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Introduction: The ecological and economic impacts of forest pests have

intensified, particularly in remote areas. Traditional pest detection methods are

often inefficient and inaccurate in complex environments, posing significant

challenges for effective pest management. Enhancing the efficiency and

accuracy of pest detection under resource-limited conditions has thus

become a critical issue. This study aims to address these challenges by

proposing an improved lightweight forestry pest detection algorithm, RSD-

YOLOv8, based on YOLOv8.

Methods: To improve the performance of pest detection, we introduced several

modifications to the YOLOv8 architecture. First, we proposed RepLightConv to

replace conventional convolution in HGNetV2, forming the Rep-HGNetV2

backbone, which significantly reduces the number of model parameters.

Additionally, the neck of the model was enhanced by integrating a slim-neck

structure and adding a Dyhead module before the output layer. Further

optimization was achieved through model pruning, which contributed to

additional lightweighting of the model. These improvements were designed to

balance detection accuracy with computational efficiency, particularly for

deployment in resource-constrained environments.

Results: The experimental results demonstrate the effectiveness of the proposed

RSD-YOLOv8 model. The model achieved a Map@0.5:0.95(%) of 88.6%,

representing a 4.2% improvement over the original YOLOv8 model.

Furthermore, the number of parameters was reduced by approximately 36%,

the number of operations decreased by 36%, and the model size was reduced by

33%. These improvements indicate that the RSD-YOLOv8 model not only

enhances detection accuracy but also significantly reduces computational

burden and resource consumption.

Discussion: The lightweight technology and architectural improvements

introduced in this study have proven effective in enhancing pest detection

accuracy while minimizing resource requirements. The RSD-YOLOv8 model's

ability to operate efficiently in remote areas with limited resources makes it highly

practical for real-world applications. This advancement holds positive
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implications for agroforestry ecology and supports the broader goals of

intelligent and sustainable development. Future work could explore further

optimization techniques and the application of this model to other domains

requiring lightweight and accurate detection systems.
KEYWORDS

model pruning, pest identification, YOLOv8, HGNetv2, heavy parameter
lightweight convolution
1 Introduction

With the rapid spread of plantation forests worldwide in recent

years (Bongaarts, 2019), the problem of forestry pests has become

more and more prominent, and there has been a significant increase

in the speed and range of their spread, both native and invasive

pests (Yang et al., 2014). Large-scale outbreaks of pests have caused

severe economic losses and ecological damage to forest resources

(Choi and Park, 2019). Therefore, it has become particularly urgent

and necessary to strengthen the effective detection and monitoring

of forestry pests (Zhao et al., 2023).

Traditional identification of forestry pests has relied mainly on a

limited number of environmentalists and entomologists (Al-Hiary

et al., 2011). This process usually involves manual and visual

inspection of insects based on their physical characteristics (e.g.,

wings, antennae, mouthparts, and legs). This approach has obvious

drawbacks due to the diversity of pests and the subtle differences

between species. With the continuous advancement of machine

learning and computer vision techniques (Dong et al., 2024), the

automatic identification of pests has attracted much attention. Deep

learning has revolutionized the field of image processing, surpassing

traditional methods that require human intervention, such as visual

recognition and manual selection (Liu and Wang, 2021). Deep

learning has achieved considerable success in target detection and

has become a mainstream approach for detection tasks. YOLO

(Redmon et al., 2016) (You Only Look Once), a target detection

model, was first proposed in 2015. The core feature of this model is

its implementation of real-time target detection, a major

technological breakthrough at the time. The YOLO model treats

the target detection task as a unified, end-to-end deep learning

process and no longer repurposes classifiers for the detection task as

compared to SSD (Liu et al., 2016) and Faster R-CNN (Ren et al.,

2016). YOLO achieves this goal by dividing the entire image into a

fixed number of grids and simultaneously predicting the class and

location of the target within each grid, achieving significant

improvements in speed and efficiency.

Although the YOLO series models have made significant

progress in the field of object detection, they still face some

challenges in forestry pest detection tasks. For example, complex

background environments can interfere with the detection accuracy

of the model; The diversity of pest morphology, such as differences

in size, color, and shape among different species of pests, increases
02
the difficulty of identification; Higher demands have been placed on

the computational complexity and size of the model.

The main contents of this study are as follows:
1. redesign HGNetV2: RepLightConv is proposed to replace

the conventional convolution in the original HGNetV2,

and the backbone network is optimized by using the

reparametrized convolution, which reduces the number of

parameters and computation and improves the

detection speed.

2. Introducing slim-neck structure: replacing C2f and

standard convolution in the YOLOv8 neck layer. It

significantly reduces the computational complexity and

network architecture while maintaining the high accuracy

performance of the model.

3. Introduction of Dyhead detection head: improves the

model’s sensitivity to key feature extraction in the pest

detection task and, at the same time, enhances the model’s

adaptability to different target features and transformations,

which effectively improves the detection accuracy of pest

targets in different background environments.

4. Model Pruning Optimization Model: A lighter detection

model is obtained by introducing layer-based adaptive

amplitude pruning (Lamp).
2 Related work

Researchers have recently proposed various improved deep

learning-based models for pest detection tasks in recent years.

Table 1 shows the research on pests and diseases in the YOLO

series in recent years. The YOLOv8 model has been improved to

maintain accuracy while reducing computational costs (Jiang and

Chen, 2024). however, their study was limited by a small dataset

(2,183 samples) and a uniform experimental background (white

color) with only seven pest categories, which made it complex and

dynamic detection environments challenging. The Skip DETR was

proposed by (Liu et al., 2023). effectively improves feature fusion

between different network layers by introducing skip connections

and spatial pyramid pooling layers, thereby significantly enhancing

detection accuracy. However, its high computational complexity
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(36.8M parameters) limits its practical application in resource-

constrained remote areas. Zhang et al. (2023a) proposed an

improved YOLOv8 model, which effectively solved the problem

of gradient vanishing when training the algorithm on the IP102

(Wu et al., 2019) dataset. An enhanced YOLOv5 model tailored for

rice pests was introduced by (Yu and Zhang, 2023), which

significantly reduces the computational complexity and presents a

large-scale feature extraction layer to improve the detection of small

and medium-sized pest targets in rice.

Further advances by (Cheng et al., 2022) include, a lightweight

YOLOv3-based crop pest detection method that reduces the

number of parameters and computations required. Li et al.

(2022a) developed YOLOL-JD, a jute pest identification model

with an average accuracy (Map50) of 96.63%. Xiang et al. (2023)

presented Yolo Pest, a simplified model structure designed to

minimize the loss of pest traits for small targets without

compromising the detection of normal-sized targets. Yang et al.

