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Using XGBoost-SHAP for
understanding the ecosystem
services trade-off effects and
driving mechanisms in
ecologically fragile areas
Peiyu Du1,2,3, Heju Huai1,2, Xiaoyang Wu3, Hongjia Wang1,2,3,
Wen Liu1,2,3 and Xiumei Tang1,2*

1Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences,
Beijing, China, 2National Engineering Research Center for Information Technology in Agriculture,
Beijing Academy of Agriculture and Forestry Sciences, Beijing, China, 3Coll Resources & Environment,
Shandong Agriculture University, Tai An, China
Introduction: Understanding the spatial and temporal variability of Ecosystem

services (ES), along with the trade-offs and synergies among different services, is

crucial for effective ecosystem management and sustainable regional

development. This study focuses on Wensu, Xinjiang, China, as a case study to

address these challenges.

Methods: ES and their trade-offs were systematically assessed from 1990 to

2020. Explainable machine learning models (XGBoost-SHAP) were employed to

quantify the nonlinear effects and threshold effects of ES trade-offs, with specific

attention to identifying their driving factors.

Results: (1) From 1990 to 2020, water yield (WY) and soil conservation (SC)

exhibited an inverted "N"-shaped downward trend in Wensu County: mean

annual WY decreased from 22.99 mm to 21.32 mm, and SC per unit area

declined from 1440.28 t/km² to 1351.3 t/km². Conversely, windbreak and sand

fixation (WS) showed an "N"-shaped increase from 2.32×10⁷ t to 3.11×10⁷ t.

Habitat quality (HQ) initially improved then deteriorated, with values of 0.596,

0.603, 0.519, and 0.507 sequentially. (2) Relationships between WY-WS, WY-HQ,

WS-HQ, SC-WS, and SC-HQ were primarily tradeoffs, whereas WY-SC

interactions were synergistic. Trade-offs for SC-HQ, WY-HQ, and WS-HQ

were stronger, while WY-SC trade-offs were weaker. (3) The XGBoost-SHAP

model revealed land use type (Land), precipitation (Pre), and temperature (Tem)

as dominant drivers of trade-offs, demonstrating nonlinear responses and

threshold effects. For instance, WY-SC trade-offs intensified when precipitation

exceeded 17 mm, while temperature thresholds governed WY-HQ trade-off/

synergy transitions.
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Discussion: This study advances the identification of nonlinear and threshold

effects in ES trade-off drivers. The model's interpretability in capturing these

complexities clarifies the mechanisms underlying ES dynamics. Findings are

generalizable to other ecologically vulnerable regions, offering critical insights for

ecosystemmanagement and conservation strategies in comparable environments.
KEYWORDS

ecosystem services, trade-offs and synergies, XGBoost-SHAP, driving mechanism,
ecologically fragile areas
1 Introduction

ESs are defined as tangible and intangible goods that humans

derive from ecosystems (Costanza et al., 1997). These services are

critical for human survival, economic sustainability, and natural

environmental protection (Bi et al., 2024). In recent years, advances

in remote sensing technology and the maturation of relevant

theories have shifted research focus from ecosystem structure to

ecosystem function, promoting the use of quantitative methods in

ES analysis (Bagyaraj et al., 2023). Scholars have conducted

extensive research on ES assessment at global and regional levels,

developing new indicators and modeling techniques (Gianuca et al.,

2024; Marali et al., 2025). However, approximately 60% of the

world’s ESs are currently degrading due to the intensifying effects of

climate change and increasing human activities (Keesstra et al.,

2018). Consequently, research on ES assessment and the

determination of the relationship between ESs has become a

primary focus of attention for numerous scholars.

Ecosystems are complex and interconnected wholes, and the

ESs they provide are of various types with significant differences in

spatial distribution. Because human demand for these ESs fluctuates

over time and across regions, meaning that changes in one service

can affect others. Research on ES relationships in different regions

has yielded varying conclusions. Understanding spatial variability

and the interrelationships among ESs is crucial for achieving the

coordinated development of natural ecosystems and human society.

Currently, the relationships among ESs are primarily identified

using four main methods: metric description, spatial mapping,

scenario analysis, and modeling analysis. Numerous studies

(Loiselle et al., 2023; Yuan et al., 2024) have shown that the

relationship between ESs is mainly characterized by trade-offs and

synergistic relationships of mutual benefit (Yang et al., 2015; Niu

et al., 2022). Trade-offs and synergies relationships between

different types of ESs are common (Tian et al., 2024), and

therefore, the primary goal of ES management is to create a

“synergistic optimization” situation by promoting synergies and

minimizing trade-offs. In recent years, researchers have identified

trade-off synergies between ESs across various scales, from regional

to global (Xia et al., 2023). Most scholars have used Spearman’s and
02
Pearson’s correlation coefficients to identify trade-off synergies

between pairs of ESs (Qu et al., 2024). However, both correlation

methods generally fail to control for the effects of other variables

and are sensitive to nonlinear relationships and outliers. This may

lead to spurious correlations or inaccurate causal judgments that do

not reflect the underlying complexities of the data. In contrast,

partial correlation analysis can examine the relationship between

two correlated variables while controlling for other factors, allowing

for a more objective analysis of the trade-off synergies between two

ESs. Therefore, this study uses partial correlation analysis to

comprehensively examine the trade-off synergies between ESs.

Furthermore, the trade-off relationship is not only reflected in

changes between services but also in the non-uniform rate of

unidirectional change, which may have a greater impact than the

synergistic effect (Lu et al., 2014). The root-mean-square deviation

(RMSD) method can consider the interaction between multiple ESs

while dealing with the uneven co-directional changes of ESs. It is

capable of effectively detecting significant biases in the data and

extending the traditional negative correlation trade-off relationship

to inhomogeneous rates of spatial variability in magnitude. This

compensates for the lack of spatial information and provides a

quantifiable indicator for assessing the strength of trade-offs

between pairs and multiple ESs (Bradford and D’Amato, 2012).

Quantifying the trade-offs between ESs and clarifying their

driving mechanisms is crucial for understanding how trade-offs

arise and how to minimize them. (Wang et al., 2021; Shao et al.,

2023). Currently, research on ESs is gradually shifting from a focus

on inter-service relationships to analyzing the underlying driving

mechanisms. In recent years, methods for exploring the drivers of

ES trade-off synergistic relationships have primarily included

redundancy analysis (Feng et al., 2017), regression analysis (Liu

and Tang, 2024), and geographic detector (Wang et al., 2010).

