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Introduction: Oryza sativa is one of the most important cereal crops globally.

Methods: The aim of this study was to map areas suitable for the growth and

conservation of O. sativa under current and future climatic conditions, and to

observe the effects of UV variables on the distribution area of O. sativa.

Results: Based on species distribution records, we used the Biomod2 platform to

combine climate data, future shared socioeconomic pathways, and elevation data.

The ensemble model (EM) was constructed by screening multiple species

distribution models (SDMs), including RF, GBM, ANN, and MARS. The ROC value of

the joint model is greater than 0.95, indicating that the model has high reliability and

accuracy. Mean annual temperature (bio01), temperature seasonality (bio04),

minimum temperature in the coldest month (bio06), mean temperature of coldest

quarter (bio11), human footprint and human activity impact index (hfv2geo1) and

annual average ultraviolet radiation (uvb1annualmeanuv.b) were the most important

environmental variables affecting the suitable distribution area ofO. sativa. Under the

current climate conditions, the suitable habitats ofO. sativa are mainly distributed in

the south of the Yangtze River. In the future climate scenario, the total suitable

habitat area of O. sativa tended to decrease, but the suitable distribution area under

the influence of UV was larger than that without UV.

Discussion: Climate change will significantly affect the potential distribution ofO.

sativa in China and increase its extinction risk. Therefore, it is necessary to provide

a reference for the conservation, management, introduction and cultivation of

food crops in China.
KEYWORDS

biomod2, climate change, potential geographic distributions, Oryza sativa, ensemble
model, climate-suitable region
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1 Introduction

Climate change is a persistent and escalating process,

undeniably becoming one of the main drivers of changes in

species distribution and biodiversity (Pigot et al 2023). It has a

profound impact on species’ structure, function, and ecological

traits (Sintayehu 2018). This impact has become a major focus in

global research on species spatial patterns, particularly in terms of

plant distribution. The response of vegetation to climate change and

the resulting shifts in plant distribution areas are important areas of

study (Chen et al. 2022; O’Connor et al 2020). Climate factors are

crucial in determining plant distribution ranges, which can shift

with changing climates. The IPCC (Intergovernmental Panel on

Climate Change) notes that climate change will affect most natural

systems with varying degrees of intensity, threatening food

production and increasing the risk of natural disasters (Arias et al

2021). Research indicates that future climate change will alter the

suitable climatic regions for plants, posing a serious threat to

biodiversity (Tian and Jiang 2015).

Most studies on changes in plant species distribution and their

future trends primarily focus on climate factors, with less attention

given to the synergistic effects of habitat and climate change (Di

Febbraro et al. 2023; Vaccarelli et al. 2023). However, research

indicates that both climate change and land use changes jointly

impact biodiversity and geographical distribution patterns (Song

et al. 2021). As global warming progresses, climate change will not

only alter surface temperatures and precipitation patterns but also

significantly affect plant geographical distributions, causing plants

to adjust their distribution in response to climate shifts.

Additionally, habitat loss due to land use changes will exacerbate

the impact of climate change on global species and ecosystems

(Pant et al 2021). To adapt to climate change, plant communities in

terrestrial ecosystems need to migrate to new suitable habitats that

offer essential ecological comfort to maintain their lifecycle balance.

Some plants have shown a trend of migrating to higher latitudes or

elevations to track changes in their ecological niches (Burrows et al.

2014). Conversely, other studies have found that some plants are

migrating to lower elevations and latitudes to adapt to changing

environments (Lenoir et al. 2010). Climate change introduces high

uncertainty in plant cultivation, and blind planting could impact

quality and lead to resource allocation imbalances (He et al. 2021).

While long-term field trials have traditionally been considered

reliable for determining suitable planting areas, they are resource-

intensive and require observation over multiple growth cycles (Li

et al. 2019). Therefore, predicting potential suitable areas for plants

under future climate change and understanding their cultivation

potential in new environments is increasingly necessary.

Since the 1990s, human-induced declines in stratospheric ozone

concentrations have been accompanied by an increase in ultraviolet

(UV) levels compared to the past, which is likely to continue to

increase in the future. This phenomenon poses a major potential

threat to human health and global agricultural security (Tevini 2004).

