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in greenhouses based on large
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improved YOLOv8
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Fuchuan Ni4 and Fang Zheng4

1College of Mathematics and Computer Science, Zhejiang A&F University, Hangzhou, China, 2Key
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Introduction: In the context of intelligent strawberry cultivation, achieving multi-

stage detection and yield estimation for strawberry fruits throughout their full

growth cycle is essential for advancing intelligent management of greenhouse

strawberries. Addressing the high rates of missed and false detections in existing

object detection algorithms under complex backgrounds and dense multi-target

scenarios, this paper proposes an improved multi-stage detection algorithm

RLK-YOLOv8 for greenhouse strawberries. The proposed algorithm, an

enhancement of YOLOv8, leverages the benefits of large kernel convolutions

alongside a multi-stage detection approach.

Method: RLK-YOLOv8 incorporates several improvements based on the original

YOLOv8 model. Firstly, it utilizes the large kernel convolution network RepLKNet

as the backbone to enhance the extraction of features from targets and complex

backgrounds. Secondly, RepNCSPELAN4 is introduced as the neck network to

achieve bidirectional multi-scale feature fusion, thereby improving detection

capability in dense target scenarios. DynamicHead is also employed to

dynamically adjust the weight distribution in target detection, further

enhancing the model’s accuracy in recognizing strawberries at different

growth stages. Finally, PolyLoss is adopted as the loss function, which

effectively improve the localization accuracy of bounding boxes and

accelerating model convergence.

Results: The experimental results indicate that RLK-YOLOv8 achieved a mAP of

95.4% in the strawberry full growth cycle detection task, with a precision and F1-

score of 95.4% and 0.903, respectively. Compared to the baseline YOLOv8, the

proposed algorithm demonstrates a 3.3% improvement in detection accuracy

under complex backgrounds and dense multi-target scenarios.
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Discussion: The RLK-YOLOv8 exhibits outstanding performance in strawberry

multi-stage detection and yield estimation tasks, validating the effectiveness of

integrating large kernel convolutions and multi-scale feature fusion strategies.

The proposed algorithm has demonstrated significant improvements in

detection performance across various environments and scenarios.
KEYWORDS

YOLOv8, RepLKNet, RepNCSPELAN4, DynamicHead, PolyLoss, full growth cycle of
strawberry fruits
1 Introduction

In recent years, the increasing demand for agricultural

modernization and intelligence has made the precise detection of

strawberries throughout their full growth cycle crucial. It holds the

potential to significantly enhance yield estimation accuracy and

optimize resource allocation (Zheng et al., 2021; Hopf et al., 2022).

Strawberries, as one of the most consumed fruits globally, play a

prominent role in China’s agricultural economy, with the country

leading in global strawberry production (Sobekova et al., 2013;

Hernández-Martıńez et al., 2023). Accurate yield predictions not

only assist farmers in formulating optimal planting and

management strategies but also provide agricultural managers

with the scientific basis for market supply, thereby contributing to

sustainable agricultural development (Nassar et al., 2020).

Greenhouse strawberries, as high-value products, are priced

individually in the premium fruit market. Multi-stage detection of

strawberries throughout their growth cycle allows for accurate

predictions of the number of fruits that are likely to reach the

market, which is critical for maximizing economic benefits and

resource utilization efficiency (Kempler, 2002).

The main challenge in strawberry yield estimation lies in the

complexity of fruit detection (Wang et al., 2022). Strawberries are

typically small, densely packed, and often obscured by leaves,

making detection difficult. In addition, variations in lighting,

shadows, and background clutter within greenhouse

environments further complicate the detection process (Zheng

et al., 2021). Traditional image processing methods based on

color, shape, and texture features have shown limited

effectiveness, particularly in handling partial occlusion and

overlapping fruit. Moreover, many traditional models rely heavily

on single-task detection, which fails to account for the dynamic

nature of fruit growth stages. Various camera sensors, such as RGB,

RGB-depth (RGB-D), infrared (IR), and multispectral imaging,

have been applied to strawberry production (Liu et al., 2014;

Xiong et al., 2019; Anraeni et al., 2021). For example, Rajendra

et al. (2009) developed an RGB-to-hue, saturation, and intensity

(HSI) color mapping algorithm for mature strawberries, achieving
02
76% accuracy for unobstructed ripe strawberries, but failing to

detect unripe ones. To address these limitations, multi-scale feature

fusion, dynamic attention mechanisms, and large receptive fields

are crucial for accurately detecting strawberries throughout their

growth cycle in real-time, particularly in environments where fruits

are closely clustered and partially hidden. This paper proposes

RLK-YOLOv8 to improve the accuracy of multi-stage strawberry

detection in complex greenhouse environments. The contributions

of this study are as follows:
1. The RepLKNet module is integrated into the backbone to

expand the receptive field, enhancing feature extraction and

improving detection accuracy in occluded and densely

clustered strawberry environments.

2. The RepNCSPELAN4 module is employed as the neck

component, optimizing multi-scale feature fusion to

improve the model’s ability to distinguish strawberries

from complex backgrounds.

3. The DynamicHead module is introduced to enable adaptive

detection across different growth stages, enhancing

robustness against variations in fruit size, occlusion, and

lighting conditions.

4. PolyLoss is utilized as the loss function to optimize

convergence and balance detection precision across

multiple strawberry growth stages, reducing false positives

in cluttered greenhouse settings.
The rest of this study is organized as follows: Section 2 reviews

relevant methods in strawberry detection, including recent YOLO

advancements in agriculture. Section 3 describes the experimental

methods and principles, focusing on YOLOv8 architecture and the

proposed RLK-YOLOv8 model. Section 4 presents and analyzes the

experimental results, comparing RLK-YOLOv8 with other detection

algorithms. Section 5 discusses the challenges encountered

throughout the study, including limitations of the dataset and the

model’s performance under complex environmental conditions.

Finally, Section 6 concludes the study and outlines future research

directions in strawberry detection and agricultural applications.
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2 Related work

YOLO-based models have shown impressive results in object

detection tasks, but challenges remain, especially with occlusion and

dense object clustering. To address these challenges, methods such

as transfer learning and multi-domain adaptation have been

proposed to improve feature extraction. For instance, adversarial

transfer learning has been used for image segmentation across

different domains, increasing model robustness in complex

environments (Mishra et al., 2023). Deep learning models in crop

detection are gradually replacing traditional feature extraction-

based methods. Common models include R-CNN (He et al.,

2017), SSD (Liu et al., 2016), RetinaNet (Lin, 2017), and the

YOLO (Bochkovskiy et al., 2020) series. These models have been

successfully applied to agriculture, with Transformer-based models

recently improving fruit detection in complex environments. Wei

et al. (2025) proposed a green apple detection method using an

enhanced DETR network with multidimensional feature extraction

and Transformer modules, improving detection accuracy for near-

color fruits under challenging conditions. Chen et al. (2019) used

drones to capture top-view images of strawberries, employing a

deep neural network to estimate yield with 84.1% accuracy.