Nevertheless, these methods have yet to fully clarify the nonlinear

attributes of the drivers, their trajectory of action, and response

characteristics (Gao et al., 2021). Therefore, there is an urgent need

for a systematic and comprehensive understanding of the driving

mechanisms behind the relationships among ESs.

The rapid development of machine learning (ML) has had a

profound impact on numerous scientific fields, including ecology. It
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involves the development of computer algorithms that can be

automatical ly improved through experience, and has

demonstrated a wide range of applications and great potential

(Recknagel and Staiano, 2019; Doan et al., 2024). ML algorithms

extend traditional analytical methods in the field of ESs (Hampton

et al., 2013; Dutta and Arhonditsis, 2023) and can efficiently process

big data and reveal complex nonlinear relationships, demonstrating

strong stability and robustness (Li X, et al., 2024). However, the

“black box” nature of ML algorithms poses challenges for

explainability. Although ML algorithms improve prediction

accuracy, they often overlook a thorough evaluation of spatio-

temporal environmental variables and struggle to offer

transparent explanations for forecasting changes in ESs (Guidotti

et al., 2019).

To address this, explainable ML methods have emerged to

enhance model transparency and interpretability. One such

method is XGBoost-SHAP, which combines the power of

XGBoost, a highly effective gradient boosting model, with SHAP

(Shapley Additive Explanations). XGBoost-SHAP is particularly

suited for studying ES trade-offs, as it can identify the direction of

driving factors and capture their nonlinear responses. This is a

significant improvement over traditional methods, which often fail

to fully account for the complex interactions that characterize ESs.

Although XGBoost-SHAP has seen success in other fields

(Molnar et al., 2020), it has been underutilized in research on ES

trade-offs. This study aims to fill this gap by applying XGBoost-

SHAP to better understand the nonlinear relationships and driving

mechanisms behind ES trade-offs. This approach not only improves

prediction accuracy but also offers valuable insights into the

complex dynamics that traditional models cannot capture.

Wensu County, located in Aksu Prefecture in the Xinjiang

Uygur Autonomous Region of China, serves as a typical study area

of the ecological fragility in the northwest region. Much of the

existing research focuses on empirical assessments of the

vulnerability of ecologically fragile areas, ecological security

patterns, ecological industries, and products (Nilsson and

Grelsson, 1995; Li L, et al., 2021; Fang et al., 2022). Meanwhile,

ESs related to water and soil, along with their complex

interrelationships, with the context of the region’s vulnerable

ecological baseline, urgently require further investigation.

Therefore, research on the trade-off effects and driving

mechanisms of ESs in ecologically fragile areas is essential for

their management and sustainable development.

ES trade-offs and synergies are key concepts in understanding

the complex interactions between human activities and natural

ecosystems. In recent years, there has been growing interest in how

these interactions vary across different regions, particularly in

ecologically fragile areas. These regions face unique challenges

such as extreme climate conditions, land degradation, and

unsustainable land-use practices. In ecologically fragile areas,

critical factors influence the trade-offs and synergies between ESs:

Climate stressors, such as precipitation patterns, temperature

fluctuations, and seasonal variations, play a dominant role in

shaping the interactions between ESs. For example, in arid

regions, a slight shift in precipitation levels can trigger significant
Frontiers in Plant Science 03
changes in the availability of water resources and the capacity for

soil texture, leading to either synergies or trade-offs depending on

thresholds; changes in land use, particularly through urbanization,

agriculture, and deforestation, drive trade-offs between ESs by

fragmenting habitats and reducing biodiversity. Rapid land

conversion can exacerbate service trade-offs, leading to the

degradation of services like HQ; in ecologically fragile areas,

particularly those with sandy or degraded soils, low water

retention exacerbates conflicts between agricultural and ecological

needs. The interaction between climate and soil properties can be

modeled to assess how thresholds in soil moisture and precipitation

affect service trade-offs, providing insights into potential

management strategies.

Building on the previous analysis, this study adopts the

“element-service-relationship-mechanism” cascade framework

to explore the ESs dynamic spatio-temporal correlations and

the mechanisms driving trade-offs between key ESs. By

analyzing the typical county ecological background and socio-

economic conditions in ecologically fragile areas, ESs are

estimated, trade-offs and influencing factors are explored, and a

practical basis is provided for the protection and restoration of

ecologically fragile areas. This study offers new insights into the

sustainable development of ES management in ecologically fragile

areas. Accordingly, this study selected Wensu County in

Xinjiang, China as the research area, with the objective of

studying four types of ESs from 1990 to 2020. The research

objectives are as follows: (1) Quantify the ESs in Wensu County;

(2) Analyze the temporal and spatial changes in ESs in Wensu

County and the trade-off and synergy relationships; and (3) Explore

the nonlinear and threshold effects of ES trade-offs. The goal is to

provide theoretical guidance for the stewardship of ESs, the

harmonization of human-land interactions, and the realization of

sustainable regional development.
2 Materials and methods

2.1 Study area

This study selected Wensu County, Aksu Prefecture, Xinjiang

Uygur Autonomous Region, China (Figure 1) (40°52’–42°15’N, 79°

28’–81°30’E). This region is located in the arid area of the hinterland

of the continent, with a total area of 14,569.3 km2. It has a

continental warm arid climate with an average annual

temperature of 10.10°C and an average annual precipitation of

65.4 mm(https://www.geodata.cn). The terrain is varied, with the

land rising to the north and falling to the south, sloping from

northwest to southeast. The wind is strong and the sand is heavy,

the soil is poor, and the problems of drought and land

desertification are prominent. As a typical ecologically fragile area

in the northwest, it provides an ideal setting for studying the

synergistic relationships and trade-offs in ESs. The complex

interactions between ecosystem components, coupled with the

region’s vulnerability to environmental stressors, make it a key

area for research aimed at understanding the interrelationships of
frontiersin.org

https://www.geodata.cn
https://doi.org/10.3389/fpls.2025.1552818
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Du et al. 10.3389/fpls.2025.1552818
ESs and identifying effective strategies for sustainable management

and protection.
2.2 Materials

This study used multiple data sources, including land use data,

remotely sensed imagery, meteorological data, digital elevation

models, soil datasets, and normalized vegetation indices. In

ArcGIS, the data from different sources were resampled and

projected, and finally unified and projected to WGS_1984_Albers.

The relevant data sources are listed in Table 1.
2.3 Methods

2.3.1 Research framework
This study focuses on Wensu County, assessing regional ESs and

their trade-off synergies, and analyzing the nonlinear characteristics

and threshold effects of these trade-offs using explainable MLmodels.