Plants are always exposed to UV-B radiation as they require light for

photosynthesis. However, it is well known that exposure to UV-B

radiation directly or indirectly triggers a variety of unfavorable
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responses that can inhibit plant growth and development (Yadav

et al. 2020). Environmental factors and enhanced doses of UV-B

radiation have effects on microorganisms, algae, plants, animals and

human health (Farman et al. 1985). Studies have shown that UV-B

radiation has a significant damaging effect on plants (Tevini and

Teramura 1989). Plants, as stationary organisms, have developed a

variety of morphological, physiological, biochemical and molecular

level responses to various environmental changes, including

increased UV radiation, over a long period of evolution. For

example, plants adopt multiple protective strategies through specific

UV-B signaling pathways, including increased leaf thickness,

synthesis of UV-B-reflecting substances, elevated levels of

antioxidants, and changes in UV-B uptake secondary metabolites at

the cellular level (Yadav et al. 2020). By studying the future

distribution range of plants under UV radiation, it is possible to

gain a deeper understanding of the mechanisms of plant adaptation

to UV-B and provide a theoretical basis for future plant

variety improvement.

Rice (Oryza sativa) is one of the most important food crops

globally, feeding more than half of the world’s population. It is the

second most widely grown cereal crop after wheat (Carrijo et al.

2017; Fukagawa and Ziska 2019). China contributes nearly 30% of

the world’s rice production, and approximately 90% of the world’s

rice is produced in Asia, making China one of the largest rice

producers globally (Samal et al. 2022). Rice plays a crucial role in

human nutrition, as it is rich in minerals such as iron, phosphorus,

and calcium, as well as vitamins B1 and B2, carbohydrates, and

proteins. It is widely used in various dishes to meet human

nutritional needs (Muratbek Kyzy et al. 2023). In addition to

being a major food source, rice can also be used as a raw material

for producing various products, including alcoholic beverages (Ito

and Lacerda 2019; Meng et al. 2019) and sugar (Saithong and

Lomthong 2019). Rice production is directly linked to economic

stability and food security Zhu et al. (2024), having a profound

impact on human survival and progress (Cao et al. 2018). However,

rice growth is influenced by multiple factors, including genetic

information, plant hormones, signaling molecules, nutritional

status, and external environmental conditions such as light,

temperature, and water (Ali and Baloch 2018; Mittler et al. 2004;

Wang H. et al. 2023). Climate change, particularly extreme weather

events like typhoons and high temperatures, poses a threat to rice

supply (Lenaerts et al. 2019). Additionally, changes in soil nutrients,

water quality, and temperature significantly affect rice growth and

yield, with these factors collectively determining the growth and

development performance of rice.

Species distribution models (SDMs) are essential predictive

tools in conservation ecology, effectively studying the ecological

relationships between species and their environments, They are

capable of predicting species distributions under current and future

climate scenarios (Hällfors et al. 2016). SDMs are crucial for

assessing the impact of climate change on species distribution. By

combining known species distribution data with environmental

information, SDMs determine the ecological requirements of

species and use statistical or machine learning methods to predict

suitable areas under various spatial and temporal conditions. These
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models are widely used to understand the environmental needs of

target species, simulating distribution ranges in multidimensional

environments to predict potential suitable habitats under different

environmental changes (Elith and Leathwick 2009). SDMs are

applied in biodiversity conservation research, species invasion

studies, evolutionary biology, and habitat suitability prediction

(Barbet-Massin et al. 2018).

There are now dozens of SDMs, each with its own principles,

algorithms, and predictive performance (Luo et al. 2017). Due to the

different principles and algorithms used by each model, they each

have their advantages and limitations. Additionally, the

performance of each model can become unstable if the input data

changes. Variations in data requirements and algorithms among

different SDMs lead to differences in how environmental factors

impact species distribution, introducing uncertainty into the

simulation results (Guo et al. 2015). Ensemble models (EMs)

improve the reliability of modeling results by combining the true

data captured by individual models and minimizing their inherent

errors (Dormann et al. 2018). In 2003, the integrated modeling

platform Biomod, based on R software, was developed and has since

been widely recognized and used (Bi et al. 2013). This package,

available for free download from CRAN (cran.r-project.org),

includes various species distribution modeling algorithms: GLMs

(Guisan et al. 2002), generalized boosting models (GBMs) (Elith

et al. 2008), generalized additive models (GAMs) (Guisan et al.

2002), classification tree analysis (CTA) (Vayssières et al. 2000),

artificial neural networks (ANN) (Lek and Guégan 1999), surface

range envelope (SRE) modeling (Busby 1991), flexible discriminant

analysis (FDA) (Hastie et al. 1994), multivariate adaptive regression

splines (MARS) (Friedman 1990), random forests (RF) (Breiman

2001) and MaxEnt (Lantschner et al. 2019). Biomod2 integrates

these model results to provide more accurate species distribution

predictions. Compared to single models, Biomod2 enhances

prediction accuracy and increases the reliability of research

findings by applying different statistical methods (Hao et al.