Similarly, Zhang et al. (2020) used Faster R-CNN to analyze

strawberry plant vigor through remote sensing images. Zhao et al.

(2023) introduced an improved CR-YOLOv5s algorithm, using

coordinate attention mechanisms to detect chrysanthemum buds

and flowers in complex backgrounds, achieving an average accuracy

of 93.9%, which forms a reliable basis for flower yield estimation.

While many studies have focused on agricultural robots for large-

scale farming, fewer have addressed small-scale agriculture.

Fujinaga (2024) developed a multi-functional agricultural robot

capable of both fruit harvesting and truss pruning, detecting cutting

points through deep learning-based semantic segmentation and

plant features. This highlights the importance of multi-tasking in

small-scale agriculture for enhancing robot efficiency.

In strawberry detection, research has primarily focused on

mature fruit for harvesting, with limited studies on detecting

fruits in the flowering and early development stages. To address

this, recent progress in large-kernel convolutional networks has

emerged due to their ability to expand receptive fields and enhance

global feature extraction. Ding et al. (2022) proposed the RepLKNet

(Reparameterized Large-Kernel Network), which uses ultra-large

kernels to expand the receptive field, improving efficiency by

reparameterizing smaller kernels. Pei et al. (2024) employed

RepLKNet in plant disease recognition, addressing the limitations

of small-kernel networks and improving performance, achieving an

overall accuracy of 93.6%.

This paper proposes an improved method for multi-stage

detection of strawberries throughout their growth cycle, based on

the You Only Look Once version 8 (YOLOv8) (Sohan et al., 2024)

model, named RLK-YOLOv8 (Reparameterized Large-Kernel

YOLOv8). The RLK-YOLOv8 model leverages deep CNNs to

handle strawberry detection in challenging greenhouse

environments. Adaptive CNNs have been shown to improve

performance by capturing complex features and compensating for
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environmental variables such as lighting and occlusion (Babu et al.,

2023). The model incorporates RepLKNet (Ding et al., 2022) in the

backbone to enhance feature extraction, particularly for severe

occlusion and lighting variations. Next, RepNCSPELAN4

(Repeated Normalized Cross Stage Partial with Efficient Large

Kernel Attention Network) (Dixit, 2024) is used for multi-scale

feature fusion, improving detection across different growth stages

and sizes. DynamicHead (Dai et al., 2021) is incorporated as the

detection head, using a self-attention mechanism to enhance scale,

spatial, and task awareness. Finally, PolyLoss (Leng et al., 2022) is

applied to optimize the model’s convergence, improving

localization and detection performance for strawberries at various

growth stages.
3 Materials and methods

3.1 YOLOv8 baseline network structure

YOLOv8, released by Ultralytics in 2023, is a next-generation

object detection algorithm that integrates state-of-the-art (SOTA)

technologies, offering significant improvements in detection speed

and accuracy compared to previous versions (Sohan et al., 2024).

The YOLOv8 network architecture comprises four key components:

Input, Backbone, Neck, and Detection Head. The Input component

is responsible for preprocessing images. The Backbone network

utilizes a CSPDarknet structure and introduces the C2f module to

replace the C3 module in YOLOv5, integrating the Efficient Layer

Aggregation Network (ELAN) from YOLOv7 as part of the

architecture. This design strengthens feature fusion capabilities by

adding cross-layer skip connections and branching structures, while

maintaining the network’s lightweight nature (Dong et al., 2023;

Wang et al., 2023). The Neck network adopts a Path Aggregation

Network-Feature Pyramid Network (PAN-FPN) structure, which

combines top-down and bottom-up path aggregation networks. It

removes convolution operations after upsampling and replaces the

C3 module with the C2f module, achieving a lightweight design

while preserving high performance (Guijin et al., n.d.). The

Detection Head employs a Decoupled-Head structure that

separates the classification and regression tasks into two parallel

sub-networks, reducing task conflicts and enhancing the model’s

generalization capability and robustness. YOLOv8 also adopts an

anchor-free detection strategy, directly predicting the center and

boundary information of objects, which significantly improves

performance in small object detection, making it highly suitable

for various complex real-world applications (Wu and Dong, 2023).
3.2 Improved YOLOv8 structure design
(RLK-YOLOv8)

To achieve multi-stage detection for greenhouse strawberries

throughout their entire growth cycle and address challenges such as

feature extraction difficulties and insufficient receptive field in

complex environments, this study designs a novel detection
frontiersin.org
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algorithm based on the YOLOv8 model (as shown in Figure 1). The

proposed improvements consist of four modules:
Fron
1. C3_RepLKBlock Module (Backbone Part): While the

existing C2f module in YOLOv8 extracts features using

conventional convolutions, its small kernel size may lose

critical information, especially in scenarios where target

edges are blurred or mixed with the background.

Therefore, the C3_RepLKBlock module is introduced into

the YOLOv8 backbone, leveraging large kernel convolutions

to boost the model’s capability in capturing complex features

of strawberries. This structure effectively retains more edge

and detail information in scenarios involving small objects

and significant occlusion, thereby ensuring more accurate

feature representation at different growth stages of

strawberries such as flowering and fruit development.

2. RepNCSPELAN4 Module (Neck Part): This module serves

as an improved version of the feature pyramid architecture,

incorporating cross-scale feature aggregation and enhanced

hierarchical feature fusion. In scenarios with dense multiple

targets, it excels in extracting multi-scale information from

strawberry fruits, thereby improving detection stability

and accuracy.

3. DynamicHead Module (Head Part): The DynamicHead

module leverages a multi-level perception strategy

combined with a self-attention mechanism to equip the

detection head with enhanced scale awareness, spatial

awareness, and task awareness. This innovation

significantly improves the localization accuracy of

bounding boxes, particularly excelling in scenarios with

intricate backgrounds and dim lighting. Moreover, the
tiers in Plant Science 04
DynamicHead is adept at accommodating variations in

target size, thereby enhancing the model’s overall robustness.