Figure 2 illustrates the comprehensive technical process. Firstly, based

on existing research findings, as well as the natural environment and

social conditions of the study area, the following indicators were

selected to assess the ecosystem functions of Wensu County from

1990 to 2020: water yield (WY), soil conservation (SC), windbreak

and sand fixation (WS) and habitat quality (HQ) were selected for

their relevance to the vulnerable ecosystems in Wensu County.
Frontiers in Plant Science 04
Among these, the WY is one of the most important ESs in arid

and semi-arid regions. WY is essential for agriculture, industry,

hydropower generation, and daily activities, playing a pivotal role

in the sustainable development of ESs; SC, as an important ES, is

crucial for preventing land degradation in the region and plays a

significant role in ecological development and the formulation of

protection measures;Wensu County is situated in the Xinjiang Uygur

Autonomous Region, which has the highest concentration and largest

area of desertified land in China. The question of how to control and

combat desertification in Xinjiang has consistently been a topic of

significant research interest; HQ is an important indicator for

assessing the ability and potential of the environment to provide

suitable conditions for the survival and reproduction of organisms.

Secondly, a partial correlation analysis was employed to calculate the

time series and determine the correlation coefficient between pairs of

ESs on an annual basis. This method controls for the influence of

other variables, allowing the direct relationship between the two

variables to be revealed and the significance of the relationship

between ESs to be tested using a t-test (Liu et al., 2022). A positive

correlation coefficient between ESs, when passing the significance

test, indicates a synergistic relationship, while a negative value

indicates a trade-off. Subsequently, the RMSD (Jia et al., 2022; Qiao

et al., 2024) is employed to quantify the strength of trade-offs between

multiple ESs. A higher value indicates a greater trade-off, allowing the

degree of trade-offs between different ESs to be assessed. This method

extends the traditional negative correlation trade-off relationship,

compensates for the lack of spatial information, and provides an
FIGURE 1

Location map of the study area. Based on the standard map No. GS (2024) 0650 on the website of the Ministry of Natural Resources of the People’s
Republic of China, with no boundary modification on the base map.
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effective, quantifiable indicator for evaluating the strength of trade-

offs in ESs. Finally, 10 representative factors were selected for the

explainable ML method to analyze the driving factors influencing the

trade-offs between ESs. These factors included elevation (Dem), slope

(Slope), Normalized Difference Vegetation Index (NDVI),

precipitation (Pre), temperature (Tem), soil type (Soil), landform

type (Landforms), land use type (Land), population density (Pop),

and economic factor (GDP). In contrast to earlier methodologies that

have encountered the problem of inadequate interpretation when

quantifying the drivers of ES trade-offs through linear fitting or

geodetector models, the SHAP method is capable of providing

unambiguous explanations for a range of “black box” models. The

combination of the XGBoost model with the SHAP method allows

for the determination of the direction of movement of the driving

factors, the identification of the nonlinear relationship between the ES

trade-off effect and the driving factors, and the analysis of the

independent impact of each driving factor on the ES trade-off

effect. This constitutes the inaugural application of the model in

ecologically fragile areas. Based on the research results, measures and

related recommendations for the management of regional ESs

are proposed.

2.3.2 Quantification of ESs
The methodology for quantifying ESs is shown in Table 2 (see

“Equation 1–16”).

2.3.3 Methodology for analyzing the synergistic
relationship between trade-offs in ESs
2.3.3.1 Partial correlation analysis

The initial step is to calculate the fundamental correlation

coefficient (see “Equations 17–19”).
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r12(ij) =
on

n=1(ES1n(ij) − ES1(ij))(ES2n(ij) − ES2(ij))ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

n=1(ES1n(ij) − ES1(ij))
2on

n=1(ES2n(ij) − ES2(ij))
2

q (17)

Calculate the first-order partial correlation coefficient:

r12·3(ij) =
r12(ij) − r13(ij)r23(ij)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1 − r213(ij))(1 − r223(ij))

q (18)

Calculate the second-order partial correlation coefficient:

r12·34(ij) =
r12·3(ij) − r14·3(ij)r24·3(ij)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1 − r214·3(ij))(1 − r224·3(ij))

q (19)

Where ES1 and ES2 are two types of ES. r is the correlation

coefficient between them. i and j represent the row number and

column number in the raster data respectively. n is the number of

years in the time series. r12(ij) is the simple correlation coefficient of

ES1 and ES2 at pixel ij, where the two ESs are different. Similarly, r13

(ij), r23(ij), r14(ij), r24(ij) and r34(ij) can also be achieved. Under the

condition of constant ES1 or ES2, r12·3(ij) is the first-order partial

correlation coefficient at pixel ij. Similarly, r14·3(ij), r24·3(ij) and r12·34

(ij)represents the second-order partial correlation coefficients at

pixel ij, assuming that both ES1 and ES2 are constant. The

significance of the relationship between ESs was evaluated using

the t-test method.
2.3.3.2 Root-mean-square deviation

Prior to calculating the RMSD, the data must be standardized in

accordance with the following formula (see “Equations 20, 21”):

ESstd =
(ESi − ESmin)

(ESmax − ESmin)
(20)
TABLE 1 Data source.

Data name Data resource Type Accuracy

Administrative
boundary

Data Centre for Resource and Environmental Sciences, Chinese Academy of Sciences
(http://www.resdc.cn)

Vector 1:100,000

LULC Raster 30m

GDP Raster 1km

Landforms Raster 1km

DEM Geospatial data cloud (https://www.gscloud.cn) Raster 90m

Vegetation Coverage National Tibetan Plateau Science Data Center (http://data.tpdc.ac.cn) Raster 1km

Snow cover data Raster 500m

Meteorological data
National Earth System Science Data Center (https://www.geodata.cn) Raster 1km

China Meteorological Data Sharing Network (https://data.cma.cn) Raster 1km

Soil data Harmonized World Soil Database (HWSD)
(https://www.fao.org)

Raster 1km

NDVI MODIS MOD13Q1 product (https://ladsweb.nascom.nasa.gov) Raster 1km

Population Density https://www.worldpop.org/ Raster 1km

Road and River data Open Street Map
(https://www.openstreetmap.org/)

Vector 1:100,000
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RMSD =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

(n − 1)o
n
i=1(ESstd − ESstd)

2

r
(21)

Where, ESstd represents the normalized ES value; ESi, ESmax , E

Smin and ESstd are the ES value, maximum value, minimum value

and average value, respectively; n represents the number of ESs.
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2.3.4 Driver analysis based on ML methods
2.3.4.1 XGBoost model

XGBoost (eXtreme Gradient Boosting) is an ensemble learning

algorithm based on gradient-boosted decision trees (Chen and

Guestrin, 2016). Compared to the traditional gradient-boosted

decision tree (GBDT) algorithm, XGBoost uses a second-order
FIGURE 2

Technical process. (a) Assessment of ESs, (b) ESs trade-offs synergies, (c) Root mean square error trade-off effects, (d) Trade-off effects driver
analysis - machine learning.
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TABLE 2 ESs model.

