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Station, Ministry of Science and Technology of the People's Republic of China, Danzhou, China 
Introduction: Stem CO2 efflux (Ec) reflects the amount of photo-assimilated 
carbon released back into the atmosphere and plays a critical role in the carbon 
balance of tree and forest ecosystems. Despite previous studies indicating that a 
portion of stem CO2 originates from root respiration (Rroot), the seasonal 
dynamics of Ec and its relationship with belowground respiration remain poorly 
understood, particularly in tropical regions characterized by distinct dry and 
wet seasons. 

Methods: To address this gap, we investigated Ec in tapping and non-tapped 
rubber trees, along with environmental factors and physiological traits (sap flow 
flux density, root respiration, and leaf area index) from 2018 to 2021. 

Results: Our results showed that tapping activity increased the Ec of rubber trees 
compared to non-tapped trees, with increases ranging from 10.37% to 233.66%. 
However, the magnitude of this increase varied between the dry and wet 
seasons. Although tapping enhanced the Ec, it did not alter the Ec seasonal 
pattern. Consequently, Ec in both tapped and non-tapped rubber trees displayed 
an overall single-peak pattern, with significantly lower values during the dry 
season compared to the wet season, suggesting growth phenology primarily 
regulates Ec seasonal dynamics. Structural equation modeling revealed that root 
respiration (Rroot), sap flow flux density (Fd), and soil moisture at 50 cm depth as 
the primary drivers of the Ec variations during the dry season. In contrast, soil 
moisture at 5 cm depth and air temperature (Ta) were identified as dominant 
factors influencing Ec in the wet season, with belowground respiration having a 
negligible influence. 
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Discussion: These results suggest that the relationship between Ec and 
belowground  respiration  is  environmentally  sensitive  and  exhibits  
seasonal dependency. 
KEYWORDS 

carbon balance, xylem sap, tapping activities, leaf area index, growth phenology 
1 Introduction 

Autotrophic respiration is a principal process regulating how tree 
growth and ecosystem productivity respond to environmental 
changes, such as variations in atmospheric CO2 levels, air 
temperature and moisture (Ryan et al., 1997; Robertson et al., 2010; 
Tarvainen et al., 2014; Zhao et al., 2018a). Tree stems, as a substantial 
source of autotrophic respiration, can release a comparable amount of 
CO2 to emissions from leaves (Trumbore et al., 2013; Zhao et al., 
2018b). Stem CO2 efflux (Ec) from respiratory processes is related to 
different tree function maintenance and comprises 5-42% of the total 
ecosystem respiration (Rodrıǵuez-Calcerrada et al., 2015; O’Leary 
et al., 2019; Helm et al., 2023). Understanding Ec is crucial for 
predicting ecosystem carbon budgets, particularly in the context of 
climate change. However, there is a lack of information regarding how 
environmental and physiological factors regulate the variability in Ec. 

Variability of Ec depends on a complex set of factors, including 
environmental conditions (such as temperature, soil pH, water 
availability) and tree physiological traits such as leaf area index 
(LAI), sap velocity, root respiration, nonstructural carbohydrates 
content, and stem photosynthetic activity (Teskey et al., 2008; 
Wertin and Teskey, 2008; Cerasoli et al., 2009; Buž ́ et al., 2015;kova

Rodrıǵuez-Calcerrada et al., 2015; Aubrey and Teskey, 2021; Noh 
et al., 2021; Song et al., 2023). Water availability and temperature are 
widely recognized as key environmental drivers of stem CO2 efflux. 
Water availability impacts cell turgor pressure, growth, and phloem 
and sapwood transport, while temperature affects respiratory 
enzymes, CO2 solubility in xylem sap, and radial CO2 diffusion rates 
(Han et al., 2017; Noh et al., 2021). Generally, Ec typically decreases 
with declining soil moisture and temperature. However, in other cases, 
the relationships between Ec and soil water content and temperature 
were less clear or could not be definitely established (Saveyn et al., 
2008a; Guidolotti et al., 2013; Rodrıǵuez-Calcerrada et al., 2015; Jones 
et al., 2024). The observed discrepancies may be accounted for by 
differences in tree physiological state. Sap flow, stem photosynthesis, 
and nonstructural carbohydrates (NSC) availability could potentially 
impact Ec (Bloemen et al., 2013a; Trumbore et al., 2013; Jones et al., 
2024). Given the high CO2 solubility in water, a portion of the 
produced through stem respired CO2 may dissolve in the xylem sap 
and be transported via transpiration stream rather than diffusing 
radially (Saveyn et al., 2008b; Teskey et al., 2008; Edwards and 
Wullschleger, 2021; Helm et al., 2023). In tree stems, internal CO2 

originating from respiration can also be assimilated by active 
02 
chloroplasts located within the inner bark and xylem. Stem 
photosynthesis has the capacity to absorb 7%-123% of the CO2 that 
is respired (Avila et al., 2014). NSC reserves serve as a substrate for 
respiration and their content levels in the stem are closely linked to the 
CO2 efflux. Since NSC responses to environmental shifts are complex, 
they may explain discrepancies in relationships between Ec and 
environmental factors (Maier et al., 2010; Jones et al., 2024). 
Additionally, another potential source of Ec is CO2 released by root 
respiration and transported upwards by the transpiration stream 
(Teskey et al., 2008; Aubrey and Teskey, 2021). Although the stem 
CO2 efflux may be influenced by the CO2 transport in the 
transpiration stream. However, the contribution of root respiration 
to Ec has always been overlooked in previous eco-physiological studies. 

