichomes on their interactions.
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4.2 Olfactory attraction

Pollinators use both visual and olfactory cues to navigate the

complicated environment (Burger et al., 2010; Leonard et al., 2012).

Volatile organic compounds (VOCs) include a vast diversity of

terpenes, among those are monoterpenoids and sesquiterpenoids

which play a major role in floral scent (Pichersky and Raguso,

2018). We are only beginning to unravel their complexity and

interactions with the biotic environment, including their roles in

attracting or repelling pollinators and herbivores (Raguso, 2008;

Pichersky and Raguso, 2018; Slavković and Bendahmane, 2023;

Wright and Schiestl, 2009). Research regarding sunflower VOCs

began in the late 1980s to early 1990s with a few studies identifying

potential pollinator discriminatory compounds (Pham-Delègue

et al., 1986, 1990; Thiery et al., 1990). A long gap succeeded this

research and only recently interest has surged, likely driven by

growing sunflower breeding efforts, leading to extensive

identification of between 100 to 500 VOCs in wild and cultivated

Helianthus species (Anandappa et al., 2023; Bahmani et al., 2022,

2023; Jocković et al., 2024). Few studies have also addressed

sunflower VOCs to understand plant-pest interactions for thrips

(Qu et al., 2024) and yellow peach moth (Zhou et al., 2023).

Based on recent studies, the volatile profile of petals or disc florets

of wild and domesticated H. annuus were dominated by

monoterpenoids (> 90%), followed by sesquiterpenoids (< 10%),
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and even fewer non-terpene compounds (Anandappa et al., 2023;

Bahmani et al., 2022, 2023). Of the monoterpenoids, a-pinene always
had the highest relative abundance (Anandappa et al., 2023; Bahmani

et al., 2022, 2023; Qu et al., 2024; Zhou et al., 2023). This consistency

is surprising considering studies have investigated different floral

tissues (petals vs. disc florets), used different sample preparation

(fresh vs. frozen), and analysis methods. Thus, monoterpenoid-

sesquiterpenoid balance and the high abundance of a-pinene
appears characteristic for H. annuus (Figure 3). Though there is

some variance in the less abundant VOCs. Cultivated H. annuus

contained 6–20% sabinene, which was only present in 1% or less of

wild H. annuus (Anandappa et al., 2023). They also found higher

proportions of VOCs in cultivated H. annuus which are considered

pleasant to human smell, such as D-limonene, eucalyptol, and

bphellandrene (Anandappa et al., 2023). The second most

prevalent monoterpenoid was either sabinene (Anandappa et al.,

2023; Bahmani et al., 2023), dehydrosabinene (Bahmani et al., 2022),

b-pinene (Qu et al., 2024), or b-phellandrene (Zhou et al., 2023)

(Figure 3). The remaining major VOCs reported across H. annuus

studies were D-limonene, b-pinene, and g-terpinene (Bahmani et al.,

2022); D-limonene, (+)-calarene, and germacrene D (Qu et al., 2024);

b-pinene, D-limonene, a-terpinene, g-terpinene, terpinene-4-ol, o-
cymene, and bornyl acetate (Bahmani et al., 2023); and camphene, b-
pinene, 3-carene, D-limonene, eucalyptol, g-terpinene, and valencene
(Zhou et al., 2023).
FIGURE 3

Key sunflower pollination syndromes. Clockwise from the top left with respective section in review: sunflower pollen consumption on Crithidia
bombi infection intensity in Bombus spp. (section 3.1); dominant sunflower volatile organic compounds (section 4.2); corolla length on pollinator
attraction (section 4.1); sunflower nectar sugar content and volume on pollinator attraction (section 4.4); and increased UV bullseye size (nectar
guides) on pollinator attraction (section 4.1). Plus indicates increased pollinator attraction and minus indicates less attraction. Created in BioRender.
frontiersin.org

https://www.biorender.com
https://doi.org/10.3389/fpls.2025.1552335
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Husband et al. 10.3389/fpls.2025.1552335
The total relative abundance of VOCs between wild and

cultivated H. annuus is up for debate. Bahmani et al. (2022, 2023)

found that total VOC abundance was significantly lower in

cultivated sunflowers, and sesquiterpenoids were reduced by 6–8

times. However, this was not supported by Anandappa et al. (2023).