Index Formula Formula specification

bitat degradation degree of grid x in land use type j; r refers to the
mber of stressors; y refers to the number of grids for stressor r, Yr is
occupied by stressor r; Wr is the weight of the stressor; ry is the
is the threat accessibility level of the habitat grid; Sjr is the sensitivity
he stressor; irxy is the impact of the stressor in grid y on grid x.

Q level of grid x in land use type j; Hj is the habitat suitability of
and k use the default parameters of the model.

m-2· yr-1), R is the erosivity of precipitation [MJ·mm/(hm-2·h·a)], K
soil [t·hm2/(hm2·MJ·mm)], LS is the terrain factor, C is the
ent factor, and P is the soil and water conservation measure factor.

d fixation rate, t/hm2; SLq is the potential soil wind erosion rate
itions, t/hm2; SL is the actual soil wind erosion rate under
nditions, t/hm2; Qx is the sand flux at x (kg/m); x is the plot length,
m transfer amount, kg/m; s is the critical plot length (m); WF is the
h reflects the surface’s resistance to wind erosion; EF is the factor
rodibility of the soil; SCF is the soil crust factor, K’ is the surface
d COG is the vegetation coverage factor.

ind speed at 2 m, m/s, WSt is the critical wind speed at 2 m; N is
vations; Nd is the number of test days; r is the air density, kg/m3, g
ue to gravity, m/s3; SW is the soil moisture factor; SD is the snow
e sand content of the soil, Si is the silt content of the soil, Ci is the
oil, OM is the organic matter content, and CaCO3 is the calcium

cover (FVC) data is calculated based on the theory of the cell
e formula, Fc is the vegetation coverage; NDVIveg is the NDVI value
e; and NDVIsoilis the NDVI value at the 5% percentile.

Y of grid x on land use type j, in mm; AETx,j is the actual
f grid x on land use type j, in mm; Px is the precipitation of grid x,
e available water content of vegetation; Z is the Zhang factor, which
meter set to 3.6 in this study; wx is an empirical parameter; MSD is
epth; RDx is the root depth; PAWC indicates the plant available
is the sand content of the soil, SIL is the silt content of the soil, CLA
f the soil, and OM is the organic matter content of the soil.
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Li Q, et al., 2024) Dxj =oR

r=1oYr
y=1
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oR
r=1Wr

 !
ryirxybxSjr

(1)

Where Dxj is the ha
stressor, R is the nu
the number of grids
threat intensity; bx

of habitat type j to t

Qxj = Hj 1 −
Dx
xj

Dz
xj + kz

 !
(2)

Where Qxy is the H
habitat type j; and z

Soil Conservation
(Shen et al., 2020) SC = R� K � L� S� (1 − C � P) (3)

Where SC is SC (t·h
is the erodibility of
vegetation managem

windbreak and
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Taylor expansion of the loss function, improving the model’s ability

to identify the optimal solution (Tian et al., 2024) (see “Equation

22”).

ŷ i = o
k

k=1

fk(xi), fk ∈ F(i = 1, 2,…, n) (22)

Where F = f (x) = wq(x)

� �
(q :Rm → 1, 2,…,Tf g,w ∈ RT ) is

the classification and regression tree ensemble decision tree

(CART), q is the sample mapped to the leaf node of the tree

structure, T is the number of leaf nodes, and w is the fraction of

leaf nodes.

The objective function of an XGBoost model includes an error

function and a complexity function (see “Equation 23”).

Obj = L +W (23)

Where L is the error function and  W  is a complex function (see

“Equations 24, 25”).

L =o
n

i=1
(yi − ŷ i)

2 (24)

W = g T +
1

2
go

T

j=1
w2
j (25)

Where   g T   is the regular term of L1 and 1
2 goT

j=1w
2
j is the

regular term of L2. On this basis, the model prediction value of

order t is added, a new function of order t is added, and the   ft(xi)  

approximate objective function is obtained by a second-order

Taylor expansion (see “Equations 26, 27”):
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(27)
2.3.4.2 Explanation of SHAP features

SHAP is an explainable ML method that interprets model

predictions based on Shapley value theory, quantifying the

contribution of each feature to the model output. A key

advantage of this method is its ability to assess the impact of

individual features on predictions for specific samples,

distinguishing between positive and negative effects. The

algorithmic process is described in the following section.

If the ith is a sample of Xi, the first j is a sample of the ith Xij

feature, the model predicted value of the sample yi, and the ybase
baseline prediction of the entire model. The SHAP value is

calculated using the following equation: (see “Equation 28”)

yi = ybase + f (Xi1 ) + f (Xi2 ) +… + f (Xik ) (28)

In this context, the term “f(Xij)” represents the SHAP value

associated with feature “Xij.” To illustrate, f(Xij) signifies the
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contribution of feature 1 in sample i to the predicted value yi.

Should the value of f(Xj1) be positive, it can be concluded that the

feature in question exerts a positive influence on the prediction.

Should the value of f(Xj1) be less than zero, it indicates that the

feature has a negative impact on the prediction. The sensitivity of a

feature to machine learning is gauged using the SHAP value, which

quantifies the contribution of a feature indicator to a target variable

after data normalization.
3 Results

3.1 Spatial and temporal changes in ESs

From 1990 to 2020, the total WY inWensu County ranged from

812 million to 1.04 billion m³, with the average annual WY depth

varying between 19.89 mm and 28.29 mm. Overall, it showed an

inverted “N”-shaped trend: initially decreasing, then increasing, and

finally decreasing again, with a slight overall decline. From 1990 to

2000, the mean annual WY decreased from 22.99 mm to 19.89 mm,

then peaked at 28.29 mm in 2010, before declining again to 21.32

mm between 2010 and 2020 (Table 3). The spatial pattern of WY

from 1990 to 2020 (Figure 3a) has undergone slight alterations,

exhibiting a spatial distribution characterized by a decline from the

center to the edges. Specifically, high-value areas are mainly located

on the southern side of the northern mountains, while low-value

areas are found in the central transitional zone and the

southern plains.

The SC per unit area in the study area for 1990, 2000, 2010, and

2020 was 1440.28 t/km², 1269.33 t/km², 1718.51 t/km², and 1351.3

t/km², respectively (Table 3). The change trend showed an inverted

“N” shape, with a slight overall decrease, peaking in 2010. Regarding

the spatial distribution (Figure 3b), the SC pattern showed a

tendency toward stabilization from 1990 to 2020. The high-value

areas are primarily located on the southern side of the northern

mountainous area and extend to the east and west. They are

distributed in a scattered manner, while the low-value areas are

distributed in the southern plains and extend to the east and west.