(2023) introduced Yolo for maize, an innovative YOLOv7-based

maize pest detection method enhanced by CSPResNeXt-50 and

VoVGSCSP modules, which improves the accuracy and speed of

network detection while reducing computational requirements.

The Pest YOLO (Wen et al., 2022), which minimizes the

parameter counts while maintaining the detection performance

to mitigate the waste of computational resources and inefficiency

caused by over-parameterization. In addition, a fast and

lightweight passion fruit pest detection algorithm based on the

improved YOLOv5 was developed, which significantly improves

the detection speed and reduces the resource requirements

through model simplification and computational efficiency

optimization. Checola et al. (2024) Focus on addressing the

threat of Flavescence due to grapevine health and overcoming

traditional monitoring methods’ high cost and low-efficiency

issues. Develop an automatic pest detection system based on

computer vision and deep learning.
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Existing research on forestry pest detection mainly focuses on

small-scale and fewer pest datasets. In contrast, research on large-

scale and multi-class forestry pest detection is insufficient, which is

insufficient to recognize and respond to multiple pest targets in real

forestry scenarios. This study selected a large-scale forestry pest

dataset as the training base. Twenty-nine different pest classes were

covered. The dataset covers different stages of adults, larvae, and

eggs of various pests. It brings significant challenges for model

training and evaluation. To cope with these challenges, this paper

proposes a forestry pest detection model based on improved

YOLOv8n, which is designed to effectively deal with large-scale

and multicategory forestry pest detection problems by deep learning

techniques to achieve high-precision recognition of pests in

complex and diverse forestry environments.
3 Materials and methods

3.1 Introduction to the dataset

The comprehensive dataset of multiple forestry pests proposed

by (Liu et al., 2022) covers morphological characteristics of different

life cycle stages with high-similarity backgrounds, shading, and

dense targets. Data enhancement of the dataset involves applying

various techniques to increase the diversity and quantity of data,

thereby improving the model’s generalization ability. These

techniques include geometric transformations such as rotation,

flipping, translation, and scaling and image processing methods

such as adding noise, adjusting brightness, contrast, and color

dithering. To ensure the effectiveness and generalization of the

model in practical scenarios, we further discussed the diversity of

environmental conditions in the dataset. Although this dataset

covers various forestry pests, in practical applications, pests may

appear under different ecological conditions, such as other
FIGURE 1

Image samples in the dataset.
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geographical locations, climate conditions, and tree species.

Therefore, we analyzed the diversity of environmental conditions

in the dataset, which includes different types of backgrounds, such

as trees, leaves, and soil types, to simulate the complex environment

of the real world. Some of the images of the dataset are shown in

Figure 1. The dataset is randomly divided into training, testing, and

validation sets in the ratio of 7:2:1. The specific division is shown

in Table 2.
3.2 Assessment criteria

To better show precisely the advantages of the pruning

algorithm and model improvement, the following performance

evaluation metrics were used: precision (P), recall (R), calculation,

parameters, and AP (Average Precision) averaged over

mAP@.5:.95.

Precision is the ratio of correctly recognized forestry pest targets

to all detected forestry pest targets by the network model, as shown

in Equation 1. The recall represents the ratio of correctly recognized

forestry pest targets to all labelled forestry pest targets, as shown in

Equation 2. When delving into the performance evaluation of pest

detection algorithms, special attention should be paid to three core

indicators: TP (true positive), FP (false positive), and FN (false

negative). Here is a detailed explanation of these indicators: TP

(True Positive) indicator, which refers to the number of targets

correctly identified and labelled as pests in the algorithm’s

prediction results. In other words, TP reflects the algorithm’s

accuracy in identifying actual pests. A high TP value means that

the algorithm has high detection capability and can effectively

identify pests, which is crucial for developing and implementing

pest management strategies. The FP (false positive) indicator

represents the situation where the algorithm incorrectly identifies

nonpest objects as pests during the prediction process. In other

words, FP refers to the number of samples that are not actually pests

but are incorrectly labelled as pests by the algorithm. The higher the

FP value, the higher the false alarm rate of the algorithm, which may

lead to unnecessary prevention measures, increase costs, and
Frontiers in Plant Science 04
potentially hurt the environment. The FN (false negative)

indicator measures the actual number of pest targets that the

algorithm fails to recognize during the detection process. That is

to say, FN refers to the number of samples that are pests but have

not been detected by the algorithm. The higher the FN value, the

higher the missed detection rate of the algorithm, which may lead to

the neglect of pest problems and affect the overall pest control

effectiveness. The three indicators of TP, FP, and FN together

constitute a comprehensive system for evaluating the performance

of pest detection algorithms. By accurately calculating and

interpreting these indicators, we can have a more comprehensive

understanding of the advantages and disadvantages of the

algorithm and then optimize it to improve the accuracy and

efficiency of pest detection.

Precision   =  
TP

TP + FP
(1)

Recall   =  
TP

TP + FN
(2)

By considering the P and R metrics, AP evaluates the model’s

performance in each category with a value equal to the area between

the P-R curve and the axes. As shown in Equation 3.

AP  =  1
Z 1

0
Precision (Recall)  d  (Recall) (3)

Map@0.5:0.95(%) is the average of the APs calculated under

mAP 0.5-0.95, which is the average of the APs of the IoUs (0.5-0.95

in steps of 0.05). In this experiment, F denotes the target category,

and Map@0.5:0.95(%) is the harsher metric used to compare the

detection of targets. The calculation formula is shown in Equation 4.

mAP =
1
Fo

F

i=1
APi (4)

When evaluating neural network models built based on deep

learning frameworks, in addition to considering accuracy metrics,

the complexity of the model must also be considered. The number

of network parameters (Parameters) is often used to describe the
TABLE 1 Comparison table of pest identification research.