2019). Due to its ability to compensate for the limitations of

individual models, Biomod2 has rapidly become a key tool for

species distribution prediction in recent years (Zhao et al. 2021).

Although each model has inherent flaws, weighting each model

based on TSS (true skill statistic) or ROC (receiver operating

characteristic curve) helps achieve optimal simulation

performance in ensemble models (Shabani et al. 2016).

Research indicates that climate change and human activities are

causing a gradual reduction in the suitable areas and habitats of

most plants (Hao et al. 2019), threatening their reproductive

capacity. This could also affect rice (O. sativa), potentially leading

to food resource shortages. This study integrates the synergistic

effects of climate change and land use changes to develop a

comprehensive ecological niche model for O. sativa, identifying

the main environmental factors limiting its distribution. The study

also maps suitable areas for O. sativa and examines the impact of

UV radiation on its suitable habitats. By considering climate and

land use changes, the aim is to provide more effective references for

the conservation and sustainable use of O. sativa resources and offer

a framework for managing and planning other staple crops.
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2 Material and methods

2.1 Species occurrence data

The distribution data for O. sativa was primarily gathered

through resource-sharing platforms, including the Global

Biodiversity Information Facility (GBIF, https://www.gbif.org/,

accessed on April 5, 2024). Additionally, published literature and

related reports were reviewed using keywords such as O. sativa in

sources like Flora of China, provincial plant floras, and relevant

checklists. A total of 9045 raw records were collected. To reduce the

impact of spatial autocorrelation and sampling bias on the final

predictions, the SDM toolbox (version 2.5) was used to process the

sparse occurrence data, ensuring that only one distribution point

was included per 1 km × 1 km grid cell (Zhang et al. 2024). This

sparse point method was aligned with the resolution of

environmental data to minimize the number of distribution

points affected by spatial autocorrelation and to avoid model

overfitting (Brown et al. 2017). After excluding records with

uncertain information, ambiguous names, non-ground data, and

duplicates, 140 valid distribution point coordinates were retained

for further data processing and analysis. For ease of modeling, the

distribution data file was converted to CSV format.
2.2 Environmental variables

Previous studies have not yet identified the primary environmental

variables limiting the distribution of O. sativa. One objective of this

research is to analyze howO. sativa adapts to environmental conditions.

To achieve this, a broad selection of environmental variables was

included, encompassing factors such as climate, soil, topography, and

anthropogenic influences. A total of 24 environmental variables were

chosen for habitat prediction. These included 19 bioclimatic variables

(downloaded from the WorldClim database www.worldclim.org/data/

worldclim21.html, accessed on April 18, 2024) and three topographic

factors (elevation, aspect, and slope), obtained from the Geospatial

Data Cloud (www.gscloud.org, accessed on April 1, 2024). The

d1_ph_water data are from the Global Water Quality Database

(GLOWAQ) (https://www.glowaq.org), the d1_usda data are from

the United States Department of Agriculture (USDA) Soil Survey

Geographic Database (SSURGO) (https://websoilsurvey.nrcs.

usda.gov), hf_v2geo1 data from the Global Human Footprint

Map (https://sedac.ciesin.columbia.edu), and uvb1_annual_mean_

uv-b data from NASA’s OMI Satellite Observations Dataset

(https://aura.gsfc.nasa.gov). The data were downloaded in raster

format from the respective databases, standardized to the same grid

size and coordinate system, and then converted to ASCII format

using ArcGIS. Climate variables under the Representative

Concentration Pathway (SSP2-4.5) scenario were used for future

predictions. Future climate data were projected for three periods:

the 2050s (average for 2041-2060), the 2070s (average for 2061-

2080), and the 2090s (average for 2081-2100).

Correlation analysis and principal component analysis (PCA) were

performed on 19 climatic factors using the R software (Figure 1) to
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address potential multicollinearity issues among environmental

variables, which could lead to model overfitting and affect prediction

accuracy. Variables with a correlation coefficient exceeding 0.8 were

evaluated, and those with higher contributions to O. sativa distribution

were prioritized for inclusion. Ultimately, the selected environmental

variables included 8 bioclimatic indicators (bio01, bio03, bio04, bio05,

bio06, bio09, bio11, and bio17), 1 topographic indicator (elevation), 2

soil indicators (d1_ph_water and d1_usda), and 1 anthropogenic

indicator (hf_v2geo1) (Table 1). Additionally, the study separately

modeled scenarios with and without UV radiation to analyze its effects.
2.3 Construction and evaluation of SDMs

Biomod2 is a comprehensive platform that establishes the

relationship between species and environmental variables using

statistical and machine learning algorithms. To meet Biomod2’s

modeling requirements and better simulate actual distributions,

1000 pseudo-absence points were randomly selected outside the

predicted suitable range for modeling (Cengic et al. 2020).