The amount of WS in the research area in 1990, 2000, 2010 and

2020 was 2.32×107t, 2.4×107t, 1.18×107t and 3.11×107t, respectively

(Table 3), showing an overall positive “N”-shaped increasing trend,

with a significant rise from 2010 to 2020. In terms of spatial

distribution (Figure 3c), the changes are more obvious. High-

value areas are mainly located in the area extending westward

from the southern plains and the intermediate transition zone,

while the low-value areas are mainly located in the northern

mountainous areas and the area extending eastward from the

intermediate transition zone.

The average HQ index in the study area for 1990, 2000, 2010

and 2020 was 0.596, 0.603, 0.519 and 0.507, respectively (Table 3),

showing an upward trend before declining, with the downward

trend strengthening from 2010 to 2020. In terms of spatial

distribution (Figure 3d), high-value areas are mainly distributed

in the mountainous areas in the north and the plains in the south,

while low-value areas are distributed in the areas extending to the
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east and west of the plains in the south. From 1990 to 2000, HQ

remained generally stable. However, from 2000 to 2020, significant

spatial distribution changes occurred, there was a significant

decrease in HQ in the northern mountainous areas, and along

with a gradual decline in HQ in the areas extending eastward from

the southern plains.
3.2 Trade-offs and synergies of ESs

3.2.1 Time scale trade-off synergy
The correlation coefficient map showing the relationship

between ES (Figure 4) reveals that the trade-off and synergy

dynamics among different ES groups remained relatively stable

from 1990 to 2020. Specifically, the relationship between WY-SC

demonstrated a clear synergistic pattern, with an initial increase,

followed by a decline, and ultimately stabilizing over time. The

strongest synergistic correlation occurred in 2000 (0.52), while the

weakest was observed in 1990 (0.28). The relationship betweenWY-

WS was synergistic in 1990 and 2010, although the synergy was

weak. However, a trade-off relationship was showed in 2000 and

2020. On the other hand, the relationship between WY-HQ showed

an increasing trend, followed by stabilization, with a significant

synergistic correlation. The relationship between SC-WS exhibited
Frontiers in Plant Science 09
a trade-off from 1990 to 2000, which gradually weakened, followed

by a weak synergistic relationship in 2010, and a weak trade-off in

2020. The relationship between SC-HQ was synergistic in 1990,

2010, and 2020, but showed a weak trade-off in 2000. For WS-HQ, a

weak trade-off was showed in 1990, while a synergistic relationship

was seen from 2000 to 2020, with a trend of decreasing synergy

followed by an increase.
3.2.2 Spatial trade-off scale synergy
We analyzed the trade-off synergies between ESs in Wensu

County from 1990 to 2020 pixel by pixel to compensate for the lack

of intra-spatial differences in trade-off synergies. Figure 5a shows

that the trade-off synergy relationship of WY-WS is relatively

evenly distributed, with 55.33% of the pixels exhibiting a trade-off
TABLE 3 Temporal evolution of ESs.

Years 1990 2000 2010 2020

Average annual WY depth (mm) 22.99 19.89 28.29 21.32

SC per unit area (t/km2) 1440.28 1269.33 1718.51 1351.3

WS (t) 2.32×107 2.4×107 1.18×107 3.11×107

HQ 0.596 0.603 0.519 0.507
fron
FIGURE 3

Spatial distribution of ESs. (a) Changes in the spatial distribution of WY from 1990 to 2020, (b) Changes in the spatial distribution of SC from 1990 to
2020, (c) Changes in the spatial distribution of WS from 1990 to 2020, (d) Changes in the spatial distribution of HQ from 1990 to 2020.
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relationship, mainly concentrated in the southern part of the central

transition zone and the area extending eastward from the southern

plains. The pixel ratio of the collaborative relationship is 44.67%,

primarily concentrated in the northern part of the central transition

zone and the area extending westward from the southern plains.

Figure 5b shows that WY-SC is predominantly manifested by

synergy relationships, with 88.62% of the pixels exhibiting

synergy, primarily concentrated in the central transition zone and

the area extending westward from the southern plains. Figure 5c

shows that WY-HQ is primarily manifested by trade-off

relationships, with 56.85% of the pixels exhibiting trade-offs,

primarily concentrated in the central transition zone and the area

extending westward from the southern plains. Figure 5d shows that

WS-HQ is primarily manifested by trade-off relationships, with

60.08% of the pixels exhibiting trade-offs, mainly concentrated in

the central transition zone extending east and west, and the area

extending westward from the southern plains. Figure 5e shows that

the pixel ratio of the trade-off relationship for SC-WS is 54.33%,
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primarily concentrated in the southern part of the central transition

zone and the eastern side of the southern plains. Figure 5f shows

that SC-HQ is primarily manifested by the trade-off relationship,

with 55.95% of the pixels exhibiting trade-offs, mainly concentrated

in the southern part of the central transition zone and the area

extending eastward from the southern plains.

3.2.3 Intensity change of ESs trade-offs
Figure 6 shows the spatial distribution of the trade-off between

ESs in Wensu County. Compared to the other four trade-offs, the

trade-off between SC-HQ and WS-HQ is notably stronger, while

the trade-off between WY-SC is the weakest and is almost zero in

the majority of areas, with the exception of the central transition

zone, which indicates that WY-SC has a synergistic relationship in

the majority of areas. From 1990 to 2020, the high-value area of

WY-WS in the north gradually declined, while the high-value area

in the southern plains showed a gradual increase, showing a striped

distribution. The high-value areas of WY-HQ are scattered across
FIGURE 4

Partial correlation coefficient analysis. (a) Coefficient of bias analysis of ESs in 1990, (b) Coefficient of bias analysis of ESs in 2000, (c) Coefficient of
bias analysis of ESs in 2010, (d) Coefficient of bias analysis of ESs in 2020. *p>0.1, **0.05<p<0.1, ***0.01<p<0.05.
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the central transition zone and the southern side of the southern

plains, while the low-value areas are concentrated in the northern

mountainous regions. The high-value areas of SC-WS are mainly

located on the southern side of the southern plains, forming a

striped distribution pattern, and are distributed in dots in the

northern mountainous areas. The spatial distribution of SC-HQ is

similar to that of WS-HQ. From 1990 to 2000, the high-value area

was concentrated in the northern mountainous region. However,

from 2000 to 2020, there was a notable decrease in the trade-off

intensity observed in this area. From 1990 to 2000, the low-value

area was primarily situated on the eastern and western edges of the

southern plain. From 2000 to 2020, in addition to the previously

mentioned margins, a block-shaped low-value area emerged in the

northern mountainous region.
3.3 Analysis of the drivers of the intensity
of trade-offs in ESs

3.3.1 Identification of key influencing factors
The study used a combination of XGBoost and SHAP methods

to analyze the relative importance of each driver in the ESs trade-off

relationship in Wensu County and the direction of its movement

(Figure 7). The results show that in WY-WS, Land is the most

important driving factor, followed by Soil. In terms of the direction

of movement, Soil, NDVI, Tem, Slope, and Landforms promote the

ESs trade-off, while Land and GDP inhibit the ESs trade-off. In WY-
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SC, Pre is the most important driving factor, followed by Land.