References Dataset size Recognition algorithm Map@0.5:0.95(%) Params (M) Classes

Jiang and Chen, 2024 2138 YOLOv8 82.3 \ 7

Liu et al., 2023 7163 DETR 77.0 36.8M 31

Zhang et al., 2023a 19000 YOLOv8 39.4 25.8M 102

Yu and Zhang, 2023 2120 YOLOv5 66.2 1.94M 9

Cheng et al., 2022 3000 YOLOv3 82.9(Map@0.5) 5M 15

Li et al., 2022a 4418 YOLOv5 96.63(Map@0.5) \ 10

Xiang et al., 2023 576 YOLOv5 74.3 6.0M 28

Yang et al., 2023 4532 YOLOv7 51.2 33.4M 13

Wen et al., 2022 25378 YOLOv4 69.5(Map@0.5) \ 24

Checola et al., 2024 615 YOLOv8 66.0 \ 1
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complexity of the model. “Lightweight” usually refers to reducing

resources while maintaining functional integrity, reducing the

resource footprint, or reducing the size and complexity of the

system. FLOPs represent the speed of neural network models to

perform computations, and the computational power, parameter

decrease, and FLOPs decrease can be considered as an indication of
Frontiers in Plant Science 05
lightweight. The specific objective of this study is to validate the

lightweight performance of the improved YOLOv8.
3.3 YOLOv8 and its improved models

3.3.1 YOLOv8 modeling
The Ultralytics team launched the YOLOv8 model in January

2023 with a structure that includes an input, backbone, neck network,

and headmodule. The YOLO family balances speed and accuracy as a

single-stage detection algorithm, allowing it to excel in target

detection. The backbone of YOLOv8 utilizes the Darknet53

structure and contains the C2f, Conv, and SPPF modules. The C2f

module, derived from the ELAN structure of YOLOv7, replaces the

C3 module of YOLOv5 (Duan et al., 2023), providing rich gradient

flow information and enhancing the feature representation capability.

The SPPF module captures multi-scale context information through

pyramid pooling operations to reduce information loss and

computational burden. The neck module adopts the YOLOv5-like

PAN and FPN design, eliminates the CBS 1x1 sampled on the PAN-

FP (Lin et al., 2017; Liu et al., 2018), and replaces the C3 module with

the C2f module to enhance the multi-scale information management

and feature fusion capability. The detector head (DETECT) separates

classification from detection through an anchorless design (Chen

et al., 2023b), which directly predicts the aspect ratio and centroid of

the target, improving the detection speed. The introduced distributed

focusing loss reduces the sensitivity to outliers and improves the

robustness of the model.

3.3.2 RSD-YOLOv8
The HG block in HGNetV2 (Zhao et al., 2024) within RT-

DETR is combined with RepConv to create Rep_HGBlock,

significantly reducing the model parameters, computation, and

size without sacrificing the detection accuracy. The Slim-neck

module replaces the C2f and Conv modules in the original

yolov8, which reduces the computational complexity in the

forward propagation process The Slim-neck module replaces the

C2f and Conv modules in the original yolov8, which reduces the

computational complexity during the forward propagation process.

And the detection accuracy of small targets is maintained or

improved. Attention-based Dyhead is integrated into the

detection head section to inject relevant attention on three

perceptual dimensions: scale, space, and task. This integration of

different self-attention mechanisms significantly enhances the

feature extraction capability of the detection head. The model

improvements are shown in Figure 2, and these enhancements

enable the model to skillfully cope with the challenges in forestry

pest detection scenarios and significantly improve the real-time

detection efficiency. The model achieves high detection accuracy

through algorithmic optimization while reducing the number of

parameters, computational complexity, and model size. As a result,

RSD-YOLOv8 is more suitable for meeting the high-precision pest

detection needs of agricultural production, providing an

efficient solution.
TABLE 2 Breakdown of training, testing, and validation set divisions.

Name Train
Tags

Val
Tags

Test
Tags

Drosicha_contrahens_female 417 67 128

Drosicha_contrahens_male 153 22 51

Chalcophora_japonica 110 16 34

Anoplophora_chinensis 316 46 86

Psacothea_hilaris (Pascoe) 174 20 37

Apriona_germari (Hope) 253 35 72

Monochamus_alternatus 138 23 39

Plagiodera_versicolora (Laicharting) 347 43 64

Latoia_consocia_Walker 205 41 44

Hyphantria_cunea 306 45 94

Cnidocampa_flavescens
(Walker_pupa)

205 17 54

Erthesina_fullo 211 37 64

Erthesina_fullo_nymph-2 1749 309 482

Erthesina_fullo_nymph 142 17 59

Psilogramma_menephron 163 26 43

Sericinus_montela 269 51 76

Sericinus_montela_larvae 227 36 77

Clostera_anachoreta 223 23 62

Micromelalopha_troglodyta
(Graeser)

174 24 40

Latoia_consocia_Walker_larvae 426 15 167

Plagiodera_versicolora
(Laicharting)_larvae

618 73 187

Plagiodera_versicolora
(Laicharting)_ovum

1963 380 637

Spilarctia_subcarnea(Walker)_larvae 123 31 36

Spilarctia_subcarnea(Walker)
_larvae-2

320 16 86

Psilogramma_menephron_larvae 141 21 46

Cerambycidae_larvae 318 13 85

Micromelalopha_troglodyta
(Graeser)_larvae

293 24 81

Hyphantria_cunea_larvae 240 46 154

Hyphantria_cunea_pupa 315 34 65
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3.4 Model improvements

3.4.1 Rep-HGNetV2
Improving model efficiency and performance remains a key

research area in deep learning and computational vision. Therefore,

a novel backbone network Rep-HGNetV2 consisting of HGStem,

Rep-HGblock, and DWConv was designed. As shown in Figure 3,

the HGStem module includes five key convolutional operations and

a max pooling operation, which helps to extract low-level features

efficiently and effectively. The convolution and pooling operations

efficiently extract the basic image features. The HGStem module

provides a robust approach for feature extraction in complex neural

network architectures, enabling efficient input data encoding and

improving the computational efficiency of the entire network

without compromising performance.

The core idea of RepConv comes from RepVGG, proposed by

(Ding et al., 2021), a technique specifically designed for model

reparameterization. It can transform a complex convolutional

neural network into a network consisting of simple convolutional

and fully connected layers. This reparameterization process

significantly reduces the computational effort and the number of

parameters in the model, resulting in improved inference speed and
Frontiers in Plant Science 06
lightweight deployment capabilities. The core concept is to replace

the original convolution operation with a module consisting of a

convolutional layer and an element-wise addition operation to

realize the reparameterization of the network. This reduces

computation and memory consumption. As shown in Figure 4.

the RepConv module integrates RepVGG into the feature fusion

network. During the training process, several branches are used,

including a 3x3 convolutional kernel module, a 1x1 convolutional

kernel module, and shortcuts. The BN layer follows the

convolutional layer. The first step of reparameterization is to

convert 1x1 convolution and shortcuts to 3x3 convolution kernels

that output the same result. In the inference phase, structural

reparameterization merges each RepConv block into a 3x3 CBS

module. The multi-branch topology allows learning rich feature

information during training, while the simplified single-branch

architecture reduces memory consumption and enables fast

inference during the inference phase.