4. PolyLoss Module (Loss Part): This loss function optimizes

the regression process of bounding boxes by performing

precise adjustments to the bounding box positions and

shapes using a polynomial formulation. The PolyLoss

effectively handles bounding box overlap issues and

localization bias, thereby increasing overall detection

accuracy and accelerating convergence speed.
3.2.1 Reparameterized large-kernel
network (Backbone)

Compared to traditional small-kernel networks, large-kernel

convolutions can more effectively capture global contextual

information, which is particularly beneficial in target detection

tasks with complex backgrounds (Li et al., 2023). For instance, in

downstream tasks such as ImageNet, RepLKNet employs a large

31×31 kernel, which not only achieves comparable performance to

the Swin Transformer but also demonstrates lower latency and

computational cost (Ding et al., 2024).This study enhances the

YOLOv8 architecture to overcome its limitations in receptive field

for multi-stage strawberry fruit recognition. YOLOv8 incorporates

the C2f module, which processes feature information by splitting

the input feature map into multiple branches, with some

undergoing bottleneck convolutions before merging. While this

design is computationally efficient, it relies primarily on small

kernels, limiting its receptive field and making it suboptimal for

tasks requiring extensive contextual information or when dealing

with complex backgrounds. Consequently, this study proposes

replacing the C2f module in YOLOv8 with the novel
FIGURE 1

RLK-YOLOv8 Network Architecture Diagram.
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C3_RepLKBlock component to enhance the model’s feature

extraction capability in complex scenes (as shown in Figure 2).

The C3_RepLKBlock combines the multi-branch processing

advantages from the CSP (Cross Stage Partial) structure with the

large-kernel design of RepLKBlock (as shown in Figure 3),

significantly expanding the model’s receptive field. In this

module, the input feature map is initially split into two branches

via a 1×1 convolution. One branch is subjected to deep

convolutions and global feature extraction through multiple layers

of RepLKBlock, while the second branch retains the initial input

features and is later fused with the first branch’s output through a

residual connection. Experimental results show that by introducing

a large 27×27 kernel, this module effectively captures global

contextual information in greenhouse strawberry scenes,

overcoming the limitations of small-kernel networks when

handling large targets or complex backgrounds.

In addition, the C3_RepLKBlock integrates the advantages of

both small and large convolutional kernels, achieving a balance

between capturing global feature and preserving local details, which

is particularly effective in multi-scale object detection tasks. This

enhancement endows the model with stronger spatial information

aggregation capabilities in multi-stage strawberry fruit recognition,

resulting in significant improvements in both detection accuracy

and efficiency. Compared to the original YOLOv8 architecture, this

modification better captures the subtle differences across various
Frontiers in Plant Science 05
growth stages of strawberry fruits, providing more accurate

recognition results in complex greenhouse environments.
3.2.2 RepNCSPELAN4 module (Neck)
In complex scenarios, the surface features of greenhouse

strawberries are easily affected by background interference,

resulting in a less defined boundary between the fruit’s edges and

the surrounding background. The existing C2f module in the Neck

network primarily utilizes conventional convolution (Conv) for

feature extraction from input images. This not only generates a

substantial amount of redundant structural information, increasing

the computational complexity of the model, but also potentially

causes false positives and missed detections. As input data

undergoes multiple layers of feature extraction and spatial

transformations, there is a loss of original information. This loss

may lead the network to establish incorrect associations between the

target and the input, thereby skewing the model’s predictions.

According to the information bottleneck principle (Tishby, n.d.),

input data X passing through consecutive network layers can result

in information loss. During backpropagation, this may cause

gradient vanishing, which impacts parameter fitting and

prediction of Y (as shown in Equation 1).

I(X,X) ≥ I(Y ,X) ≥ I(Y , fq(X)) ≥ I(X, gj(fq(X))) (1)
FIGURE 2

Comparison of Network Structures: C2f, C3, and C3_RepLKBlock.
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Where, I represents mutual information, while f and g denote

transformation functions with q and j as their respective

parameters. In a deep neural network, fq(   ) and gj(   ) correspond

to two consecutive layers within the network. According to

Equation 1, as the number of network layers increases, the

probability of losing original information also grows. Deep neural

networks exhibit a decreased ability to preserve comprehensive

information about the predicted target at the output stage.

Consequently, the use of incomplete information during network

training can result in unreliable gradients and poor convergence.

RepNCSPELAN4 is an advanced feature extraction and fusion

module that ingeniously integrates the strengths of the Cross-Stage

Partial Network (CSPNet) and the Efficient Layer Aggregation

Network (ELAN) to design an efficient and versatile aggregation

network structure (Wang et al., 2024) (as shown in Figure 4A). This

module primarily composed of a convolution module and

RepNCSP, with RepNCSP incorporating convolution modules

and several RepNBottleneck submodules (as shown in Figure 4B).

Serving as the foundational building block, RepNBottleneck

integrates reparameterized convolution blocks with the SiLU

activation function, significantly enhancing the network’s learning

capability (as shown in Figures 4C, D). The architecture of this

module is shown in Figure 4, where X and Y represent the input and
Frontiers in Plant Science 06
output data of the module, respectively, and c1 and c2 indicate the

input and output channel numbers, respectively.

CSPNet addresses the problem of redundant gradient

information by integrating feature maps at different stages of the

network, thereby enhancing learning capability while reducing

computational cost and memory usage (as shown in Figure 5A).

Moreover, ELAN ensures the convergence and gradient

transmission efficiency of deep networks by designing an efficient

gradient propagation path (as shown in Figure 5B). Consequently,

RepNCSPELAN4 not only improves the model’s feature extraction

capabilities but also optimizes computational efficiency, achieving

an optimal balance between performance and resource utilization.

In various network layers, the RepNCSPELAN4 module applies

upsampling techniques to enhance the spatial resolution of feature

maps. By concatenating the upsampled feature maps with those

from the preceding layer, the module facilitates multi-scale data

integration, thereby preserving fine-grained features and spatial

connections, ultimately improving target localization and

recognition accuracy.

In YOLOv8, although the C2f module enhances the model’s

ability to capture detailed and semantic information, it also

increases computational complexity, thus affecting the balance

between performance and resource usage. Replacing the C2f
FIGURE 3

RepLKBlock Network Architecture Diagram.
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module in the Neck with the RepNCSPELAN4 module reduces

computational overhead and significantly improve model

performance. By addressing the issue of redundant gradient

information and utilizing an efficient gradient propagation path,

the RepNCSPELAN4 demonstrates excellent performance in

balancing model accuracy and computational efficiency.
Frontiers in Plant Science 07
3.2.3 DynamicHead module (Head)
The main role of the detection head is to handle target

recognition and localization. Typical detection heads include the

basic detection head and the AsDDet detection head. The basic

detection head extracts information from feature maps and outputs

bounding box predictions and class probabilities. Although the
FIGURE 4

Network Structures of RepNCSPELAN4 (A), RepNCSP (B), RepNBottleneck (C), and RepConvN (D) Modules.
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AsDDet detection head employs an asymmetric structural design,

which allows feature maps from the backbone network to be divided

into two prediction branches after channel adjustment—thereby

decoupling classification and regression tasks—it requires high

computational resources and exhibits weak generalization

capabilities. Consequently, the AsDDet detection head is not well-

suited for multi-stage detection of greenhouse strawberries as a

universal detection head.