Among these, Pre, NDVI, Landforms, Slope, Soil, and GDP

promote the ESs trade-off, while Land and Dem inhibit the ESs

trade-off. In WY-HQ, Tem is the most important driving factor,

followed by Land. Among these, Tem, NDVI, and Soil promote the

ESs trade-off, while Land, Pre, Pop, Dem, Slope, and GDP have a

suppressive effect on the ESs trade-off. In WS-HQ, Land is the most

important driving factor, followed by Dem. Among these, Dem,

Soil, and Landforms promote the ESs trade-off, while Land, Tem,

Pop, NDVI, and GDP have a suppressive effect on the ESs trade-off.

In SC-WS, Dem is the most important driving factor, NDVI and

Slope promote the trade-off of ESs, while Dem, Land and GDP

inhibit the trade-off of ESs. In SC-HQ, Land is the most important

driving factor, NDVI, Pre, Dem and Soil promote the trade-off of

ESs, while Land, Pop, Slope and GDP inhibit the trade-off of ESs.

3.3.2 Nonlinear relationship between key
influencing factors and effectiveness threshold

In general, varying degrees of autocorrelation exist between the

drivers of ES trade-offs, complicating the analysis of these factors

individually. The SHAP plot method provides a more effective way

to isolate the impact of specific drivers and to identify trends in ES

trade-offs driven by these factors (Figure 8). This study focuses on

the top three key drivers that significantly impact on ES trade-offs

and provides a detailed analysis. In WY-WS, the trade-off is

promoted when Land is cropland, forest land, or grassland, and

suppressed when Land is water, construction land, or unused land.
FIGURE 5

Spatial distribution of synergistic relationships between trade-offs in ESs. (a) Spatial distribution of trade-off synergies in WY-WS, (b) Spatial
distribution of trade-off synergies in WY-SC, (c) Spatial distribution of trade-off synergies in WY-HQ, (d) Spatial distribution of trade-off synergies in
WS-HQ, (e) Spatial distribution of trade-off synergies in SC-WS, (f) Spatial distribution of trade-off synergies in SC-HQ.
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When Soil is swamp soil, salty soil, irrigated soil, frozen soil, or cold

calcareous soil, it promotes trade-offs, while gray-brown soil, brown

soil, brown desert soil, stony soil, meadow soil, and flooded soil

inhibit trade-off. Pre exhibits a clear threshold effect on the ESs
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trade-off. When Pre is less than 7 mm or between 16 mm and 26

mm, it positively contributes to the trade-off, promoting it.

Conversely, when Pre is between 7 mm and 16 mm or between

26 mm and 34 mm, the effect of Pre on trade-offs is suppressed. In
FIGURE 6

Spatial distribution of the intensity of trade-offs between ESs. (a) Spatial distribution of WY-SC trade-off intensities from 1990 to 2020, (b) Spatial
distribution of WY-WS trade-off intensities from 1990 to 2020, (c) Spatial distribution of WY-HQ trade-off intensities from 1990 to 2020, (d) Spatial
distribution of SC-WS trade-off intensities from 1990 to 2020, (e) Spatial distribution of SC-HQ trade-off intensities from 1990 to 2020, (f) Spatial
distribution of WS-HQ trade-off intensities from 1990 to 2020.
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WY-SC, Pre promotes trade-offs when it is between 17 mm and 29

mm. Similarly, a specific altitude range has a significant impact on

the ESs trade-off. Altitudes between 1,200 m and 3,600 m promote

the trade-off. The trade-off is promoted when Land is cropland,

forest land, or grassland, and suppressed when Land is water,

construction land, or unused land. The effect of Dem on the

trade-off is suppressed when Dem is below 1,200 m or above

3,600 m. In WY-HQ, when Tem is above -2°C, the effect on the

trade-off is facilitated. When Tem is below -2°C, it inhibits the

trade-off. When Land is cropland, forest land, grassland, or water

area, which facilitates trade-off, while land is shown as construction

land or unused land, which inhibits trade-off. NDVI also shows a

significant threshold effect on the ES trade-off, with a threshold

value of 0.08. When NDVI exceeds 0.08, it favors the trade-off,

while values below 0.08 indicate that the trade-off is suppressed. In

WS-HQ, Land classified as cropland, forest land, grassland, or water

area promotes the trade-off, while construction land or unused land

suppresses it. It promotes trade-offs when Dem is greater than

1200m. It promotes trade-offs when the temperature is below -5°C

and inhibits trade-offs when it is above -5°C. In SC-WS, when Land

is cropland, forest land, grassland, or water area, the trade-off is

promoted, while construction land or unused land suppresses it.

When Dem is between 1000m and 1300m, the trade-off is

promoted, and when Dem below 1000m above 1300m, the trade-

off is suppressed. Tem between -12°C and -1°C or above 5.5°C

promotes trade-off, while Tem below -12°C and between -1°C and
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5.5°C suppresses trade-off. In SC-HQ, when land is cropland, forest

land, grassland, or water, trade-offs are facilitated, while

construction land or unused land suppresses them. Pop between

18.5 people/km2 and 20 people/km2 promote the trade-off, while

Pop below 18.5 people/km2 or above 20 people/km2 suppress it. A

slope of less than 50°promotes the trade-off, while a slope greater

than 50°suppresses it.
4 Discussion

4.1 Analysis of ESs assessment

Studies have shown that the high-value areas of WY, WS, SC

and HQ in Wensu County are primarily located in the large forest

and grassland area of the northern and central regions, which is

consistent with the findings of Wang et al. (2020) and Zhang et al.