To assess the performance of the species distribution models, the

distribution data forO. sativawas randomly divided into two subsets.

One subset, containing 75% of the distribution data, was used for

model training, while the remaining 25% served as a test dataset to

evaluate model performance. To minimize errors from a single

modeling approach, this process was repeated 10 times for each

model, resulting in 100 individual modeling outcomes (Bi et al. 2022).

Model accuracy was evaluated using ROC curves and the True

Skill Statistic (TSS). TSS, introduced by Allouche and Kadmon in

2006, is a widely recognized and effective evaluation metric for

SDMs. It combines the advantages of Kappa statistics while

addressing its limitations in species occurrence with unimodal

response curves (Allouche et al. 2006). TSS values range from 0

to 1, with values greater than 0.7 indicating high predictive accuracy

and values below 0.5 suggesting poor accuracy. ROC values range

from 0 to 1, with 0 to 0.6 indicating poor predictive performance,
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0.6 to 0.8 indicating moderate performance, 0.8 to 0.9 indicating

good performance, and 0.9 to 1.0 indicating excellent performance.

Models with ROC > 0.90 and TSS > 0.65 were selected. Finally, the

EM model was used to determine the area of suitable habitat for O.

sativa under current and future climate scenarios.
2.4 Data processing

The selected environmental and distribution data for O. sativa

were input into the ensemble model, and the resulting data were

visualized using ArcGIS 10.8. The zones were classified based on the

suitability index P, normalized by ArcGIS. A threshold of P ≥ 0.05

was used to indicate suitable habitats where the species can survive.

Based on this threshold, the suitability was categorized into four

classes: unsuitable (0-0.1), low suitability (0.1-0.3), moderate

suitability (0.3-0.6), and high suitability (0.6-1). Grid calculations

were performed to tabulate the area of each reclassified suitability

category, and the weights for each zone were determined.

Subsequently, the area of each layer was adjusted according to the

actual land area cutout. Using the SDM_Toolbox_v2.5, the loss

(areas currently suitable but becoming unsuitable in the future),

stable (areas suitable now and in the future), and gain (areas

currently unsuitable but becoming suitable in the future) regions

for O. sativa were identified for different time periods.
3 Results

3.1 Evaluation of model
prediction accuracy

To rigorously assess the accuracy of the models in predicting the

distribution of O. sativa, we used data on the distribution of O.

sativa in China, combined with environmental variables, and ran

the models 10 times to obtain TSS and receiver operating
FIGURE 1

Correlation analysis (A) and PCA analysis (B) of environmental variables.
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characteristic (ROC) values for the 10 models. The prediction

accuracy of individual models was assessed based on ROC and

TSS values (Figure 2). The results from the ensemble species

distribution models revealed variations in prediction accuracy

among the 10 models. Figure 2 indicates that GAM and

MAXENT had the poorest prediction accuracy, failing to

accurately simulate suitable areas. In contrast, RF had the highest

average TSS and ROC values, demonstrating the best accuracy

and stability.

Models with ROC values > 0.9 and TSS values > 0.65 were

selected. For the no UV variable scenario, RF, GBM, ANN, and

MARS were chosen, resulting in an ensemble model (EM) with

ROC = 0.976 and TSS = 0.825 (Table 2). For the UV variable

scenario, RF, GBM, and MARS were selected, leading to an EMwith

ROC = 0.977 and TSS = 0.836 (Table 2). Except for RF, the ROC

and TSS values of the ensemble models were higher than those of

individual models, indicating superior prediction accuracy for O.

sativa suitable areas. Given its excellent performance, we chose the

EM model for further visualization and analysis.
3.2 Evaluation of environmental variables