The traditional convolution has the disadvantages of many

parameters, high computation, and high memory consumption,

as shown in Figure 5a. The proposed RepLightConv maintains a

high model representation capability while reducing the parameters

and computation by combining 1x1 convolution and RepConv. 1x1
FIGURE 2

Improved YOLOv8 model (RSD-YOLOv8).
FIGURE 3

HGStem module structure.
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convolution efficiently reduces the number of parameters between

the channels, while RepConv further optimizes the computational

efficiency. The number of parameters is significantly reduced while

maintaining high performance. As shown in Figure 5b, Rep-

HGblock replaces the regular convolution in the original

HGblock module in HGNetV2 with the reparameterized
Frontiers in Plant Science 07
RepLightConv convolution, which significantly reduces the

number of parameters in the model and lowers the memory

occupation compared with the traditional convolution module;

secondly, it improves the computational efficiency, making The

model is more efficient in the training and inference process; despite

the reduced number of parameters, RepLightConv still maintains a

high model expressiveness for resource-constrained environments,

such as mobile devices or embedded systems. With these

improvements, Rep_HGBlock significantly reduces computation

and memory usage while maintaining high performance, allowing

it to excel in resource-constrained scenarios.

In this study, several mainstream backbone networks are tested

under the YOLOv8 framework to evaluate the full performance of

RepHGNetV2. These backbone networks include YOLOv8’s

original CSPDarkNet53 (Shen et al., 2023), the lightweight

MobileNetV3 and MobileNetV4, and Vanillanet and StarNet.

Although MobileNetV3 stands out for its lowest parameter count

(1.19M), computational complexity (2.4G), and model size

(2.6MB), its performance in key experimental metrics such as

precision (90.2%), recall (53.2%) and Map@0.5:0.95 (69.8%), etc.,

is not satisfactory. In contrast, although Vanillanet and StarNet

have advantages over RepHGNetV2 in terms of the number of

parameters, computational complexity, and model size, the

experimental results show a significant performance gap between

them and RepHGNetV2. After comprehensive comparison and

analysis, RepHGNetV2 achieves the best balance between

accuracy, computational complexity, parameter complexity, and

model size. Therefore, it was finally decided to replace the original

CSPDarkNet53 backbone with RepHGNetV2 in YOLOv8 to

achieve better overall performance. The experimental results are

shown in Table 3.

3.4.2 Slim-neck module
Forestry pest detection demands rapid recognition speeds and

high model accuracy to facilitate prompt preventive measures. For

future applications involving real-time monitoring of forestry pests

on embedded devices, it is crucial to maintain model performance

while achieving smaller model sizes and faster algorithm execution.

Li et al. (2022b) proposed the GSConv approach to address model

complexity, leveraging the synergistic use of standard and

depthwise separable convolution. Standard Convolution (SC) is

known for its fusion and feature extraction capabilities, yet its

overuse leads to a substantial accumulation of parameters.

Conversely, Depthwise Separable Convolution (DSC) significantly

reduces the model’s overall parameters and floating-point

operations, albeit with a trade-off in channel information loss.

The GSConv approach ingeniously combines SC and DSC with a

shuffle operation to form a unified module. This combination

effectively mitigates the complexity of the model, ensuring a

balanced reduction in parameter count and computational load

while preserving essential channel information. Such advancements

are pivotal for deploying efficient, high-performance models on

resource-constrained embedded devices, enhancing forestry pests’

real-time detection and monitoring.
FIGURE 4

RepConv module structure (a) Training phase; (b) Inference Phase.
FIGURE 5

(a) RepLightConv; (b) Rep-HGBlock.
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The following Equations 5–7 show the operations’ SC, DSC, and

GSConv complexity.

TimeSC ∼ O(W �H� K1 � K2 � C1 � C2) (5)

TimeDSC ∼ O(W �H� K1 � K2 � 1� C2) (6)

TimeGSConv ∼ O½W �H� K1 � K2 �
C2

2
(C1 + 1)� (7)

In the context of convolutional operations, let W and H

represent the width and height of the output feature map,

respectively. The convolutional kernel size is denoted by K1 � K2.
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The term C1 � C2 refers to the number of channels of the input

feature map, which also corresponds to the number of channels

associated with each convolution kernel. Meanwhile, C2 indicates

the number of channels of the output feature map. In a standard

convolution (SC) context, generating each output feature map

channel requires convolution across all input channels, and then

the results are accumulated. This approach results in substantial

computational overhead, mainly when the number of input and

output channels C1  and C2 respectively is large. In contrast,

GSConv mitigates this computational burden by halving the

number of output channels( C2
2 )and optimizing the input and

output channel relationship  C1 + 1, thereby significantly reducing

computational complexity compared to SC.
FIGURE 6

(A) GSConv model structure (B) GSbottleneck model structure (C) VoVGSCSP model structure.
TABLE 3 Comparison of different backbone networks.

References Model P (%) R(%) Map@0.5:0.95(%) Params(M) FLOPs (G) Weight Size(MB)

Howard et al. (2019) MobileNetV3 90.2 83.2 69.8 1.19 2.4 2.6

Shen et al. (2023) CSPDarkNet53 97.0 94.8 84.4 3.01 8.1 6.0

Chen et al. (2023a) Vanillanet 93.3 86.4 70.3 1.73 5.1 3.5

Ma et al. (2024) StarNet 95.6 93.6 82.2 2.21 6.5 4.7

Qin et al. (2025) MobileNetV4 95.5 92.5 81.9 5.70 22.6 11.8

/ RepHGNetV2 97.8 95.2 85.3 2.34 6.9 4.8
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Depthwise Separable Convolution (DSC) addresses

computational inefficiencies by decomposing the convolution

operation into depth and pointwise convolution. This

decomposition dramatically reduces the parameter count and

computational complexity, especially for larger values of  C1  and

 C2. On the other hand, GSConv further reduces computational

complexity by finetuning the relationship between  C1  and  C2 

while maintaining performance. This approach results in further

compression of computational complexity without compromising

model accuracy.

GSConv demonstrates superiority over traditional SC and DSC

in specific applications by introducing additional computational

optimizations and structured sparsity, building upon the

foundational principles of deep separable convolution. These

enhancements lead to higher computational efficiency and

potential performance gains, underscoring the advantages of

GSConv in reducing computational demands while preserving or

enhancing overall performance. GSConv effectively balances model

accuracy and computational speed, as illustrated in Figure 6A. This

architecture enables the model to remain lightweight while

preserving accuracy. The mechanism involves fusing the output

information from Standard Convolution (SC) with that of

Depthwise Separable Convolution (DSC) through a shuffle

operation. The shuffle operation acts as a homogeneous mixing

strategy, ensuring that the information derived from SC is

seamlessly integrated into the DSC output. This process facilitates
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the uniform exchange of local feature information across different

channels, optimizing the network’s overall performance.