The potential impact of reduced volatile abundance on pollinator

attraction and decreased sesquiterpenoids on herbivore defense in

cultivated sunflowers warrants further investigation (see Prasifka

et al., 2015). Overall,H. annuus appears to have relatively consistent

compound diversity and monoterpenoid-sesquiterpenoid balance.

This is not the case when looking at other species in the Helianthus

genus. Species are found to vary in their floral monoterpenoid-

sesquiterpenoid composition, compound abundance, and major

volatiles (Bahmani et al., 2022; Jocković et al., 2024). Bahmani

et al. (2022) also found that among the wild Helianthus species,

higher monoterpenoids were found in arid climates for annuals and

erect perennials, and sesquiterpenoids were higher in mesic habitats

for erect perennials. Interestingly, Todesco et al. (2022) found that

arid climates had larger nectar guides to attract pollinators,

proposing this was driven by geoclimate conditions. Nonetheless,

it is an interesting connection, as arid climates may have both

increased monoterpenoids and larger nectar guides.

Pollen and nectar VOCs are less studied but are important, likely

contributing to the floral VOC profile and both serve as a key

nutritional resources for pollinators. No studies have addressed

nectar specific VOCs, and only a few have for pollen. Bertoli et al.

(2011) found a greater abundance of sesquiterpenoids compared to

monoterpenoids. The major VOCs consisted of the sesquiterpenoids

b-elemene, b-gurjunene, b-chamigrene, germacrene D, and trans-g-
cadinene, as well as the monoterpenoids a-pinene oxide, trans-

verbenol, pinocarvone, myrtenol, verbenone, and isobornyl acetate.

In contrast, Qu et al. (2024) found that the major compounds

mirrored their VOCs reported in disc florets, with the exception of

a-terpinene and g-selinene found in pollen. Leaf VOCs are another

dimension to consider for plant-insect interactions. As our focus is on

floral structures, we exclude them here; see Galisteo et al. (2024) for a

review on sunflower terpenoid diversity.

Identifying VOCs driving plant-pollinator interactions is

challenging, as production and emission are complex, and VOCs

often exist in a bouquet rather than single compounds. We are just

starting to understand which specific compound or mix of VOCs

correspond to pollinator attraction or deterrence. Studies from

Pham-Delègue et al. (1986, 1990) and Thiery et al. (1990)

identified a fraction of compounds isolated from VOCs of

sunflower that either elicited behavior or antennae responses by

honey bees. When comparing their proposed “pollinator

recognizable” compounds to recently reported major floral and

pollen VOCs in sunflower, only bornyl acetate, eucalyptol, and

germacrene D were found in floral VOCs, while verbenone, b-
elemene, myrtenol, and germacrene D were found in pollen. In

other studies, Blight et al. (1997) found eight VOCs from Brassica

napus flowers were recognized by honey bees. Those that also

occurred as major VOCs in sunflower were a-pinene, a-
terpinene, and 3-carene. Farina et al. (2020) used the mechanism

of associative bee learning with floral rewards to elicit a recruitment
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behavior of honey bees towards sunflower fields by feeding honey