To address these issues, this study adopts the DynamicHead

detection head to replace the AsDDet detection head, aiming to

enhance the model’s detection performance and adaptability. The

DynamicHead detection head utilizes attention mechanisms from

three perspectives: scale awareness, spatial localization, and multi-

task adaptation. The self-attention mechanism between feature

hierarchies facilitates the model to more accurately identify

targets of varying sizes. The self-attention mechanism across

spatial positions allows the model to focus more precisely on

specific regions within the image, thereby improving the accuracy

of target localization. The self-attention mechanism across output

channels enables the model to adjust attention distribution based on

the demands of different tasks, thereby enhancing the model’s

flexibility and adaptability. The architecture of the DynamicHead

is illustrated in Figure 6.

Before utilizing DynamicHead, the feature pyramid outputs

from the backbone network must be scaled to a consistent

resolution. The scaled feature pyramid can be represented as a

four-dimensional tensor F ∈ RL�H�W�C , where L denotes the

number of feature pyramid levels, H represents the height of the

feature maps, W represents width of the feature maps, and C

represents the number of channels (Dai et al., 2021). Further,

define S = H � L, conceptualizing the feature map as a three-

dimensional tensor with dimensions L, S and C, which

correspond to scale awareness, spatial awareness, and task

awareness, respectively. The formulas are as follows (as shown in

Equation 2):
Frontiers in Plant Science 08
WL(F) = pC(pS(pL(F) · F) · F)   (2)

pL(F) = s (f (
1
SCoS,CF)) · F (3)

  pS(F) · F =
1
Lo

L

l=1
o
K

k=1

wl,k · F(l; Pk + DPk; c) · Dmk (4)

  pC(F) · F = max(a1(F) · Fc + b1(F),a2(F) · Fc + b2(F))   (5)

Where, WL represents the attention function, pL denotes the

scale-aware attention, pS represents the spatial-aware attention, and
pC refers to the task-aware attention. s is the Hard Sigmoid

function, while f is a linear function similar to a 1×1 convolution

(as shown in Equation 3). K indicates the number of sparse

sampling locations, Pk + DPk is the self-learned spatial offset, DPk
represents the ambiguous region. Dmk represents the self-learned

importance (as shown in Equation 4). Fc is the feature of the c-th

channel split, a and b are learnable parameters that can be used to

control the activation threshold (as shown in Equation 5).

After mapping, the feature maps sequentially pass through the

scale-aware module (pL), spatial-aware module (pS), and task-aware
module (pC), achieving a unified attention mechanism within the

detection head. In the scale-aware module, the dimension of the

feature map is first subjected to global average pooling, followed by

a 1×1 convolution layer and ReLU activation function for feature

extraction. Subsequently, the features are activated by the hard-

sigmoid function, and the output is fused with the input feature

map to produce the scale-aware module’s output.

In the spatial-aware module, a 3×3 convolution is applied to the

input tensor to obtain the feature map’s offset values and weights.

Deformable convolution is utilized to further capture positional

information of the targets in the feature maps. The task-aware

module reduces the parameters by performing global average

pooling along the L� S dimension. Subsequently, it refines the
FIGURE 5

CSPNet (A) and ELAN (B) Structures.
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features through two fully connected layers followed by a

normalization operation, which helps to reduce noise and

enhance the stability of feature representation. This two-layer

fully connected network efficiently compresses the feature map’s

dimensions while highlighting key features. Finally, with the help of

a dynamic ReLU activation function, the module further enhances

the model’s adaptability across different tasks, achieving precise task

awareness. DynamicHead incorporates a multi-head self-attention

mechanism in the detection head, enabling the model to flexibly to

targets of varying sizes and complexities, thereby improving its

flexibility and generalization capability.
3.2.4 PolyLoss module (Loss)
In the optimization of classification models, the choice of the

loss function plays a crucial role in determining model

performance. The traditional cross-entropy loss function has

demonstrated outstanding performance in numerous classification

tasks. However, when faced with dataset exhibiting imbalanced

class distribution, the model tends to favor classes with larger

sample sizes, leading to a decline in generalization ability (Khan

et al., 2017). To address this issue, this study introduces the

PolyLoss loss function, which is based on the Taylor expansion of

the cross-entropy loss function (Leng et al., 2022). By expanding the

cross-entropy loss function using a Taylor series and adding

perturbations to the first N terms of the expansion, PolyLoss
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provides a more flexible structure that can be suitable for

different tasks and datasets. This flexibility effectively mitigates

the influence of data imbalance and enhances the model’s ability

to discriminate minority class samples. This study further improves

the PolyLoss loss function by incorporating a weight balancing

factor and a tuning factor, making the loss function more effective

in handling class imbalance between positive and negative samples

as well as difficult-to-classify samples. The improved PolyLoss loss

function is expressed as Equations 6–7.

LPolyLoss(p, y) = at · (1 − pt)
g · BCE(p, y) + ϵ · (1 − pt)

g +1 (6)

at = y · a + (1 − y) · (1 − a) (7)

Where, the Binary Cross-Entropy (BCE) loss function is

commonly used in binary classification tasks to measure the

difference between the predicted probabilities and the actual

labels. Its definition is as Equation 8.

BCE(p, y) =  −½y · log(p) + (1 − y) · log(1 − p)�   (8)

Where, p represents the predicted probability from the model,

and y is the actual label (with values of 0 or 1). BCE is typically used

in conjunction with the sigmoid function to ensure that the output

predictions are probability values. By integrating BCE into the

PolyLoss framework, the imbalance issue of samples in binary

classification tasks can be effectively addressed.
FIGURE 6

DynamicHead Network Architecture.
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The improved PolyLoss function significantly enhances the

model’s overall performance on imbalanced datasets, particularly

in the classification of underrepresented classes, where it shows

marked advantages. By integrating pre-trained hidden layer features

with residual features and training with the improved PolyLoss loss

function, the model demonstrates superior robustness and

generalization across various classification tasks. This approach

not only effectively resolves the problem of data imbalance but

also provides a flexible and efficient loss function option for a wider

range of classification scenarios.
Frontiers in Plant Science 10
4 Experiments and results analysis

4.1 Data collection and preprocessing

The experimental data were collected from strawberry

greenhouse plantations in Lin’an District, Hangzhou, Zhejiang

Province, as well as from strawberries cultivated on campus of

Zhejiang A&F University. The images were captured using a

Huawei P40 Pro+ smartphone. Data collection spanned from

mid-October 2023 to mid-April 2024, covering both autumn and
B

C D

E F

A

FIGURE 7

Strawberry Samples in Different Growth Stages and Environments: (A) Full Growth Cycle of Strawberries - Flowering Stage, (B) Full Growth Cycle of
Strawberries - Fruit Development Stage, (C) Full Growth Cycle of Strawberries - Fully Ripened Stage, (D) Full Growth Cycle of Strawberries - Half-
Ripened Stage, (E) Full Growth Cycle of Strawberries - Complex Samples, (F) Full Growth Cycle of Strawberries - Campus-Grown Samples.
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winter seasons. The collection took place daily between 1:00 PM

and 5:00 PM, with shooting angles ranging from 30°to 60° and

shooting distances randomly set. The image’s resolution is

6000×4000 pixels. Ultimately, a total of 3,628 raw images were

obtained, with examples shown in Figure 7.