To further enhance inference speed while preserving accuracy,

the GSConv framework incorporates the GSbottleneck module,

which forms the core of the VoVGSCSP module. This module

comprises the GSbottleneck, CONV, and Concat modules, as

depicted in Figure 6B. The GSbottleneck integrates two GSConv

layers with added skip connections to streamline the computational

process. Specifically, the first GSConv layer reduces the number of

input channels by half, and subsequently, the second GSConv layer

processes these reduced channels. This design ensures efficient

channel reduction and processing, contributing to faster inference

times while maintaining the model’s accuracy. In Figure 6C, the

VoVGSCSP module’s structure, which leverages the GSbottleneck’s

efficient channel handling, the CONV module’s convolutional

capabilities, and the Concat module’s feature aggregation,

exemplifies an optimal balance between speed and accuracy in the

GSConv architecture.

In the VoVGSCSP module, the input feature map is divided into

two segments, each comprising a subset of the total channels. The

first segment undergoes a convolution operation and feature

extraction through stacked GSbottleneck modules. Concurrently,

the second segment is a residual connection, passing through a

single convolution layer. These two segments are subsequently

fused and concatenated channel-wise, and the combined feature

map is output through an additional convolution layer. This design
FIGURE 7

Dynamic head detection head workflow.
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results in a more robust nonlinear representation compared to the

c2f module, effectively addressing the issue of vanishing gradients.

The VoVGSCSP module reduces the number of parameters and

maintains measurement accuracy (Zhang et al., 2023b), which is

crucial for deploying models on embedded devices. This makes it

optimal for applications requiring efficient computation and

high performance.

3.4.3 Dynamic head module
For different stages of forestry pests, the size of the detection

target varies, and Dynamic Head (Dai et al., 2021) solves this

problem by using level-wise detection. The characteristic of level-

wise sensing is that different feature maps correspond to different

scale sizes, and improving the detector’s level-wise sensing ability

also adjusts the scale expression ability at the same time. As shown

in Equation 8.

pL(F ) ·F = s(f(
1
SCoS,C

F )) ·F (8)

Where f(·) is a linear function composed of approximate 1*1

convolutions and s (x) = max(0,min(1, (x + 1)=2)) is the hard

sigmoid function

pS(F ) ·F =
1
Lo

L

l=1
o
K

k=1

wl,k ·F (l; pk + Dpk ; c) · Dmk (9)

Pest detection targets may appear at different positions in the

detected image. The spatial wise feature in Dyhead better handles

the spatial differences between different pests in the pest image

features. Based on the feature maps corresponding to different

positions, improving the spatial position perception ability of the

detection head is achieved by changing the expression ability of

different spaces. As shown in Equation 9. K is the number of

sparsely sampled locations for which a pkDpk   position shift was

done to focus on discriminative regions and mk is a self-learning

importance metric on the location pk of self-learnable importance

metric, they were appealing that both parameters can be F
intermediate level of input feature learning.

The detection task contains different task information features,

and the task aware (channel-wise) in Dyhead uses different

detection heads to match them, using different feature channels

for various classes of pests. As shown in Equation 10.

pC(F ) ·F = max(a1(F ) ·F c + b1(F ),a2(F ) ·F c

+ b2(F )) (10)

½a1,a2, b1, b2�T = q( · ) is a hyperfunction that learns to

control the activation threshold, which is the role of the training

process in learning how to control the threshold. q( · ) The specific
role is to perform global pooling in L x S dimensions to reduce the

dimensionality. Sequentially, it passes through two fully connected

layers and a normalization layer and finally normalizes the output

to [-1,1] using an offset sigmoid.
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The Dynamic Head workflow is shown in Figure 7.  pL and pS
and pC corresponds to the level-wise, spatial-wise, and channel-wise

attention modules.

As shown above, three perceptual modules augment the output

by continuously stacking and combining the different attention

locations to get the final result.

3.4.4 Model pruning
In this experiment, a magnitude-based adaptive pruning

algorithm (Lamp) proposed by (Lee et al., 2020) was used to

prune the improved model. The method optimizes pruning

efficiency by selecting the sparsity of the layers using the LAMP

score. The technique can determine the sparsity of each layer by

itself and has the advantages of high computational efficiency, no

need to adjust hyperparameters, and no dependence on model-

specific knowledge over traditional pruning methods.

Since the pruning method is layer-based adaptive magnitude

pruning in the direction of structured pruning, the idea behind

implementing LAMP is that a model-level distortion minimization

perspective is adopted to treat the magnitude-based pruning. By

expanding the weight tensor W(i) is expanded into a one-

dimensional vector, which is subsequently ranked to satisfy   W½u�j j
≤ W½v�j j, which is the same as u<   v holds simultaneously, yielding

a Lamp score that serves to exhibit the sparsity of each layer. The

weight tensor W The Lamp score for the first index of the u LAMP

score for an index is shown in Equation 11.

score(u;W) : =
(W½u�)2

ov≥u(W½v�)2 (11)

The Lamp score is a rescaled weight magnitude metric, similar to

the distortion of the pruned model caused by pruning. The Lamp

score weighs the relatively meaningful target connections among all

the residual connections belonging to the same layer, where

connections with lower values of the weight magnitude are

discarded. Two connections with the same weight magnitude have

different Lamp scores. Once the Lamp scores are computed, they are

sorted from the lowest to the highest scores, and according to the

global sparsity constraints, all the LAMP score connections with less

than the target weights are removed in order until the desired global

sparsity constraints are satisfied, achieving a significant reduction in

parameters. The pruning process is shown in Figure 8.
4 Experiments and analysis of results

4.1 Experiment and parameterization

All model training and testing procedures were executed on the

same device with an experimental configuration of Inter 12700KF

CPU, 32GB RAM, and NVIDIA GeForce RTX 3090TI GPU, and a

training environment of Windows 11 (64bit) using Python 3.8,

PyTorch 2.1.2 and CUDA 12.1.
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During training, we normalized the input image size

to 640×640. We used 16 batch sizes and trained the model

for 300 epochs. The training-specific parameters are shown

in Table 4.
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4.2 Ablation experiments

To better determine the impact of the improved module on the

overall model, its effectiveness was assessed through ablation

experiments (Huang et al., 2024). The results of the experiment

are shown in Table 5.