bee colonies with sugar syrup scented with sabinene, beta-pinene

and limonene (see also Estravis-Barcala et al., 2021; Farina et al.,

2023), all three identified as major sunflower VOCs. Nonetheless,

the highest abundance does not necessarily indicate the most

relevant, as volatiles with low abundance or their combinations

may also be important, as either attractive or deterrents. In

particular, honey bees are able to detect subtle differences in the

ratio of two odors, and identify individual compounds in complex

floral scents (Wright and Schiestl, 2009). Although not related to

sunflowers, recent studies have identified some VOCs as either

innate attractants or repellents to bees. For example, ß-trans-

bergamotene was found to be an innate “dishonest” attractant for

bumble bees, as they preferred it in higher amounts even from non-

rewarding flowers (Haber et al., 2019). Conversely, repellent VOCs

discovered were a- and b-selinenes found in carrot genotypes

(Quarrell et al., 2023); E-2-hexanal, Z-3-hexenol, and Z-3-hexenyl

acetate found in strawberry cultivars (Ceuppens et al., 2015; Klatt

et al., 2013); and dioxolanes, piperidines and organosulfur

compounds found in onion genotypes (Soto et al., 2015). The

evidence we have for VOCs and pollinators is quite limited to

laboratory settings which do not directly translate to real

environment interactions. There is a lot more we can learn from

understanding the chemical world, including those pertaining to

sunflower-pollinator interactions.
4.3 Pollen

We do not know much about what drives specific choices of

pollen collection by pollinators, let alone understanding how the

nutritional components of particular species of pollen might

influence foraging decisions. For sunflowers, studies have made

more observational links to foraging preferences based on sunflower

pollen production. Such that, honey bees have shown to exhibit

preference to male sterile sunflowers (lacking pollen) (Estravis

Barcala et al., 2019; Mallinger and Prasifka, 2017b; Pham-Delègue

et al., 1990; Skinner, 1987; Tepedino and Parker, 1982), whereas

Melissodes spp. and other wild bees were most abundant on male

fertile sunflowers (Estravis Barcala et al., 2019; Mallinger and

Prasifka, 2017b; Tepedino and Parker, 1982). Furthermore, few

studies have addressed foraging preferences linked to pollen

chemistry. Ferguson et al. (2024) investigated the fatty acid

content of pollen across different sunflower lines to examine its

association with pollinator visitation. However, they found high

variability between years, suggesting that the nutritional

composition of sunflower pollen may be more variable than

previously expected. Although not specific to sunflower, foraging

preferences were linked to protein:lipid (P:L) ratios, which differed

among bee species. B. impatiens favored higher P:L ratios in the

range from 4:1 to 10:1 (Vaudo et al., 2016, 2020), while honey bees

preferred 1:1 and 2:1 ratios (Vaudo et al., 2020). The nutritional

requirements of pollinators may influence their foraging

preferences. However, linking specific nutritional compounds to
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these choices is highly complex, as various plant attraction

mechanisms, such as nectar, flower color, morphology, and

olfactory compounds, also play a role.

It is known that pollen is a more specialized resource to collect

than nectar. Pollen’s primary function is for plant reproduction;

thus there is inherent conflict to the double function of pollen,

between plant reproduction and food resources for the Anthophila

clade (Michez et al., 2012; Murray et al., 2018). It is therefore logical

that pollen contains defenses to deter herbivores and over

consumers (pollen defense on bee ecology reviewed in Rivest and

Forrest, 2020). Major pollen defenses are hypothesized to be

chemical; however, very few studies have linked plant secondary

metabolites, mostly alkaloids, to negative pollinator effects (see

Rivest and Forrest, 2020; Rivest et al., 2024). Furthermore,

Asteraceae species like sunflower, have spined pollen which may

act as a morphological defense against consumption and may

influence the visiting pollinator community (see Rivest et al.,

2024), but this topic needs more research. How the bioactive

properties or morphological aspects of pollen can govern foraging

preferences is not well understood (see Tourbez et al., 2023;

Vanderplanck et al., 2019). Especially in regards to how these

factors may drive foraging preferences based on nutritional needs,

pollinator specific adaptions, or potential medicinal benefits (as

discussed in section 3.1).
4.4 Nectar

Focusing on the interactions between nectar traits and

pollinators, nectar volume and sugar content are key drivers

influencing visitation in sunflowers (Figure 3). Wild bees and

honey bees increased visitation with increased total sugar content

(Estravis Barcala et al., 2019; Mallinger and Prasifka, 2017b), but

not by the specific sugar composition of nectar (Mallinger and

Prasifka, 2017b, see also Soto et al., 2021 with onion). In contrast,

Pham-Delègue et al. (1990), assumed sucrose to be the main driver

of visitation in honey bees, but this was concluded based on testing

only two parental lines of two hybrids. Pham-Delègue et al. (1990)

did not measure additional floral characteristics or nectar volume,

thus visitations cannot be only associated to sucrose content. Nectar

volume and total sugar content are influenced by genotype,

environment, and their interactions (Chabert et al., 2020; Terzić

et al., 2017). Many studies have found significant differences

between foraging preferences among different sunflower

genotypes (Bergonzoli et al., 2022; Cerrutti and Pontet, 2016;

Chambó et al., 2011; Fell, 1986; Sapir, 2009; Stejskalová et al.,

2018). With numerous studies indicating variations in cultivar

attractiveness, genetic mapping of traits responsible for nectar

production and chemistry is emerging as a key focus in sunflower

breeding efforts aimed at enhancing plant appeal to pollinators.

Two homologous genes, ARF8 and DAD1, governing nectar

production in Arabidopsis, have been reported as candidate genes

governing sunflower nectar volume (Barstow et al., 2022).