In the training process, we utilized random image scaling and

Mosaic data augmentation techniques as online data augmentation

methods. The Mosaic data augmentation technique involves

randomly scaling four images targeted for detection and

seamlessly stitching them into a single novel composite image (as

shown in Figure 8), followed by occlusion processing in local

regions to simulate various complex background environments.

This approach not only enriches the background information

surrounding the detection targets but also effectively enhances the

model’s detection accuracy under challenging scenarios.

Subsequently, the dataset was manually annotated using the

labeling tool LabelImg, with rectangular bounding boxes used to
B

C

A

FIGURE 8

Strawberry Fruits throughout the Full Growth Cycle image’s data enhancement effect: (A–C) represent the data enhancement effect after different
methods. Use the numbers 0-3 to label the different growth stages of strawberry fruits: 0 = fully-ripened, 1 = half-ripened, 2 = fruit-development, 3
= flowering.
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FIGURE 9

Growth Stage Classification Standards for Strawberries in the Full
Growth Cycle.
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mark the locations and categories of different stages in the full

growth cycle of strawberry fruits. In this study, the categories of

strawberry growth stages were divided into four classes (as shown in

Figure 9): the flowering stage is labeled as “flowering,” the fruit

development stage as “fruit-development,” the half-ripened stage as

“half-ripened,” and the fully ripened stage as “fully-ripened”.

Considering that strawberries in the image may be severely

obscured by surrounding plant parts, affecting recognition accuracy,

we excluded strawberry fruits with a surface area exceeding 80%

that were obscured from the annotation. The dataset was afterwards

randomly divided into training, validation, and testing sets in a ratio

of 8:1:1, with the training images independently and uniformly

sampled from the entire dataset. The final distribution of the

number of images and target objects in the dataset is shown

in Table 1.
4.2 Experimental environment and method

All experiments in this study were conducted under the same

hardware environment, with the detailed configuration parameters

shown in Table 2. A transfer learning training strategy was

employed, leveraging the common feature knowledge of

convolutional layers to achieve more stable network learning. By

combining pretraining and fine-tuning approaches, the

generalization ability of the network was significantly improved.

In the experiments, the input image size was set to 640×640

pixels to balance detection accuracy and computational efficiency.

For model optimization, the AdamW optimizer was used with an

initial learning rate of 0.01, dynamically adjusted using the cosine

annealing learning rate scheduling strategy to ensure smooth model

convergence. To accelerate the training process and reduce the risk

of overfitting, the momentum factor was set to 0.937, and the weight

decay coefficient was set to 0.0005, ensuring stability during weight

updates and preventing excessive parameter adjustment. The entire

training process lasted for 300 epochs, employing mixed precision

(AMP) training to improve computational efficiency and

memory utilization.

Training was divided into two stages: frozen and unfrozen.

During the frozen stage, the parameters of the initial layers of the

backbone network remained unchanged, focusing on optimizing

the model’s later layers to reduce memory usage and accelerate

training speed of the model. In the unfrozen stage, all layer weights
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were unlocked, enabling optimization across the entire network to

enhance the extraction of target features.

To enhance the model’s generalization ability, various data

augmentation strategies were employed, including horizontal

fl ipping (with a probability of 0.5), HSV color space

augmentation (Hue set to 0.015, Saturation set to 0.7, and Value

set to 0.4), random translation (± 0.1), and random scaling (± 0.5).

Additionally, the probability of Mosaic data augmentation was set

to 1.0 to improve the model’s robustness to diverse targets. During

the validation phase, non-maximum suppression (NMS) was

applied with an Intersection over Union (IoU) threshold of 0.7,

and the maximum number of detections per image was limited to

300 to ensure precise target selection.
4.3 Evaluation metrics

To evaluate the effectiveness of the detection model, this study

utilized Precision, Recall, F1-score, and mean Average Precision

(mAP) as evaluation metrics for the multi-stage recognition of

greenhouse strawberries throughout their full growth cycle. The F1-

score is defined as the harmonic mean of Precision and Recall. The

specific definitions are as follows (as shown in Equations 8–10):

  precision = TP
TP+FP (8)

 Recall = TP
TP+FN (9)

  F1 = 2� precision�Recall
precision+Recall   (10)

mAP =
1
No

N

i=1
APi (11)

In this context, TP (True Positive) represents the number of

strawberries correctly predicted as present, FP (False Positive) refers

to the number of instances incorrectly predicted as strawberries,

and FN (False Negative) denotes the number of undetected

strawberries, i.e., missed detections. The Average Precision (AP)

is defined as the area under the Precision-Recall curve, which

evaluates the detection performance for a single category. For

multi-class recognition tasks, the mean Average Precision (mAP),

which is the average of AP across all categories, is used to measure

the overall detection accuracy. Here, N represents the total number
TABLE 1 Dataset for Multi-Stage Strawberry Growth Cycle.

Dataset Number of images Flowering Stage Fruit Development
Stage

Half-Ripened Stage Fully Ripened Stage

Train set 2902 1220 9537 2403 2843

Validation set 362 190 1238 310 328

Test set 364 141 1172 296 316

Total 557 1551 11947 3009 3487
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of categories, and APi is the average precision for the i-th category.

A higher mAP value indicates better overall detection performance

of the multi-stage recognition model for greenhouse strawberries

throughout their full growth cycle (as shown in Equation 11).
4.4 Analysis of experimental results

The model underwent training for 300 epochs. The loss curve of

the improved YOLOv8 network showed a sharp decline in loss values

within the initial 10 epochs, indicating a rapid model convergence.

Subsequently, both the training and validation loss values gradually

converged, with the training loss fluctuating between 0.02 and 0.1,

and the validation loss ranging from 0.1 to 0.16. As shown in

Figure 10, the RLK-YOLOv8 model’s training and validation loss

values decreased swiftly and tended to stabilize, demonstrating the

effectiveness and robust learning capability of the improved model.

Based on the experimental results presented in Table 3, RLK-

YOLOv8 outperformed the original YOLOv8 in detecting

strawberries at different growth stages. For overall detection,

RLK-YOLOv8 achieved a 3.3% improvement in precision,

reaching 0.934, while the mAP increased from 0.948 to 0.954.