It is clear from Table 4 that the model, after replacing the

RepHGNetV2 backbone network, drops by 21%, 15%, and 20% in

parameters and operations and model size, respectively. The addition

of the Dynamic Head module by Yolov8 yields a significant boost.

mAP@.5:.95 improved by 2.3% in exchange for the boost at the cost of

Params, GFLOPs, and FPS went up by 14%, 17%, and 13%. It is

demonstrated that the inclusion of this module leads to an increase in

computational cost and model size. A comparison of the experimental

results for the slim-neck module, which is lightly optimized for the

neck, shows that adding the slim-neck helps reduce the computational

cost, with GFLOPs decreasing by 10% and the corresponding metrics

decreasing differently compared to the Dynamic Head module.
TABLE 4 Training parameters.

Parameter Value

Epochs 300

Batch size 16

Image size 640 x 640

Optimizer algorithm SGD

Learning rate 0.01

Momentum 0.937

Weight decay 0.005
FIGURE 8

Schematic diagram of the LAMP pruning process.
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As shown in Figure 9, after about 300 epochs, Map@0.5:0.95(%)

value reaches about 90% respectively and gradually stabilizes. It is

far beyond the effect of using the module alone. It shows that the

YOLOv8-Flight model has a high overall accuracy in forestry

pest detection.
4.3 Pruning effect

After completing the ablation experiments, it was found that

the parameters and operations of the model were too large,

resulting in a model that was not lightweight enough, thus

affecting its efficiency in practical applications (Zeng et al., 2023).

The model pruning technique is introduced to reduce the

complexity of the model by removing redundant and

unimportant weights or neurons. The number of parameters and
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computations is decreased significantly. RSD-YOLOv8 was trained

for 300 rounds to obtain the pre-trained weights. A pruning

operation was performed on the weights obtained in training and

then finetuned for 300 rounds (the same number of rounds as in

training). Speed_up (FLOPS before pruning/FLOPS after pruning)

was set to 1.5 times. The goal is to minimize the number of

parameters and arguments without losing accuracy. While

pruning technology improves model efficiency, it also brings

some limitations. Firstly, pruning may unintentionally remove

some weights or neurons that significantly impact model

performance, resulting in information loss, which may hurt the

model’s generalization ability. Secondly, balancing model size and

improving accuracy is a highly challenging task. When Speed_up is

set too high, a lightweight model can be obtained. Still, excessive

pruning may lead to a significant decrease in model performance

and fail to achieve the expected accuracy improvement.
FIGURE 9

Training without pruning models Map@0.5:0.95 (%) values.
TABLE 5 Comparative data of ablation experiments.

Model P (%) R (%) Map@0.5:0.95 (%) Parameters (M) FLOPs (G) Weight Size (MB)

YOLOv8n (baseline) 97.0 94.8 84.4 3.01 8.1 6.0

RepHGNetV2 97.8 95.2 85.3 2.34 6.9 4.8

slimneck 97.2 95.0 86.0 2.80 7.3 5.6

Dyhead 97.6 95.1 86.7 3.49 9.7 6.9

RepHGNetV2+slimneck 97.5 93.3 85.3 2.13 6.1 4.4

RepHGNetV2+Dyhead 98.0 94.4 86.6 2.82 8.5 5.7

slimneck+Dyhead 97.2 95.0 86.5 3.18 8.5 6.4

RSD-YOLOv8 97.6 94.6 86.0 2.61 7.6 5.4

RSD-YOLOv8 (1.5x) 98.0 95.6 88.6 1.91 5.2 4.0
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The results of the pruning experiment are shown in Table 6.

Model pruning is performed on the improved model base. The

results obtained were compared with the baseline without loss of

accuracy. Comparison of the baseline model (YOLOv8n) with the

enhanced model RSD-YOLOv8 (1.5x) showed a reduction in

parameters from 3.01 to 1.91 (37%), FLOPS from 8.1 to 5.2

(36%), weight size from 6.0 to 4.0 (33%), and Map@0.5:0.95(%)

increased from 84.4% to 88.6% (4.2%). The above operation

effectively simplifies the model size. The above operation

effectively simplifies the model size and improves the

computational efficiency without losing the detection accuracy.

Significantly improves mAP@.5:.95, a demanding target detection

evaluation metric. It can be proved that introducing these two

modules and the pruning algorithm can achieve the best detection

performance on this dataset, thus justifying the three improvements

paired with the pruning algorithm.

Figure 10 shows that Map@0.5:0.95(%) will not be 0 to start

growing because the Lamp pruning algorithm will first process the

model to reduce the precision, model size, and the number of

operations, and at the end of the compressed model,

finetune processing.
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Figure 11 shows the training loss curves (prune) for YOLOv8,

RSD-YOLOv8 and RSD-YOLOv8(1.5x). The loss values tend to

stabilize at 300 iteration cycles, indicating that the training has

converged without overfitting. The decrease in the loss values for

the last 10 rounds of the training set is due to the removal of the

mosaic enhancement being turned off over the previous 10 rounds

of training, which improves the stability of the model and reduces

unwanted noise in the later stages of training.

In Figure 12, the horizontal coordinates indicate the name of

each layer, and the vertical coordinates indicate the number of

channels; the number of channels before trimming is shown in

green, and the number of channels after trimming is shown in pink.

After the trimming operation using Lamp (1.5x), it is possible to

visually compare the channels in each layer; most are

compressed differently.

The confusion matrix is the most intuitive and straightforward

way to assess the accuracy of classification models for forestry pest

detection. Figure 13 shows the confusion matrix of the model before

and after the improvement, where the rows and columns of the

confusion matrix correspond to the proper and predicted

categories, respectively. The values in the diagonal region indicate

the proportion of correctly predicted categories, while the values in

the other areas indicate the proportion of incorrectly predicted

categories. The horizontal axis indicates the actual values, and the

vertical axis indicates the expected values. The darker the color of

the region, the more accurate the detection.

In comparison, it can be seen that there are five categories where

the confidence level has improved significantly. Compared to

YOLOv8, the improved confusion matrix has darker colors in the

diagonal region, indicating a significant improvement in our

model’s ability to predict object categories accurately. Our model

achieved considerable performance improvements in most

categories, but the confusion matrix shows that the recognition

accuracy of some pest categories is still lower than expected.

Possible reasons for these categories include the variability of

lighting conditions in natural environments, such as strong

sunlight, shadows, and reflections, which reduce image contrast,

make pest features less prominent, lower recognition accuracy, and

are related to decreased image quality under variable lighting

conditions; The complex background of forestry environment,

where elements such as leaves, branches, flowers, and fruits
FIGURE 10

Training with 1,5x pruning models Map@0.5:0.95 (%) values.
TABLE 6 Comparative data from pruning experiments.