(2023). This phenomenon is primarily attributed to the relatively

high precipitation, which creates an ideal habitat for species and

enhances SC and WS ability (Li S, et al., 2021). Therefore,

conserving mountain vegetation and water resources is crucial for

the sustainable development of Wensu County, and land use

changes directly influence the temporal and spatial distribution

patterns and evolution of ES functions. ESs vary by region. WY is

assessed based on data such as rainfall and evapotranspiration, but

it does not account for meltwater from glaciers and snow,
FIGURE 7

SHAP plot of drivers of trade-offs in ESs. (a) SHAP diagram of WY-WS drivers, (b) SHAP diagram of WY-SC drivers, (c) SHAP diagram of WY-HQ
drivers, (d) SHAP diagram of WS-HQ drivers, (e) SHAP diagram of SC-WS drivers, (f) SHAP diagram of SC-HQ drivers.
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potentially leading to an underestimation of WY. Precipitation is

the primary factor influencing WY, significantly affecting the

quantity of water resources and terrestrial hydrological processes

(Ziadat and Taimeh, 2013). Additionally, SC is closely linked to
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land use type and climate. Amid global warming (Chen et al., 2020),

the water cycle in the study area has intensified, leading to increased

precipitation and snowmelt in the mountains. 2010 was a year of

abundant rainfall in Wensu County (Sannigrahi et al., 2019), and
FIGURE 8

Nonlinear characteristics of ES trade-off drivers. (a) Nonlinear characteristics of WY-WS trade-off drivers, (b) Nonlinear characteristics of WY-SC
trade-off drivers, (c) Nonlinear characteristics of WY-HQ trade-off drivers, (d) Nonlinear characteristics of WS-HQ trade-off drivers, (e) Nonlinear
characteristics of SC-WS trade-off drivers, (f) Nonlinear characteristics of SC-HQ trade-off drivers.
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the increase in vegetation cover enhanced SC capacity, with WY

and SC reaching their peak values during the study period. After

2010, WY and SC declined due to the effects of climate change and

changes in land use, with the overall trend slightly weakening.

WS is an extremely important ES in Wensu County, with

changes in vegetation and climatic factors being the primary

drivers of its variation. Forests have a greater ability to reduce

wind speed and regulate climate than grasslands and farmlands.

However, the study area has a relatively small forest area and a

larger grassland area. In 2010, the amount of sand fixation reached a

minimum. Wensu County is located in an arid to semi-arid region,

with precipitation concentrated in the summer and windy days in

the spring. The effect of summer precipitation on soil and

vegetation is not enough to control soil erosion, which mainly

occurs in spring, Additionally, 2010 saw abundant rainfall, and the

heavy precipitation may have washed away topsoil, particularly on

sloping land or areas with exposed soil. The impact of precipitation

was strong and could cause soil particles to flow with the water,

resulting in loss of sand. However, in the past two decades, global

warming has led to a decrease in wind speed in the study area,

resulting in an overall increase in WS.

The overall HQ is on a downward trend, which is closely related to

the development status of the research area. Currently, the

development of Wensu County is characterized by low-quality

growth, evidenced by the rapid expansion of construction land,

which has encroached on large areas of cultivated land. This, in turn,

has increased pressure on ecological resources, leading to a significant

reduction in both forest and unused land. The intensification of human

activities has driven rapid urbanization and agricultural expansion, is a

key factor in the decline of regional HQ.
4.2 Changes in ESs trade-offs and
synergies

The study results show that WY-SC and WY-HQ have

remained in synergy from 1990 to 2020, as they are closely linked

to vegetation cover and precipitation. Precipitation promotes

vegetation growth and improves HQ and SC capacity, resulting in

WY-SC and WY-HQ showing the same or lower values, and

therefore a strong synergistic correlation. WS is influenced by

natural factors such as soil and terrain, as well as climatic factors

like temperature and wind speed, leading to a large difference in its

relationship with the other three services.

The results of changes in the region show that, except for the

synergy maintained by WY-SC, the other ES combinations mainly

show spatial trade-offs. Due to the multiple influences of natural

and social factors, the trade-off synergy of ESs shows obvious spatial

heterogeneity, which reflects the comprehensiveness and

complexity of ecological processes (Niu et al., 2022; Cui et al.,

2023). Quantifying the spatial pattern of ESs trade-offs in Wensu

County over the past two decades using RMSD reveals that the

intensity of trade-offs WY-WS and SC-WS has generally increased.

This is attributed to the increase in precipitation, which enhances

vegetation cover and, in turn, increases WY and SC. However, the
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intense impact of heavy precipitation can erode the soil’s surface

layer, causing soil particles to be carried away with the water, which

leads to soil erosion and reduces the ability to prevent sandstorms.

The overall decrease in the strength of trade-offs among other ESs

suggests that conflicts between different services have diminished,

indicating that the ecological compensation mechanism in the area

has had some success. The value of the trade-off between WY-SC is

minimal, and except for areas with high vegetation cover in the

central transition zone, the trade-off strength in other areas is

almost zero, which also indicates that there is a synergistic

relationship between WY-SC in most areas.
4.3 Drivers of ESs

Understanding the driving mechanisms behind changes in ES

trade-offs and identifying key influencing factors is critical for the

protection of vulnerable ecosystems. This study marks the first

application of XGBoost-SHAP to ecologically fragile areas,

showcasing its potential to reveal hidden patterns and

relationships that might otherwise remain undetected. The results

provide novel and actionable insights for ecosystem managers and

policymakers, facilitating the development of more precise, region-

specific management strategies.

The complex relationships among ESs trade-offs are influenced by

both natural and human factors (Fang et al., 2024). The results of the

XGBoost-SHAP model in this study show that the importance of

influencing factors varies among different combinations of ESs, and

exhibits a significant threshold effect, which is consistent with the

findings of Wang et al. (2024) and Tian et al. (2024). In WY-WS,

WS-HQ, and SC-HQ, land is the most important factor influencing the

strength of trade-offs. Land can increase the trade-off between water and

soil services when precipitation is below the critical value by changing

land surface roughness and water infiltration capacity, while alleviating

HQ conflicts by enhancing soil carbon sequestration capacity in areas

with high vegetation coverage, especially in the ecologically fragile zone

of arid areas. Therefore, an important breakthrough to improve the

strength of trade-offs is to strategically determine the scope of

construction land expansion from the perspective of land use,

reasonably develop unused land, and reduce the destruction of forest

land, grassland, and other natural landscapes. In WY-SC, Pre is the

factor with the largest contribution rate and shows a significant non-

linear change, with trade-offs being promoted when Pre is between 17

mm and 29 mm. Meanwhile, in WY-HQ, Tem is the factor with the

largest contribution rate, and when Tem is greater than -2°C, it has a

positive effect on trade-off.When Tem is less than -2°C, it suppresses the

trade-off. The synergistic relationship between temperature on WY and

HQ showed a significant threshold effect, and the opposition between

soil moisture conservation mechanism and evapotranspiration water

consumption during the freezing period explained why the WY-HQ

synergy could be maintained in the cold and arid mountainous areas in

the north, while the conflict in the southern plains intensified under the

background of warming. Therefore, climate change may affect the

strength of the trade-off between WY-HQ and WY-SC by changing

Pre and Tem. These nonlinear mechanisms suggest that the service
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trade-off management in ecologically fragile areas needs to break