The weights of the nine environmental variables varied

(Table 3). In the absence of UV variables, bio01, bio04, bio06,

hf_v2geo1, bio11 and altitude were the most important

environmental factors affecting O. sativa. In the presence of UV

variables , bio01, bio04, bio06, bio11, hf_v2geo1 and

uvb1_annual_mean_uv.b were the most important environmental

factors affecting O. sativa. Regardless of the UV variables, the

biodiversity indices bio01, bio04 and bio06 had the highest

weights and were the most important environmental factors
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affecting O. sativa. Overall, temperature, UV intensity and

elevation play a crucial role in determining the habitat range of

O. sativa.

Based on these results, RF shows better performance compared to

other models. We used the response curves generated by RF to

explore the relationship between current environmental factors and

the probability of occurrence. Supplementary Figure S1 illustrates

that the habitat suitability of O. sativa exhibits a nonlinear

relationship with various environmental variables. Whether or not

the UV variable is included, habitat suitability for O. sativa improves

as the annual mean temperature (bio01) exceeds 15°C. Similarly,

habitat suitability increases as the lowest temperature of the coldest

month (bio06) rises above 10°C. The suitability of O. sativa for

different habitats first decreases and then increases with seasonal

temperature changes, eventually stabilizing. The response curves for

d1_ph_water, bio03, and d1_usda show that these variables have

relatively stable probabilities and thus have a minor impact on the

suitable distribution of O. sativa. The presence or absence of UV

variables significantly affects the impact of the precipitation during

the driest season (bio17) on the suitable distribution of O. sativa.

Higher values of uvb1_annual_mean_uv.b lead to a decrease in

habitat suitability for O. sativa.
3.3 Geographical distribution of O. sativa
under current and SSP2-4.5 climates

Figure 3 shows that under current climate conditions, the

suitable regions for O. sativa are primarily located in the southern

part of China. With the inclusion of UV variables, high suitability

regions in the current climate have decreased in the northeastern

part of Taiwan, as well as in Fujian, Jiangxi, Hunan, Guangxi,

Guangdong, Shanxi, Yunnan, Guizhou, and Sichuan. In contrast,

high suitability regions have increased in Gansu, Hebei, and

Hainan. The medium and low suitability areas in Yunnan,

Guizhou, Sichuan, Chongqing, Hunan, and Hubei have decreased,

while regions like Shandong, Henan, Hebei, Jiangsu, and Anhui

have seen increases.

In the 2050s SSP2-4.5 scenario, the highly suitable areas for O.

sativa with UV variables were mainly located in southeastern China.

The area of highly suitable areas was larger than that of the scenario

without the UV variable, while the area of unsuitable areas was

slightly larger in eastern and central China. By the 1970s, under the

SSP2-4.5 scenario, the moderately suitable areas of O. sativa

gradually decreased and the highly suitable areas slightly increased.
3.4 Changes of O. sativa distribution under
future climatic conditions

Compared to the current climate conditions, the total suitable

habitat area for O. sativa shows a decreasing trend under the SSP2-

4.5 scenario (Table 4). The contraction of suitable habitats is more

significant without UV variables compared to with UV variables,

and the expansion of suitable habitats is less under no UV variables,
TABLE 1 Environmental variables retained after screening.

Variable Environment Variables Unit

bio01 Annual mean temperature °C

bio03 Isothermality ((bio02/bio07) × 100) %

bio04
Temperature seasonality (standard

deviation × 100)
–

bio05 Max temperature of warmest month °C

bio06 Min temperature of coldest month °C

bio09 Mean temperature of driest quarter °C

bio11 Mean temperature of coldest quarter °C

bio17 Precipitation of driest quarter mm

elev Elevation m

d1_ph_water Soil acidity –

d1_usda Soil USDA texture classification –

hf_v2geo1
Human footprint and human activity

impact index
–

uvb1_annual_mean_uv-b Annual average ultraviolet radiation W/m
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with a notable reduction by half (47,764.8866 km²) by the 2070s.

The “No occupancy” areas remain almost unchanged across the

three time periods, while the “No change” areas decrease with time,

being larger without UV variables compared to with UV variables.

Figure 4 illustrates that in the 2050s, the suitable habitat

expansion range for O. sativa is greater with UV variables than

without, particularly in Hainan, Shaanxi, and Gansu. The

contraction of suitable habitats with UV variables is concentrated

in Shaanxi, Shanxi, Hebei, and Beijing, whereas, without UV

variables, there is additional contraction in Hunan, Jiangxi,

Zhejiang, and Fujian. The “No change” areas are more extensive

without UV variables than with UV variables. In the 2070s and

2090s, the expansion range of suitable habitats for O. sativa

continues to decrease in both scenarios, and the contraction
Frontiers in Plant Science 06
range continues to increase. The “No change” areas remain more

extensive without UV variables compared to with UV variables.