Specifical ly, at different growth stages, RLK-YOLOv8
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demonstrated a significant 6.4% increase in precision during the

flowering stage and improvements of 1.9% and 2.4% in the fruit

development stage and fully ripened stage, respectively. Although

RLK-YOLOv8 showed a slight decline in recall during the

flowering, fruit development, and fully ripened stages, it remained

relatively stable in the half-ripened stage. Furthermore, compared to

the original YOLOv8 model, RLK-YOLOv8 achieved higher mAP

values across all stages except for a slight decrease in the fruit

development stage. Notably, in the half-ripened stage, RLK-

YOLOv8 outperformed the original YOLOv8 by 0.9% in terms of

mAP. Overall, RLK-YOLOv8 demonstrated more accurate

detection of strawberries at different growth stages and exhibited

superior comprehensive performance.

To validate the effectiveness of the proposed RLK-YOLOv8

improvements on model performance, we conducted a step-by-step

evaluation by progressively integrating various modules into the

YOLOv8 framework. Ablation experiments were performed to

analyze the feasibility of each improvement strategy, where “√”

indicates the application of a corresponding optimization strategy,

while “-” denoted its absence. All other training parameters were

held constant to ensure the reliability of our results. The Ablation

study aimed to reveal the individual contributions of different

strategies to model performance. The results, presented in

Table 4, underscore the significant enhancements in Precision

achieved by all improvement strategies. Overall, our findings

robustly demonstrate the efficacy of the proposed RLK-YOLOv8

improvements in boosting model performance.

During the feature extraction process, the C3_RepLKBlock

module was introduced to enhance the model’s ability to capture

small object features. This improvement demonstrated outstanding

performance in Precision (from 0.901 to 0.928), but showed slight

declines in mAP (0.948 to 0.946) and F1 (0.8975 to 0.895) compared

to the baseline model, indicating areas for improvement in specific

scenarios. After incorporating the RepNCSPELAN4 module, the
FIGURE 10

Convergence curve for training dataset and validation dataset.
TABLE 2 Experimental Environment.

Configuration Parameter

CPU Intel(R) Xeon(R) Gold 6151 CPU @ 3.00GHz

GPU NVIDIA Tesla T4

OS Ubuntu 22.04.2 LTS

Framework pytorch2.4.1+cu121

CUDA cuda12.1
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model achieved significant improvements in Precision (0.925), mAP

(0.953), and F1 (0.909), highlighting its advantages in handlingmulti-

scale feature fusion and tackling complex object detection tasks. The

inclusion of the DynamicHead module effectively enhanced feature

aggregation capabilities, leading to a high detection accuracy in more

complex tasks, with Precision reaching a high of 0.918. However,

Recall and mAP showed slight declines compared to the baseline

model, reflecting the trade-off between improving Precision and

maintaining other metrics in complex detection tasks. Furthermore,

the introduction of PolyLoss exhibited significantly improved

bounding box regression, resulting in enhanced Precision and more

accurate bounding box positioning.

The final model, RLK-YOLOv8 (OURS), achieved significant

comprehensive performance improvements through the integration

of these modules. Compared to the original YOLOv8, RLK-YOLOv8
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increased Precision to 0.934 and F1 to 0.903, while remaining a nearly

unchanged mAP and a compact parameter size of 11.1 MB.

Consequently, these improvements not only significantly enhanced

detection accuracy but also demonstrated advantages in real-time

performance and lightweight characteristics. This makes RLK-

YOLOv8 particularly well-suited for multi-stage detection tasks of

strawberries throughout the entire growth cycle, especially in

complex environments characterized by varying lighting conditions,

occlusion, and background interference.

The precision-recall curve shown in Figure 11A demonstrates strong

performance across all strawberry growth stages, with the fully-ripened

stage achieving the highest precision of 97.2%. The normalized

confusion matrix in Figure 11B shows high true positive (TP) rates for

all stages: 89% for fully-ripened, 91% for half-ripened, and 93% for fruit-

development, indicating excellent classification accuracy. The false

positive (FP) rate is minimal, and although false negatives (FN) occur

slightly more in the flowering stage, the model still performs consistently

well. These results highlight the robustness of the RLK-YOLOv8 model

in accurately detecting strawberries in complex, occluded environments,

making it a promising solution for yield estimation.

Using feature map visualization techniques, heatmap analysis was

conducted on greenhouse strawberry fruit images, as shown in

Figure 12. By extracting the feature maps outputted by the model,

and subsequently applying dimensionality reduction, normalization,

and pseudo-color mapping, detailed heatmaps of strawberry fruits

were generated. Addressing the challenges of small-scale targets and

occlusion in strawberry fruits, the RLK-YOLOv8 model

demonstrated the ability to accurately focus on the target regions

while effectively reducing interference from the background. This

approach not only effectively suppressed background noise but also

significantly enhanced attention to the target regions, thereby

validating the model’s applicability and robustness in the intricate

multi-stage detection tasks of greenhouse strawberry fruits across

their entire growth cycle.
4.5 Comparison with classical
detection algorithms

To further assess the effectiveness of the proposed RLK-

YOLOv8 model in multi-stage recognition of greenhouse

strawberries throughout their full growth cycle, we compared it
TABLE 3 Experimental Results Comparison: RLK-YOLOv8 vs.
Original YOLOv8.

Metrics Stage YOLOv8 RLK-YOLOv8

Precision

all 0.901 0.934

flowering 0.887 0.951

fruit-
development

0.932 0.951

half-ripened 0.856 0.878

fully-ripened 0.93 0.954

Recall

all 0.896 0.875

flowering 0.824 0.817

fruit-
development

0.93 0.887

half-ripened 0.918 0.916

fully-ripened 0.912 0.878

mAP

all 0.948 0.954

flowering 0.919 0.932

fruit-
development

0.962 0.959

half-ripened 0.943 0.952

fully-ripened 0.966 0.972
TABLE 4 Ablation Study Results.

Model C3_RepLKBlock RepNCSPELAN4 DynamicHead PolyLoss Precision Recall mAP F1 FPS

YOLOv8 – – – – 0.901 0.896 0.948 0.8975 45.38

Strategy1 ✓ – – – 0.928 0.865 0.946 0.895 37.66

Strategy2 – ✓ – – 0.925 0.894 0.953 0.909 28.68

Strategy3 – – ✓ – 0.918 0.858 0.94 0.887 41.04

Strategy4 – – – ✓ 0.913 0.856 0.942 0.884 41.05

OURS ✓ ✓ ✓ ✓ 0.934 0.875 0.954 0.903 33
frontier
The ‘✓’ symbol indicates that the corresponding optimization strategy was applied, while ‘-’ indicates that it was not.
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with mainstream object detection models, including SSD, Faster R-

CNN, YOLOv5, YOLOx, YOLOv7, YOLOv8, and the recently

released YOLOv9, YOLOv10, and YOLOv11. All experiments

were conducted on the same strawberry dataset for training,

validation, and testing to ensure the fairness and comparability of

the results.