Model P (%) R (%) Map@0.5:0.95 (%) Parameters (M) FLOPs (G) Weight Size (MB)

RepHGNetV2 (1.5x) 98.3 95.3 86.0 1.55 4.6 3.3

slimneck (1.5x) 97.4 95.5 86.8 1.98 4.9 4.1

Dyhead (1.5x) 97.7 95.3 87.9 2.36 6.4 5.0

RepHGNetV2+slimneck(1.5x) 97.7 95.1 87.6 1.54 4.1 3.3

RepHGNetV2+Dyhead (1.5x) 98.4 94.8 87.9 1.91 5.5 4.0

slimneck +Dyhead (1.5x) 97.8 95.4 87.7 2.35 6.0 5.1

RSD-YOLOv8 (1.5x) 98.0 95.6 88.6 1.91 5.2 4.0

RSD-YOLOv8 (2.0x) 97.3 94.7 87.6 1.51 3.9 3.2
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resemble pests in color and shape, makes it difficult for models to

distinguish. Environmental elements may partially obscure pests,

making it difficult for models to capture complete features,

especially in images with occlusion.
4.4 Comparative experiments

In this paper, YOLOv3-tiny (due to the larger size of the original

YOLOv3 model), YOLOv5, YOLOv7-tiny, YOLOv8, YOLOv9, and

YOLOv10 of the YOLO family were compared. In comparing the

YOLOv3-tiny model, Map@0.5:0.95(%) was reduced from 62.8 to

88.6 (25.8%), while the number of parameters was decreased from

8.73 to 1.91 (78%), computation was reduced from 13 to 5.2 (60%),

and model size is compressed from 16.8 to 4.0 (76%). After the

computation and pruning process, RSD-YOLOv8 was verified to be

ahead of the other compared models in terms of detection accuracy,

number of parameters, and model size. We also compared other

target detection models. SSD and Faster R-CNN. Although the

evaluation metrics of these models are comparable to RSD-

YOLOv8. The significant computational complexity and the
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model size limit the feasibility of the above models. The weight

size of RSD-YOLOv8 and the pruned model is only 0.7% of the

Faster R-CNN model size. Inference time is also an important

indicator for future deployment on mobile devices. RSD-YOLOv8,

which has not undergone pruning, does not have a significant

advantage in inference time compared to other models. RSD-

YOLOv8 (1.5x), which has undergone pruning, simplifies the

model structure by removing redundant or noncritical weights

from the neural network, significantly decreasing inference time.

However, YOLOv3 tiny and v5 have advantages in inference time,

but they do not meet the practical needs of low parameters and high

accuracy. The results of the comparison experiments are shown in

Table 7 below.

Figure 14A shows that RSD-YOLOv8, especially Map@0.5:0.95

(%), an evaluation metric, has made significant progress. This result

validates the proposed model’s effectiveness and highlights its

potential advantages in practical applications. Figure 14B

demonstrates that the proposed improved model is significantly

smaller in scale than some of the comparative models, which gives

our model a significant advantage in environments with limited

storage and computational resources. In particular, when executing
FIGURE 11

Training loss curve.
FIGURE 12

Comparison before and after.
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large-scale or real-time tasks, optimizing the model size can

significantly reduce the hardware load and thus improve the

execution efficiency, which opens up its possibilities in real-world

application scenarios with resource constraints. The improved

model significantly reduces model size through effective model

design and pruning techniques while maintaining high

performance. It gives the model a higher advantage in terms of

computational and storage efficiency and makes it more convenient
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for handling large-scale data or real-time processing. Figure 14C

clearly shows that the training curve is much higher than the

training curves of the remaining models. It is also much lower

than the size of the other compared models. The actual number and

number of parameters are used to balance the accuracy, the amount

of operations, and the number of parameters.

Figure 15A shows the detection results of the different models for

the dense scene and occlusion tasks. Only YOLOv7-tiny has higher
FIGURE 13

Comparison of confusion matrices.
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confidence than the improved model, but its computational and

parametric complexity is three times higher than RSD-YOLOv8.

Figure 15B shows the detection results of different models with

similar detection targets and backgrounds. Among them, Faster R-
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CNN and YOLOv9 recognize the background error as a target. At the

same time, RSD-YOLOv8 can solve problems such as false alarms

and low accuracy to a certain extent and significantly improve

prediction confidence. Considering the parameter and
TABLE 7 Comparative data for different lightweight algorithms and v8 lightweight improvements.

References Model P (%) R (%) Map@0.5:0.95 (%) Params (M) FLOPs (G) Weight
Size (MB)

Inference
time (ms)

Fuentes et al. (2017) SSD 96.4 88.3 72.5 27.3 63.5 104 /

Shen et al. (2018) Faster R-CNN 96.5 81.6 70.6 28.5 941.26 523 /

Wang et al. (2021) YOLOv3-tiny 87.9 86.3 62.8 8.73 13.0 16.8 1.4

Li et al. (2022c) YOLOv5 94.8 92.0 69.1 1.80 4.3 3.7 1.8

Jeong et al. (2022) YOLOv7-tiny 93.9 94.1 73.0 6.08 13.3 11.9 2.4

Khalid et al. (2023) YOLOv8 97.0 94.8 84.4 3.01 8.1 6.0 3.3

Wang et al. (2024) YOLOv9 96.3 93.4 84.4 2.62 10.8 5.8 2.1

Liu et al. (2024) YOLOv10 96.0 93.2 85.5 2.70 8.3 5.5 2.3

\ RSD-YOLOv8 97.6 94.6 86.0 2.61 7.6 5.4 3.1

\ RSD-YOLOv8 (1.5x) 98.0 95.6 88.6 1.91 5.2 4.0 1.9
FIGURE 14

(A) Performance comparison of detection algorithms (B) Histogram of parameters versus operations and model size (C) shows a comparison of the
Map@0.5:0.95(%) values of the training process of the YOLO series of models.
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computational complexity of other models, RSD-YOLOv8 reduces

the parameter and computational complexity and enhances the

relative reliability to some extent. Supplementary Table S1 shows

the test data to compare the detection results of each model.
4.5 Model deployment and implementation

Developed a pest identification application based on the

Android platform. Users can capture pest images through their

mobile phone camera, and the application will call the local model

in real-time for pest detection and display the recognition results.

Multiple detection types (pictures, cameras, pictures) can be

selected to verify that the model can realize real-time detection.