Overall, while the suitable habitat range for O. sativa is expected

to decrease in the future, the presence of UV variables results in a

greater range of suitable habitats compared to scenarios without UV

variables. This indicates that UV radiation is an important

environmental factor influencing the distribution of O. sativa.
4 Discussion

Predictions of suitable habitat distribution are influenced by a

variety of factors, including the availability of species distribution data,

the choice of species distribution models (SDMs), and the type of
FIGURE 2

True skill statistics (TSS) and receiver operating characteristic curve (ROC) of 10 SDMs. (A) denotes the TSS and receiver operating characteristic
(ROC) values of the model without UV variables, and (B) denotes the TSS and receiver operating characteristic (ROC) values of the model with UV
variables. ANN (Artificial Neural Network), CTA (Classification Tree Analysis), FDA (Flexible Discriminant Analysis), GAM (Generalized Additive Model),
GBM (Gradient Boosting Machine), GLM (Generalized Linear Model), MARS (Multivariate Adaptive Regression Splines), MAXENT (Maximum Entropy),
RF (Random Forest), SRE (Species Distribution Modelling using Rule-based Ensembles).
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environmental variable. Models that combine physically present and

absent data generally perform better than models that rely only on

physically present data when predicting the distribution of suitable

habitat (Brotons et al. 2004). In addition to subtle differences in

distribution records, differences in the choice of environmental

variables, variable screening methods, and parameter settings can

affect the bias in the final prediction results. Too many distribution

points may lead to model overfitting, while too similar climate data

may lead to large covariances in model results (Abdulwahab et al. 2022;
Frontiers in Plant Science 07
Araújo and Peterson 2012). It is important to select the least correlated

and biologically plausible predictors for prediction (Weng et al. 2020).

The study screened 13 environmental factors for prediction through

correlation analysis and principal component analysis (PCA). In order

to ensure the accuracy of the prediction of O. sativa’s suitable land

distribution, the data collection method was used in the study.

Differences in the algorithms of different SDMs, as well as differences

in the effects of various environmental factors on the distribution of

species, led to some uncertainty in the prediction results of each SDM.

Even when using the same dataset, different single models may produce

different predictions. A potentially effective approach is to use a hybrid

model, such as Biomod2, which combines a set of algorithms that use

the same initial dataset and parameterization to make predictions (Di

Febbraro et al. 2023; Thuiller 2014). In this study, four different SDMs

(RF, GBM, ANN, andMARS) were integrated to improve the accuracy

of the integrated model and overcome the limitations of the single-

model approach to obtain a more accurate characterization of the

geographic distribution of O. sativa. In this study, the accuracy of the

models was evaluated using both ROC and TSS methods, and higher

ROC values and less variability were obtained using the ensemble

model compared to using individual models, which confirms the

advantage of using the ensemble model to predict species occurrence

(Araújo and New 2007; Breiner et al. 2015; Marmion et al. 2009). This

study mapped the potential distribution of O. sativa under current and

future climatic conditions. The TSS values of both the combined and

RF models were above 0.80, representing excellent predictive ability

(Koo et al. 2017).

Climate, topography, and soil play a key role in plant survival.

Suitable temperature and moisture are essential for plants to carry out

their basic physiological activities. At the same time, topographical

factors such as slope, aspect, and elevation indirectly affect plant growth

by influencing localized temperature, hydrological conditions, and soil

properties. The results of this study showed that environmental
TABLE 3 Importance weight of environmental variables.

Variable

Importance weight

no ultraviolet
radiation

ultraviolet
radiation

bio01 0.3971 0.3874

bio03 0.0844 0.0962

bio04 0.3577 0.3492

bio05 0.1166 0.1153

bio06 0.3050 0.2922

bio09 0.1111 0.1398

bio11 0.1783 0.2295

bio17 0.1385 0.1474

d1_ph_water 0.0294 0.0325

d1_usda 0.0155 0.0236

elev 0.1655 0.1572

hf_v2geo1 0.2472 0.2151

uvb1_annual_mean_uv-b / 0.1708
TABLE 2 The mean value of receiver operating characteristic curve (ROC) and true skill statistic (TSS) of different model algorithms.