The comparative experiments comprehensively evaluated the

performance of different object detection algorithms using seven

evaluation metrics: Precision (P), Recall (R), mean Average

Precision (mAP), F1-score, Frames Per Second (FPS), Floating

Point Operations (FLOPs), and parameter count. These metrics

are summarized in Table 5.
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Two-stage detection algorithm, Faster R-CNN, although

demonstrating excellent performance in recall and mAP, struggles

to meet the requirements of real-time detection applications due to

its high computational cost and parameter size (369.793 GFLOPs

and 136.75 MB, respectively). Meanwhile, SSD, while having a

lower computational cost (61.055 GFLOPs), exhibits relatively low

precision (89.69%) and recall (76.29%), which limiting its

applicability in fine-grained detection tasks.

Among the YOLO series models, YOLOv5, YOLOv7, and

YOLOx demonstrate strong overall performance, with YOLOx

standing out in terms of mAP (94.76%) and recall (92.28%).

However, these models have relatively high computational cost
B

A

FIGURE 11

Precision–Recall curve (A): The horizontal axis represents recall, and the vertical axis represents precision. Confusion matrix (B): “Fully-ripened”
represents the fully-ripened stage, “Half-ripened” represents the half-ripened stage, “Fruit-development” represents the fruit development stage,
“Flowering” represents the flowering stage, and “Background” represents the background class. The rows represent the true labels, and the columns
represent the predicted classes.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1552553
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


He et al. 10.3389/fpls.2025.1552553
(105.165–155.684 GFLOPs) and parameter size (37.211–54.15 MB),

which could present limitations on embedded devices. YOLOv8

achieves stable performance in precision (90.10%) and F1 score

(0.8975), while maintaining a relatively low parameter size (11.137

MB) and moderate computational cost (45.38 GFLOPs), making it a

suitable foundation for further optimization.

YOLOv9, YOLOv10, and YOLOv11, released in 2024, focus

primarily on lightweight design and accuracy optimization.
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YOLOv9 excels in inference speed (FPS) and lightweight design,

with the lowest computational cost (6.702 GFLOPs) and a reduced

parameter size of 1.766 MB, making it well-suited for low-resource

environments. However, YOLOv9 exhibits slightly weaker

performance in precision (89.40%) and recall (87.60%), limiting

its applicability to high-precision detection tasks. Although

YOLOv10 and YOLOv11 excel in their lightweight design and

optimal parameter sizes, their inference speed is significantly
TABLE 5 Performance Comparison of Different Detection Models.

Model P R mAP F1 FPS FLOPs(G) Parameters(MB)

Faster R-CNN 70.11% 92.85% 92.49% 0.8 5.79 369.793 136.75

SSD 89.69% 76.29% 89.43% 0.82 15.42 61.055 24.013

YOLOv5 91.28% 86.65% 91.72% 0.89 19.37 108.279 46.154

YOLOx 90.64% 92.28% 94.76% 0.92 13.96 155.684 54.15

YOLOv7 91.71% 92.62% 93.95% 0.92 10.66 105.165 37.211

YOLOv8 90.10% 88.31% 93.30% 0.8975 45.38 28.653 11.137

YOLOv9 89.40% 87.60% 94.60% 0.88 22.74 6.702 1.766

YOLOv10 89.20% 88.80% 94.20% 0.89 25.36 8.399 2.709

YOLOv11 90.60% 89.20% 94.90% 0.899 24.44 6.444 2.591

RLK-YOLOv8 93.40% 87.50% 95.40% 0.903 33 50.9 11.1
B

A

FIGURE 12

Heatmap Visualizations Based on RLK-YOLOv8: (A) Heatmap visualization for strawberry fruit targets with fewer objects. (B) Heatmap visualization
for strawberry fruit targets with more objects.
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lower than that of YOLOv8, which may restrict their deployment on

embedded devices requiring real-time detection capabilities.

Based on YOLOv8, our proposed RLK-YOLOv8 model

demonstrates substantial enhancements in precision (93.40%),

mAP (95.40%), and F1 score (0.903). Furthermore, with an

inference speed of 33 FPS, it satisfies the needs of typical video

recording applications. RLK-YOLOv8 also strikes a balance

between performance and efficiency, featuring a moderate

computational cost of 50.9 GFLOPs and a compact parameter

size of 11.1 MB, making it highly suitable for deployment in

embedded and resource-constrained environments.

By examining the trends of mean Average Precision (mAP)

across training epochs for multiple object detection models, we

present a more intuitive performance evolution through the curve

graph (as shown in Figure 13). The x-axis denotes the number of

training epochs, spanning from 0 to 300, while the y-axis represents

the mAP values, ranging from 0 to 1. As depicted in the figure, the

mAP curves for different models exhibit a sharp increase during the

early stages of training, followed by gradual stabilization. Notably,

the mAP curve of RLK-YOLOv8 consistently maintains a higher

level compared to the others throughout the entire training process,

ultimately achieving the highest mAP value in the final epochs. This

demonstrates the superior detection performance of the RLK-

YOLOv8 model over the other models analyzed.

In the overall comparison, the trends of mAP for each model

across training epochs exhibit significant differences. Both RLK-

YOLOv8 and YOLOv8 demonstrate a rapid convergence rate,

achieving mAP values exceeding 90% within the first 50 epochs
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and maintaining high precision stability during subsequent training

stages. The mAP performance of RLK-YOLOv8 is slightly superior

to that of YOLOv8, suggesting that the enhanced model excels in

high-precision object detection tasks. YOLOx also achieves mAP

values nearing 90%, with good convergence characteristics, but its

performance in later training stages is slightly inferior to that of

RLK-YOLOv8 and YOLOv8. In contrast, the mAP curve of

YOLOv7 is relatively steady but achieves a lower final accuracy,

typically ranging between 80% and 90%. YOLOv5 and SSD exhibit

slower convergence rates, with mAP values gradually increasing as

training progresses and eventually stabilizing around 80%. Faster R-

CNN, however, shows poor convergence, with mAP fluctuating

around 70% throughout the training process and failing to reach

high accuracy levels.

In summary, RLK-YOLOv8 excels in both final mAP accuracy

and convergence speed, demonstrating strong detection capabilities

and outstanding generalization performance. These findings

indicate that, through the integration of optimization strategies,

RLK-YOLOv8 achieves superior detection accuracy in multi-object

and complex environments, thereby validating the effectiveness and

robustness of its improvements.