The Figure 16 shows the camera’s real-time detection results after

deployment. The successful deployment on mobile devices

provides important references for the application of the model

on other embedded devices. Robots and still cameras are deployed

in a similar way to mobile phones, relying on lightweight models

and edge computing technology. The successful deployment on

mobile devices validates the potential application of improved AI

models on embedded devices. Based on the same technical

framework, the model can quickly adapt to robots and static

cameras, achieving automated monitoring and long-term data

collection. In the future, we will continue to optimize model
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performance and explore deployment scenarios for more

hardware devices to provide more efficient and accurate

technical support for forestry pest detection.
5 Discussion

The proposed RSD-YOLOv8 model in this study addresses the

shortcomings of deep learning models in dealing with large-scale

multicategory forestry pests. By combining RepHGNetv2, Slim-

neck, and Dyhead modules, in which the regular convolution of

HGBlock in HGNetv2 in RepHGNetv2 is replaced by the proposed

RepLightConv, which maintains a high model expressiveness and

simultaneously reduces the number of parameters and

computation. The Neck part uses the Slim-Neck module. GSConv

and VoVGSCSP preserve as many hidden connections of these

channels as possible. The purpose of the appealing improvements is

to address resource constraints and computational limitations for

deployment in forestry pest detection tasks. The detection head

DyHead, which includes an attention mechanism, is introduced to

gradually extract information from the feature map through scale,

spatial, and task awareness. Adaptively adjust the size of perception

to adapt to the scale change of different targets and improve the

detection ability of targets at various scales. Better realization of

small target pest feature information extraction.
FIGURE 15

(A) Images of small target detection results for different models (B) Images of background and target similarity detection results for different models.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1552853
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2025.1552853
The superior performance of RSD-YOLOv8 is verified

through ablation and comparison experiments, and the results

are significantly better than YOLOv8 and its mainstream models.

The advantages of RSD-YOLOv8 lie in the replacement of the

backbone network by YOLOv8, the lightweight of the neck, and

the improvement of the detection head. The model’s effectiveness

was visually evaluated using the Grad CAM (Selvaraju et al., 2017)

technique, and Figure 17 compares the thermogram results before

and after the improvements. It is demonstrated that RSD-

YOLOv8 focuses more on localized areas of the input feature

map, enhancing the model’s ability to understand and capture

spatial details.

Future research will combine optimization strategies of

knowledge distillation (Zhang et al., 2024) and model pruning

techniques, aiming to enhance further the performance of the

RSD-YOLOv8 model for small target pest detection. We hope to

achieve lightweight models by combining these technologies while

maintaining or improving the model’s generalization ability and

detection accuracy. The core of this optimization strategy lies in

transferring knowledge from larger and more complex models to

smaller and more efficient models through knowledge distillation,
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in order to optimize detection performance. The forestry pest

detection system has made certain progress. Therefore, our

research objective will be to develop mobile device applications

based on actual application needs. This method provides valuable

guidance for the development of portable mobile device terminals

and offers powerful and practical solutions for the fields of forestry

and plant protection. By deploying this technology in embedded

devices, our goal is to promote the development of forest pest

detection technology and provide more efficient and accurate

technical support for forest management. In order to cope with

the popularity of unmanned aerial vehicles in intelligent forestry,

attempts have been made to deploy models on unmanned aerial

vehicles. However, for forestry pest detection tasks, especially for

small target pests, traditional visible light cameras may not provide

sufficient resolution to capture the details of small targets.

Hyperspectral images have narrower and more spectral bands and

have been applied to monitor forest pests. The resolution of visible

light cameras is relatively low, which may mask subtle changes

caused by pests. Therefore, we plan to explore the combination of

models with hyperspectral cameras or multispectral imaging

techniques in future research to improve the detection capability
FIGURE 16

Mobile deployment detection results.
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of small target pests. We plan to combine target detection

technology with multispectral and hyperspectral imaging

technology in future research and deploy it on unmanned aerial

vehicle platforms to achieve more flexible large-scale monitoring

and richer spectral information acquisition, thereby improving the

accuracy and robustness of pest detection. In future experiments,

we will focus on the impact of the distance between the camera and

the target (such as 2 to 20 meters) on image quality and detection

accuracy, and optimize camera parameters to meet different scene

requirements; Simultaneously testing the image acquisition

performance of drones at different flight speeds (such as 1 meter/

s to 5 meters/s), analyzing the impact of speed on target detection

accuracy, and quantifying the relationship between speed and

accuracy through experiments, exploring technical solutions to

maintain high accuracy under high-speed movement conditions
Frontiers in Plant Science 19
(such as motion blur compensation algorithms). This research

direction will significantly enhance the practicality and scalability

of pest monitoring technology, laying a solid foundation for future

practical applications. Hyperspectral cameras can capture richer

spectral information, which helps to distinguish pests from the

background environment and improve detection accuracy.
6 Conclusions

In this study, we made innovative modifications based on the

YOLOv8 architecture, including introducing RepLightConv

convolution and Slim neck module to simplify the network

structure and integrating the Dyhead detection head to improve

RSD-YOLOv8. The comparative analysis with existing lightweight
FIGURE 17

(a) Original image, (b) YOLOv8 (c) RSD-YOLOv8.
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networks and various object detection algorithms further confirms

the superior performance of RSD-YOLOv8, among which RSD-

YOLOv8 outperforms YOLOv8n in terms of performance Map@

0.50.95 The accuracy has reached 88.6%, the number of parameters

has been reduced to 1.9M, which is 36% lower than the original

model. The computational complexity has been reduced by 36%,

and the model size has been reduced by 33%. These improvements

make our model more suitable for forestry pest detection, especially

when dealing with large-scale and multi-species detection tasks,

exhibiting high accuracy and low parameter characteristics.

More importantly, this work improves the algorithm’s

performance and has profound significance in practical

applications. In resource-constrained environments such as

remote forest areas, the low-parameter and high-precision

characteristics of RSD-YOLOv8 are particularly critical. It can

significantly reduce the demand for computing resources without

sacrificing detection performance, a revolutionary progress for

forest conservation management. Our model can be more easily

deployed on mobile devices or drones, enabling real-time and

efficient pest monitoring, which is crucial for early detection and

prevention of pest infestations. In addition, by reducing reliance on

expensive hardware and mighty computing power, RSD-YOLOv8

greatly reduces the cost of forest conservation management, making

advanced pest detection technologies more widespread and feasible.

Therefore, RSD-YOLOv8 shows its progressiveness in academia

and has essential application potential and value in actual forest pest

detection. It is expected to completely change the status of forest

protection and management and provide strong technical support

for sustainable forest health management.

We believe that the framework and optimization strategies

adopted by RSD-YOLOv8 are equally applicable to object

detection tasks in other fields. For example, the model can be

extended to multiple fields, such as agricultural pest detection,

wildli fe monitoring, and object recognition in urban

environments. Through further research and adaptation, RSD-

YOLOv8 has the potential to become a multifunctional detection

tool, providing efficient and real-time monitoring solutions for

different industries, thereby promoting the application of

intelligent detection technology in a broader range of

environmental protection and resource management.
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