Additionally, HaCWINV2 gene, putatively involved in sucrose

metabolism, had a strong linear association between gene
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expression and glucose and fructose content (Aquino et al., 2021).

Despite the significant influence of genetic × environmental

interactions, sunflower breeding efforts have identified strong

genotype effects (Chabert et al., 2020; Terzić et al., 2017).

Consequently, the breeding of sunflowers with both stable and

specific nectar volume and sugar quantity and quality remains

appealing for optimizing floral resources for bees.

Nectar is no longer seen as a simple sugar reward for

pollinators, but in fact has a complicated chemistry. Recent

literature focused on the presence of amino acids, nectarins, and

both attractive and toxic secondary metabolites (reviewed in the

following studies, Adler, 2000; Barberis et al., 2023; Heil, 2011; Nepi,

2017; Roy et al., 2017). In general, though not specifically for

sunflowers, numerous nectar studies investigated the diverse roles

of specific chemical compounds in herbivore defense, antimicrobial

activity, health benefits, and their physiological effects on pollinator

cognition and foraging preferences (Barberis et al., 2023). Honey

bees showed a preference for phenylalanine enriched solutions

(Hendriksma et al., 2014) and varying concentrations of proline

(Carter et al., 2006). Further intriguing findings revealed the

presence of components of the honey bee queen mandibular

pheromone in the nectar of buckwheat and Mexican sunflower,

Tithonia diversifolia (Liu et al., 2015). They found that in an

artificial nectar solution, Apis cerana exhibited a preference for

these compounds. Nicotine and caffeine consumption in nectar

have been shown to enhance foraging memory and learning

(Baracchi et al., 2017; Wright et al., 2013). Specifically for

caffeine, its concentration plays a crucial role. Wright et al. (2013)

demonstrated that caffeine enhances bees’ memory for floral

rewards, whereas at higher concentrations, such as those found in

Citrus × meyeri, it elicited an aversive response in bees (Muth et al.,

2022). The complexity continues as Muth et al. (2022) further

showed that two insect neurotransmitters regulating foraging

behaviors found in nectar (octopamine and tyramine), when

present with caffeine, eliminated bees distaste to caffeine rich

floral nectar.

Specific deterrent properties of nectar have been associated to

presence of potassium in some onion and avocado genotypes (Afik

et al., 2006a, b; Hernández et al., 2019; Soto et al., 2013) and the

terpenoid triptolide, which reduced olfactory learning and

memory (Zhang et al., 2018). These deterrents have the dual

effect of (i) reducing the palatability of nectar and (ii) altering the

associated learning of floral cues with the presence of such

compounds. As has been shown with caffeine, we know very

little about nectar modulators and whether deterrent properties in

nectar are counteracted by other compounds influencing

pollinator visitation.

Nectar chemistry is also complicated to investigate due to other

interesting and understudied factors, such as the presence and

community of floral microbes. To the best of our knowledge no

literature has investigated the nectar microbiome of sunflower

nectar. Various microbe nectar specialists including yeasts (i.e.,

Metschnikowia spp.) and bacteria (i.e., Acinetobacter spp. and

Rosenbergiella spp.) have been identified and may play roles on

altering floral attraction and foraging preferences, or impacting the
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nutritional availability of nectar to pollinators (reviewed in Martin