Figure 14 presents a comparison of prediction results among

various network models under actual strawberry growth

conditions, highlighting significant differences in detection

performance across varying target densities. The detailed

analysis is outlined below:

Column 1 (Figures 14, A1–J1): In scenarios with high target

density and vine occlusion, the detection performance of the models
FIGURE 13

Variation curves of mAP for different models during training. The figure illustrates the mAP performance over training epochs for various models,
including YOLOv7, YOLOx, YOLOv5, SSD, Faster R-CNN, YOLOv8, RLK-YOLOv8, YOLOv9, YOLOv10, and YOLOv11. The curves show the mAP values
as the models progress through different training epochs, with RLK-YOLOv8 demonstrating notable performance improvements over other models
in strawberry detection tasks. The legend identifies the corresponding models for each line.
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varies notably. Specifically, Faster R-CNN exhibits false positives in

the upper right corner and duplicate detections in the lower left

corner, while SSD and YOLOx each show one false positive in the

upper left corner. YOLOv5 detects some targets but fails to capture

certain objects at the edge of the image in the lower left corner.

YOLOv10 incorrectly identifies one object on the left side as a

positive. In contrast, YOLOv7, YOLOv8, YOLOv9, YOLOv11, and

RLK-YOLOv8 demonstrate stable detection under this condition,

accurately recognizing all targets and precisely locating bounding

boxes without any missed or false detections.

Column 2 (Figures 14, A2–J2): In scenarios characterized by

low target density but mutual occlusion among fruits, several

models exhibit suboptimal detection results. Specifically, Faster R-

CNN shows one duplicated annotation and two false positives

within its detection boxes. YOLOv5 displays significant

localization errors in this context. YOLOv10 experiences missed

detections, while YOLOv11 shows false positives and overlapping

bounding boxes. Conversely, SSD, YOLOx, YOLOv7, YOLOv8,

and RLK-YOLOv8 maintain relatively stable detection accuracy

under these conditions, showcasing superior performance with

precise bounding boxes and no instances of offset or

false detections.
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Column 3 (Figures 14, A3–J3): In scenarios with high target

density and leaf occlusion, the performance differences among

models are particularly evident. Faster R-CNN, SSD, YOLOv5,

YOLOx, and YOLOv10 all exhibit 1–2 false positives in the upper

right corner during detecting dense targets. Notably, SSD, YOLOv5,

and YOLOv10 additionally fail to accurately identify one occluded

target located in the center. In contrast, YOLOv7, YOLOv8, YOLOv9,

YOLOv11, and RLK-YOLOv8 excel in this scenario, achieving precise

and error-free bounding box localization for all targets without any

overlaps or false detections.

Comprehensive Evaluation: RLK-YOLOv8 demonstrates the best

detection performance under various target densities and occlusion

conditions, especially in complex scenarios with high target density. It

consistently and accurately recognizes and localizes targets.

Compared with other models, RLK-YOLOv8 exhibits significant

advantages in terms of both detection accuracy and bounding box

precision. Furthermore, RLK-YOLOv8 maintains a balance between

high detection accuracy and lightweight characteristics, achieving an

excellent trade-off between accuracy and real-time performance.

Consequently, the RLK-YOLOv8 model provides effectively support

for multi-stage detection throughout the entire growth cycle of

greenhouse strawberries.
A

B

D

E

F

G

I

H
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FIGURE 14

Detection performance comparison of various models under different occlusion conditions: (A) Faster R-CNN; (B) SSD; (C) YOLOv5; (D) YOLOx;
(E) YOLOv7; (F) YOLOv8; (G) YOLOv9; (H) YOLOv10; (I) YOLOv11; (J) RLK-YOLOv8. (A1–J1): Detection in high target density scenarios with vine
occlusion. (A2–J2): Detection in low target density scenarios with mutual occlusion among fruits. (A3–J3): Detection in high target density
scenarios with leaf occlusion.
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5 Discussion

The detection of strawberries throughout their full growth cycle,

particularly in greenhouse environments, has long been challenging

due to factors like small fruit size, dense packing, occlusion by leaves,

and complex backgrounds. Traditional methods of yield estimation

often struggle to detect strawberries in such conditions, and many

existing algorithms like YOLOv8, while effective in certain

applications, still face difficulties when handling multi-target

scenarios, occlusion, and varying environmental factors. Similarly,

ensemble learning methods have been widely used to improve model

robustness in complex prediction tasks. By combining multiple

learning techniques, these approaches enhance the performance of

the final model, allowing it to generalize better in unpredictable

environments (Mishra, n.d.). In this study, we also employed multi-

stage detection strategies to increase the precision and recall for

strawberry detection under varying greenhouse conditions.

RLK-YOLOv8 addresses these challenges by integrating large

kernel convolutions through RepLKNet, enabling more effective

feature extraction in dense environments. The multi-scale feature

fusion in the RepNCSPELAN4 module further improves the

model’s performance, especially in detecting strawberries at

various growth stages. The DynamicHead module dynamically

adjusts the model’s attention across various scales and occlusions,

improving its ability to detect strawberries in complex, overlapping

scenarios. These improvements have resulted in a 3.3% increase in

precision and a 0.6% improvement in mAP, outperforming

YOLOv8 in multi-stage strawberry detection tasks.

Despite these advancements, RLK-YOLOv8 still faces

challenges in extreme occlusion and highly overlapping targets.

These issues are common in real-world strawberry cultivation,

where fruits are densely packed and often partially hidden. To

further improve detection, future research could explore multi-

sensor fusion and advanced feature extraction techniques, which

would help the model better handle occlusion and complex

background interference. Additionally, expanding the model’s

dataset to include a greater diversity of strawberry varieties and

growth conditions will improve its generalization capabilities,

enhancing its applicability across different agricultural settings.
6 Conclusions

With the rapid development of agricultural digitization and

intelligence, the strawberry industry is evolving from traditional

manual practices to automated, intelligent harvesting and precision

management. This study introduces RLK-YOLOv8, an enhanced

YOLOv8 model specifically tailored for greenhouse strawberry

detection. Compared to the baseline, RLK-YOLOv8 boosts

detection accuracy by 3.3% under challenging conditions, such as

multi-object and complex backgrounds, achieving a mean Average
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Precision (mAP) of 0.954, and an F1-score of 0.903. Its inference

speed of 33 FPS and compact parameter size of 11.1 MB make it

highly suitable for real-time applications and efficient deployment

on embedded and edge devices.

By integrating advanced techniques such as RepLKNet,

RepNCSPELAN4, DynamicHead, and PolyLoss, RLK-YOLOv8

significantly enhances feature extraction, multi-scale target detection,

and bounding box regression accuracy. These improvements not only

validate the superior performance of RLK-YOLOv8 in image detection

tasks but also pave the way for its real-time deployment and low-power

operation on edge devices, contributing to the intelligent

transformation and sustainable development of agricultural production.

RLK-YOLOv8 provides a robust solution for automated

strawberry detection and yield estimation, offering significant

improvements over existing algorithms. Its integration into

precision agriculture systems could help reduce labor costs,

improve operational efficiency, and offer more accurate yield

predictions. Future efforts will focus on enhancing real-time

application performance, expanding its adaptability to varying

environmental conditions, and exploring further deployment on

edge devices to maximize its practical value in smart farming systems.
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