Model Name
Model
Code

ROC TSS

no ultraviolet
radiation

ultraviolet
radiation

no ultraviolet
radiation

ultraviolet
radiation

Random forest model RF 0.9995 1 0.9955 0.9970

Generalized boosting model GBM 0.9575 0.9545 0.7890 0.7810

Artificial neural network model ANN 0.9040 0.8730 0.7075 0.6355

Multivariate adaptive regression
spline model

MARS 0.9025 0.9000 0.6540 0.6650

Generalized linear model GLM 0.8850 0.8835 0.6250 0.6115

Flexible discriminant analysis model FDA 0.8705 0.8760 0.5965 0.6025

Classification tree analysis model CTA 0.7725 0.7675 0.5450 0.5350

Surface range envelope model SRE 0.6940 0.6905 0.3880 0.3810

Generalized additive model GAM NA NA NA NA

Maximum entropy model MaxEnt NA NA NA NA

Ensemble model EM 0.9760 0.9770 0.8250 0.8360
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variables such as bio01, bio04, bio06, hf_v2geo1, bio11,

uvb1_annual_mean_uv.b, and elev had a greater effect on the

distribution of O. sativa. O. sativa is a thermophilic plant, but too

much elevated temperatures can lead to a reduction in the yield of O.

sativa. There were differences in the rate of reduction, and higher
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temperatures can also lead to a decrease in the quality of rice. The

environmental variables bio01 and bio17 have large weights, and they

have a significant impact on the amount of water and heat required for

O. sativa to expand northward. O. sativa is primarily adapted to grow

in warm and humid environments, while dry and cold winters act as a
FIGURE 3

Suitability distribution of O. sativa in the scenarios SSP2-4.5 and current. (A) denotes the distribution without the UV variable and (B) denotes the
distribution with the UV variable.1 denotes the distribution in the 2050s under SSP2-4.5, 2 denotes the distribution in the 2070s under SSP2-4.5, 3
denotes the distribution in the 2090s under SSP2-4.5, and 4 denotes the distribution under the current scenario.
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limiting factor in its expansion range. The relatively wide range of bio04

values suggests thatO. sativamay be able to adapt to regions with large

temperature fluctuations. Larger isotherms imply that O. sativa is able

to enhance photosynthetic efficiency at high daytime temperatures,

while lower nighttime temperatures help to reduce energy

consumption for respiration, thus promoting metabolite

accumulation and plant growth (Li et al. 2008). Precipitation has a

significant effect on above and below ground organs of plants. studies

have shown that insufficient water may lead to reduced plant biomass

(Wan et al. 2022), prolonged germination (Thabet et al. 2018), reduced

leaf mass (Wan et al. 2022) and reduced root density (Funk et al. 2021),

In contrast, adequate water helps to increase root length and leaf area

(Song et al. 2022), and promotes plant germination (Plazek et al. 2018).

In addition, altitude has an effect on the accumulation of metabolites

and nutrients in below- and aboveground organs, which usually

interacts with factors such as nutrient availability, water content (Zuo

et al. 2022), temperature, UV intensity, CO2 concentration, and UV-B

intensity (Zhang et al. 2018).

Solar radiation is the main influence on the growth of most

plants (Jiang et al., 2020; Zuo et al., 2022). Solar radiation is one of

the driving forces of photosynthesis, through which vegetation

converts solar energy into chemical energy to synthesize organic

matter needed for plant growth (Xu et al. 2024). Elevated UV

intensity leads to decreased soluble protein content in O. sativa

leaves, decreased photosynthetic activity, growth inhibition, shorter

plants, and decreased yield (Xiaohua 1994). The study showed that

the extent of the effect of UV on yield and yield components was

greatly influenced by environmental factors such as temperature

and sunshine, and that the inhibitory effects of UV on plant height,

stem number, and number of spikes varied from year to year, with

the inhibitory effects of UV-B being weakened in high-temperature,

multi-daylight years, and becoming stronger in low-temperature,

low-light years. The results of the study on the effect of UV on the

quality of O. sativa indicated that UV exposure during the

reproductive growth period and after tasseling had a significant

effect on the size of rice grains, resulting in a significant reduction in

the proportion of large rice grains (Wen-Hui et al. 2003). O. sativa

leaves exposed to higher UV radiation were shorter and thicker, the

dry weight of the plant body, i.e. biomass, was reduced and its cells

and tissues were damaged. Total intake of root activity, protein and

nutrients was reduced and stomata opened less and often closed

(Jianping 1992). Enhanced UV radiation can also cause shorter

plants, delayed fertility, reduced tiller number, decreased biomass
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and yield (Dai et al. 1992; Teramura et al. 1991), and smaller grain

size of UV-irradiated rice (Kumagai et al. 2001). This is consistent

with the study in this paper that future UV enhancement will

reduce the suitable distribution range of O. sativa. However, we

found in the effects of rice with and without UV that the contraction

of the suitable habitat range was greater in the case of the no UV

variable than in the case of the UV variable, and the expansion of

the suitable habitat range was less in the case of the no UV variable

than in the case of the UV variable, These results suggest that there

may exist some kind of UV protective mechanism in rice plant to

tolerate UV-B exposure (Roy and Roy 2013). Some substances in

rice regulate flavonoid accumulation and are involved in UV-B

tolerance in rice (Zhang et al. 2022), UV-B radiation induces the

synthesis of rice proanthocyanidins B2 and C1 (Li et al. 2023), The

enhanced UV-B radiation contributed to suppressing the M. oryzae

infection and alleviating its damage to the photosynthesis of rice

leaves (Zhang et al. 2024). Possible mechanisms of plant

acclimatization to UV-B include changes in their structure, such

as anatomical changes in the epidermal layer and epidermal waxes,

increased leaf thickness and weight, and increased absorption of

UV-B pigments (Bornman et al. 2015).