et al., 2022; Quevedo-Caraballo et al., 2025; Vannette, 2020). In

particular, yeasts, Merremia aegyptia and Cordia sebestena,

significantly affected the concentration of individual nectar sugars

and their proportions (Canto and Herrera, 2012). Metschnikowia

reukaufii was found to be a deterrent to honey bees and decreased

the concentration of amino acids and increased the amount of

volatiles emitted in nectar (Rering et al., 2021). Nectar bacteria,

Acinetobacter, can stimulate pollen germination and bursting

(Christensen et al., 2021), potentially influencing the nutritional

availability to pollinators. How the precise interactions guiding

synergistic or antagonistic relationships between plant and microbe

and further extended to pollinators needs more study.
5 Conclusion

Sunflower pollen and nectar show significant variability in their

macro- and micronutrient chemistry. Nectar chemistry is a

complicated blend of various compounds, but our knowledge of

sunflower nectar is limited to sugar compounds with much still left

to be studied. Additionally, inconsistency was reported for

developmental parameters measured after bee consumption of

sunflower pollen. Both aspects of variability in nutrition and

subsequent bee development makes it challenging to determine

the nutritional potential sunflowers may provide neighboring

pollinator communities. Despite these variable and undefined

nutritional aspects, it has been continuously reported that

sunflower pollen has a medicinal effect on reducing C. bombi in

Bombus spp. This encourages an additional factor to consider when

defining the quality of sunflower floral resources. The extent of

sunflower-pollinator interaction goes beyond nutrition, as we know

that certain sunflower cultivars seem to have increased pollinator

attractiveness, presumably from key pollination syndromes

(Figure 3). Ultimately, with the rise of breeding efforts and

sunflower cultivation as a bee-friendly crop, it is important to

continue understanding the balance between sunflower as a

nutritional source versus its’ attractive pollination syndromes.
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Ion, N., Ştefan, V., Ion, V., Fota, G., and Coman, R. (2007). Results concerning the
melliferous characteristics of the sunflower hybrids cultivated in Romania. Lucrări
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Sakač, M. B., Jovanov, P. T., Marić, A. Z., Pezo, L. L., Kevresǎn, Ž.S., Novaković, A. R.,
et al. (2019). Physicochemical properties and mineral content of honey samples from
Vojvodina (Republic of Serbia). Food Chem. 276, 15–21. doi: 10.1016/
j.foodchem.2018.09.149

Sammataro, D., Erickson, E. H., and Garment, M. B. (1985). Ultrastructure of the
sunflower nec tary . J . Apicu l tura l Re s . 24 , 150–160 . do i : 10 .1080/
00218839.1985.11100665

Sapir, Y. (2009). Effects of floral traits and plant genetic composition on pollinator
behavior. Arthropod-Plant Interactions. 3, 115–129. doi: 10.1007/s11829-009-9062-y

Sari, E., and Ayyildiz, N. (2012). Biological activities and some physicochemical
properties of sunflower honeys collected from the thrace region of Turkey. Pakistan J.
Biol. Sci. 15, 1102–1110. doi: 10.3923/pjbs.2012.1102.1110

Schmidt, L. S., Schmidt, J. O., Rao, H., Wang, W., and Xu, L. (1995). Feeding
preference and survival of young worker honey bees (Hymenoptera: Apidae) fed rape,
sesame, and sunflower pollen. J. Economic Entomol. 88, 1591–1595. doi: 10.1093/jee/
88.6.1591

Schulz, S., Arsene, C., Tauber, M., and McNeil, J. N. (2000). Composition of lipids
from sunflower pollen (Helianthus annuus). Phytochemistry 54, 325–336. doi: 10.1016/
s0031-9422(00)00089-3

Scogin, R. (1978). Floral UV-absorption patterns and anthochlor pigments in the
Asteraceae. Southwestern Naturalist. 23, 371–374. doi: 10.2307/3670243

Seiler, G., and Jan, C. C. (2010). “Basic information,” in Genetics, Genomics and
Breeding of Sunflower. Eds. J. Hu, G. Seiler and C. Kole (CRC Press, Boca Raton), 1–50.

Shakya, R., and Bhatla, S. C. (2010). A comparative analysis of the distribution and
composition of lipidic constituents and associated enzymes in pollen and stigma of
sunflower. Sexual Plant Reproduction. 23, 163–172. doi: 10.1007/s00497-009-0125-0

Sharma, B. (2019). An analyses of flavonoids present in the inflorescence of
sunflower. Braz. J. Botany. 42, 421–429. doi: 10.1007/s40415-019-00552-z

Shivanna, K. R. (2014). “Biotic pollination: how plants achieve conflicting demands
of attraction and restriction of potential pollinators,” in Reproductive Biology of Plants.
Eds. K. G. Ramawat, J. M. Mérillon and K. R. Shivanna (CRC Press, Boca Raton).