through the traditional linear programming thinking and focus on

the threshold response and interaction paths of key drivers. For

example, priority should be given to protecting the high vegetation

cover zone in areas with severe precipitation fluctuations, implementing

habitat corridor projects in the thermal transition zone, and breaking

the vicious circle of “population-arable land-ecology” through land-use

zoning. In conclusion, climate change must be closely monitored and

responsive measures must be taken to improve the efficiency of resource

use, especially ecological efficiency, in the management of ES in Wensu

County. Changing the strength and direction of driving factors can

significantly improve the targeted ESs and pay more attention to the

implementation of ecosystem restoration policies.

The application of XGBoost-SHAP in this study also sets a

strong precedent for its use in future research, offering a powerful

tool for understanding and managing ES trade-offs in vulnerable

ecosystems globally. The model’s nonlinear predictive capabilities,

combined with its interpretability, make it a robust framework for

exploring ESs interactions and guiding effective, sustainable

management practices. Through this approach, the model

facilitates the design of tailored, targeted policies that respond to

the specific ecological needs of regions, paving the way for more

effective ecosystem restoration and conservation strategies.
4.4 Related policies and recommendations

The ecosystem of Wensu County is characterized by diverse

features, including significant altitude variations, an uneven

distribution of land resources, and distinct regional differences in the

human-environment relationship. These factors contribute to the

uneven distribution of ESs to a certain extent. The study results

indicate significant temporal and spatial variations in ESs across

Wensu County, with Land, Pre, and Tem being the primary factors

influencing the strength of trade-offs in these services. Therefore, it is

crucial for the government to fully consider the unique characteristics

of the terrain and landforms in both northern and southern regions, as

well as the threshold and non-linear features of the influencing factors

when formulating policies, which will help formulate targeted

ecosystem management policies (Wang and Xu, 2023). Based on the

characteristics of ES trade-offs in different regions, this study provides

policy recommendations for Wensu County.
Fron
1. The northern mountainous region is characterized by a

complex topography, steep slopes and poor site conditions,

which have resulted in the significant prevalence of soil

erosion and ecological degradation. Moreover, the region

experiences notable temporal and spatial variations in HQ.

Beyond topographic influences, climatic factors—such as

seasonal fluctuations in precipitation—and soil attributes,

including water retention capacity and fertility, play critical

roles in determining the ecosystem’s stability and

functionality. Consequently, the primary goal of

ecological management should focus on soil and water

conservation through a comprehensive approach. This
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includes restoring closed forest land and grassland,

cultivating multi-layered and diverse vegetation

communities, revitalizing regional biodiversity, and

enhancing the area’s soil and water conservation capacity,

thereby mitigating land degradation and supporting the

overall recovery of the ecological environment.

2. The southern plains region is characterized by relatively flat

terrain. However, the region is confronted with two

significant challenges: a high population density and limited

land resources. These issues have led to low land productivity

and restricted growth in grain yields from cropland. This has

further exacerbated food security concerns and placed

considerable pressure on the supply of ES functions. It is

therefore recommended that ES supply be optimized through

the protection, management, restoration, and conservation of

natural vegetation, alongside the development of

characteristic plants to improve the cultivation structure,

particularly in areas with high soil fertility and favorable

water and temperature conditions. In such areas, priority

should be given to the cultivation of cash crops. This will not

only enhance the efficiency of agricultural production, but

also alleviate the pressure on cropland resources and provide

local farmers with a more lucrative source of income. In

conclusion, In the process of land use, it is essential to

consider the implementation of a diversified agricultural

production system. This system should combine sustainable

agricultural techniques, such as crop rotation and fallow

farming, with the objective of achieving a balance between

agricultural output and ecological conservation.
4.5 Limitations of the study and future
research directions

This study has certain limitations due to differences in data sources

and model parameter settings. In addition, when different models are

used for evaluation in this study, the accuracy of the results may also be

affected due to the different accuracy of some data. Therefore, Future

research on trade-offs and synergies should focus on the

comprehensive assessment and parameter setting of ESs.

Additionally, it is essential to investigate the complex mechanisms

through which ecological and social factors influence ES trade-offs,

ensuring that regional differences and the contributions of driving

factors are fully incorporated into policy development.
5 Conclusion

This study takes Wensu County as the research area. According

to the local ecological vulnerability characteristics, four ESs, WY,

SC, WS and HQ, from 1990 to 2020 are selected for quantification.

The relationships between ESs are assessed using partial correlation

analysis and the pixel-by-pixel method. The strength of ES trade-

offs is analyzed using RMSD, while explainable ML algorithms are
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employed to identify the key drivers influencing these trade-offs.

The results show that:
Fron
1. From 1990 to 2020, Wensu County WY and SC showed an

inverted “N”-shaped downward trend. The average annual

WY decreased from 22.99 mm to 21.32 mm, and the SC per

unit area decreased from 1440.28 t/km2 to 1351.3 t/km2. In

contrast, the total amount of WS showed a positive “N”-

shaped increasing trend, from 2.32×107t to 3.11×107t.

Meanwhile the average HQ index showed an increasing

trend before decreasing, with values of 0.596, 0.603, 0.519,

and 0.507, respectively.

2. The relationships between WY-WS, WY-HQ, WS-HQ, SC-

WS, and SC-HQ are primarily characterized by trade-offs,

with trade-off pixel ratios of 55.33%, 56.85%, 60.08%,

54.33%, and 55.95%, respectively. However, the WY-SC

relationship is primarily characterized by synergistic

interactions, with a pixel ratio of 88.62%. Moreover, the

trade-off strength between SC-HQ, WY-HQ, and WS-HQ

is significantly higher, while the trade-off strength between

WY-SC is the lowest, indicating that WY-SC has synergistic

relationships in most regions.

3. The importance of the drivers of each group of ES trade-off

effects is ranked differently, and the contribution of the

same driver in different ES trade-off strength relationships

is also different. Additionally, the direction of movement of

different drivers in different ES trade-off strength

relationships is also different. Each group of ES trade-off

effects shows a nonlinear change in response to the driver,

and the threshold of the same driver in different trade-off

strengths is also different.
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