In this study, the effects of UV radiation on rice were explored

in depth for the first time using a combination of models. The effects

of UV on the future growth of rice were assessed by combining

different modeling approaches. This innovative research approach

not only provides more accurate prediction results, but also

provides important theoretical support for future strategies to

cope with rice cultivation and variety improvement in the context

of UV enhancement.

Studies have shown that O. sativa exists in a wide range of high

suitability habitats in Hainan, Taiwan and other provinces and

regions, suggesting that the species has a high demand for

hydrothermal environments. However, due to the complexity of

environmental factors affecting plants, it is difficult to

comprehensively access all environmental variables affecting the

distribution of O. sativa and precisely define their suitability zones.

In addition, the application of these predictions to actual planting

and restoration requires consideration of factors in land use and its

surroundings, such as water quality, vegetation cover, and human

activities. Changes in land use, especially due to land use for

economic purposes, have also led to a reduction in suitable

habitat (Zhang et al., 2018). Reduction in forest cover and

fragmentation of highly forested protected areas due to changes
TABLE 4 Distribution change of O. sativa distribution in 2050s, 2070s and 2090s under SSP2-4.5.

SSP2-4.5 Area (km2)

Range expansion No occupancy No change Range contraction

No
ultraviolet
radiation

ultraviolet
radiation

No
ultraviolet
radiation

ultraviolet
radiation

No
ultraviolet
radiation

ultraviolet
radiation

No
ultraviolet
radiation

ultraviolet
radiation

2050s 83980.8050 118550.5452 8780971.2388 8800288.1100 162174.2651 148053.1435 154303.4760 114537.9861

2070s 47764.8866 105689.7788 8817187.1572 8813148.8765 138407.5687 130871.1595 178070.1724 131719.9701

2090s 43958.0998 98384.8634 8820993.9440 8820453.7918 134163.5157 129044.9307 182314.2254 133546.1989
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in ecological distribution may result in the loss of significant

amounts of currently suitable habitat (Jia et al. 2020). In future

scenarios, the suitable area for O. sativa will decline significantly. In

the future, global temperatures are expected to continue to rise,

extreme weather events will be frequent, and human activities will

intensify (Wang X. et al. 2023). Therefore, it is expected that the

suitable distribution of O. sativa will continue to shrink. Our results

are consistent with those of Lonicera oblata (Wu et al. 2021).
Frontiers in Plant Science 10
5 Conclusions

In this study, we assessed the distribution of O. sativa in China.

Potential distribution areas of O. sativa under current and future

climatic conditions with and without the influence of UV variables

were predicted. An ensemble model (EM) for predicting suitable

habitats for O. sativa under current and future climate scenarios

(SSP2-4.5) was developed by modeling and predicting four sdms,
FIGURE 4

Distribution change of O. sativa in the scenarios SSP2-4.5.
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RF, GBM, ANN and MARS, selected under no UV variables, and

three sdms, RF, GBM and MARS, selected under UV variables.

Compared with individual models, the ROC of EM was 0.976 and

0.977, and the TSS was 0.825 and 0.836, respectively, and its

prediction was more accurate. The results showed that the main

environmental factors affecting its distribution were bio01, bio04,

bio06, hf_v2geo1, bio11, and uvb1_annual_mean_uv.b. Under the

current climatic conditions, the habitats of O. sativa are very

suitable mainly distributed south of the Yangtze River. Under

future climate scenarios, which will reduce the potential

distribution of O. sativa, the contraction range of suitable habitat

under the no UV variable is greater than in the case with the UV

variable, and the expansion range of suitable habitat under the no

UV variable is less than in the case with the UV variable. The

prediction was highly reliable and accurately predicted the suitable

range and extent of O. sativa, which is important for the future

conservation of O. sativa. This study is of great significance for the

conservation, management, introduction and cultivation of O.

sativa, and it can also provide a reference for the study of other

food crops in China.
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