Shomali, A., Das, S., Arif, N., Sarraf, M., Zahra, N., Yadav, V., et al. (2022). Diverse
physiological roles of flavonoids in plant environmental stress responses and tolerance.
Plants 11, 3158. doi: 10.3390/plants11223158

Silva, F. A., Guirgis, A., von Aderkas, P., Borchers, C. H., and Thornburg, R. (2020).
LC-MS/MS based comparative proteomics offloral nectars reveal different mechanisms
involved in floral defense of Nicotiana spp., Petunia hybrida and Datura stramonium. J.
Proteomics 213, 103618. doi: 10.1016/j.jprot.2019.103618

Skinner, J. A. (1987). Abundance and spatial distribution of bees visiting male-sterile
and male-fertile sunflower cultivars in California. Environ. Entomology 16, 922–927.
doi: 10.1093/ee/16.4.922
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et al. (2022). Genetic basis and dual adaptive role of floral pigmentation in sunflowers.
eLife 11, e72072. doi: 10.7554/eLife.72072

Tomás-Barberán, F. A., Martos, I., Ferreres, F., Radovic, B. S., and Anklam, E. (2001).
HPLC flavonoid profiles as markers for the botanical origin of European unifloral
honeys. J. Sci. Food Agric. 81, 485–496. doi: 10.1002/jsfa.836

Tourbez, C., Semay, I., Michel, A., Michez, D., Gerbaux, P., Gekière, A., et al. (2023).
Heather pollen is not necessarily a healthy diet for bumble bees. Belgian J. Zoology 153,
105–124. doi: 10.26496/bjz.2023.111

Treanore, E. D., Vaudo, A. D., Grozinger, C. M., and Fleischer, S. J. (2019).
Examining the nutritional value and effects of different floral resources in pumpkin
agroecosystems on Bombus impatiens worker physiology. Apidologie 50, 542–552.
doi: 10.1007/s13592-019-00668-x

Truzzi, C., Illuminati, S., Annibaldi, A., Finale, C., Rossetti, M., and Scarponi, G.
(2014). Physicochemical properties of honey from marche, central Italy: classification
of unifloral and multifloral honeys by multivariate analysis. Natural Product Commun.
9, 1595–1602. doi: 10.1177/1934578X1400901117

Tsuruda, J. M., Chakrabarti, P., and Sagili, R. R. (2021). Honey bee nutrition.
Veterinary Clinics North A. Food Anim. Practice. 37, 505–519. doi: 10.1016/
j.cvfa.2021.06.006

Vanderplanck, M., Gilles, H., Nonclercq, D., Duez, P., and Gerbaux, P. (2020).
Asteraceae paradox: Chemical and mechanical protection of Taraxacum pollen. Insects
11, 304. doi: 10.3390/insects11050304

Vanderplanck, M., Marin, L., Michez, D., and Gekière, A. (2023). Pollen as bee
medicine: is prevention better than cure? Biology 12, 497–519. doi: 10.3390/
biology12040497

Vanderplanck, M., Roger, N., Moerman, R., Ghisbain, G., Gérard, M., Popowski, D.,
et al. (2019). Bumble bee parasite prevalence but not genetic diversity impacted by the
invasive plant Impatiens glandulifera. Ecosphere 10, e02804. doi: 10.1002/ecs2.2804

Vannette, R. L. (2020). The floral microbiome: Plant, Pollinator, and Microbial
Perspectives. Annu. Rev. Ecology Evolution Systematics. 51, 363–386. doi: 10.1146/
annurev-ecolsys-011720-013401

Vaudo, A. D., Dyer, L. A., and Leonard, A. S. (2024). Pollen nutrition structures bee
and plant community interactions. Proc. Natl. Acad. Sci. U. States A. 121, e2317228120.
doi: 10.1073/pnas.2317228120

Vaudo, A. D., Patch, H. M., Mortensen, D. A., Tooker, J. F., and Grozinger, C. M.
(2016). Macronutrient ratios in pollen shape bumble bee (Bombus impatiens) foraging
Frontiers in Plant Science 29
strategies and floral preferences. Proc. Natl. Acad. Sci. U. States A. 113, e4035–e4042.
doi: 10.1073/pnas.1606101113

Vaudo, A. D., Tooker, J. F., Patch, H. M., Biddinger, D. J., Coccia, M., Crone, M. K.,
et al. (2020). Pollen protein: lipid macronutrient ratios may guide broad patterns of bee
species floral preferences. Insects 11, 132–146. doi: 10.3390/insects11020132

Vear, F., Pham-Delègue, M., Tourvieille de Labrouhe, D. D., Marilleau, R., Loublier,
Y., le Métayer, M., et al. (1990). Genetical studies of nectar and pollen production in
sunflower. Agronomie 10, 219–231. doi: 10.1051/agro:19900305
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