Rubber plantations are the predominant type of man-made forests 
in tropical regions in China (Song et al., 2023). In contrast to the 
Amazon rainforest zone, the birthplace of rubber trees, rubber 
cultivation areas in China experience a tropical monsoon climate 
characterized by distinct wet seasons (high temperature and abundant 
precipitation) and dry seasons (low temperature and reduced 
precipitation). These seasonal variations significantly impact the 
trees physiological state (Chen and Cao, 2015; Lai et al., 2023), 
potentially altering stem respiration. Song et al. (2023) confirmed 
clear seasonal dynamics in the stem CO2 efflux of rubber trees. Yet, the 
impacts of sap flow and root respiration on stem CO2 efflux under 
fluctuating environments remain understudied, restricting a 
mechanistic understanding of its variability. Additionally, rubber 
trees, as the primary source of natural rubber, latex harvest require 
a tapping process involving bark incision and laticifer disruption 
(Zhang et al., 2016). This specific activity may directly or indirectly 
alter tree physiology, thereby affecting Ec. Sucrose serves as a precursor 
for latex biosynthesis; tapping can shift photosynthetic carbon 
allocation, with a considerable portion of the assimilated carbon 
being stored as non-structural carbohydrates at the tapped panel of 
the rubber trees to support latex regeneration (Duangngam et al., 
2020). Such NSC accumulation supplies substrates for stem 
respiration (Maier et al., 2010). Concurrently, tapping activities also 
reduce the sap flow rate in the stem (Kunjet et al., 2013), thereby 
influencing the transport of root-respired CO2 via the transpiration 
stream and its contribution to Ec (Trumbore et al., 2013; Dukat et al., 
2024). Furthermore, compared to virgin bark, regenerated bark post-
tapping contains a higher proportion of soft tissue, which enhances 
radial CO2 diffusion (Gopal and Thomas, 2014). Theoretically, these 
physiological changes should elevate Ec. However, empirical studies 
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report no significant difference in Ec between the tapped and non-
tapped panels of rubber trees (Yan et al., 2009), suggesting that 
environmental constraints (e.g., seasonal drought) may mask 
tapping effects. Thus, further investigation into tapping’s impact  on  
Ec across seasonal gradients is warranted. 

In this experiment, we sought to explore the seasonal 
dynamics of stem CO2 efflux and the underlying biophysical 
mechanism. We hypothesized that (1) tapping activities would 
enhance stem CO2 efflux due to altered carbon allocation and bark 
regeneration, with the magnitude of increase varying significantly 
between dry and wet seasons; (2) A significant positive correlation 
would exist between root respiration and stem CO2 efflux 
during dry seasons, attributed to reduced transpiration rates 
prolonging retention of CO2 derived from root respiration in 
xylem sap, thereby enhancing its radial diffusion from stems 
(Dukat et al., 2024). 
2 Materials and methods 

2.1 Site description 

The experiment was conducted in a managed pure even-aged 
rubber plantation at Danzhou Tropical Agro-ecosystem National 
Observation and Research Station (19 °31’N, 109 °28’E; altitude 114 
m a.s.l.) in Danzhou, Hainan south China (Figure 1). Mean annual 
precipitation, relative air humidity and temperature are ca. 1607 
mm, ca. 83% and ca. 24.1 °C, respectively (Yang et al., 2023). The 
experiment site experiences a typical tropical monsoon climate with 
Frontiers in Plant Science 03 
strong seasonal rainfall variability featuring distinct wet seasons 
(May to Sep) and drought seasons (Oct to Apr). The soil type is 
classified as latosol, with an average soil depth of approximately 1 
m, predominantly sandy clay loam texture. 

The rubber trees (Hevea brasiliensis (Willd. ex A. Juss.) Muell. 
Arg., clone 7-33-97) were planted in 2001 at a density of 476 trees 
ha-1. In 2021, sampled trees had a mean height of ca. 17.53 m and a 
stem diameter (DBH) of ca. 0.23 m at 1.5 m. The selected sample 
trees were divided into two treatment groups: tapping rubber trees 
and non-tapped rubber trees, with a subset instrumented for sap 
flow monitoring (Table 1). Tapping occurred from May to 
FIGURE 1 

Location of the study site. 
TABLE 1 Characteristics of the sampled trees for stem CO2 efflux and 
sap flow measurements. 

Treatment Tree Height 
(m) 

Diameter of stem at 1.5 
m (cm) 

Tapping TJ301 16.9 20.5 

Tapping TJ302 16.6 19.7 

Tapping TJ303 18.5 22.3 

Non-tapping UT201 17.1 22.6 

Non-tapping UT202 18.2 24.8 

Non-tapping UT203 17.8 21.6 

Sap flow I101 17.6 22.6 

Sap flow I102 18.4 24.8 

Sap flow I103 16.7 23.6 
TJ, UT and I represent tree numbers. 
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December following regional practice. Tapping cut length is 
standardized at half of the trunk circumference (S/2 system), with 
a downward-oriented cutting direction at an inclination angle of 25
30°. Cutting depth is precisely controlled at 1.2-1.8 mm above the 
cambium layer, and the tapping frequency is maintained at once 
every three days. 
2.2 Environmental factors and leaf area 
index measurements 

Environmental data were collected from a 50 m flux tower at the 
study site. The tower was equipped with multiple sensors to monitor 
environmental factors, such as air temperature, relative humidity, soil 
temperature, and moisture. More detailed information, including 
equipment model, installation height, and data recording frequency, 
can be found in the reference (Yang et al., 2023). Canopy leaf area 
index (LAI) was measured twice a month using a canopy analyzer 
(LAI-2200C, LI-Cor Inc., Lincoln, NE, USA). 
2.3 Sap flux density measurements 

Sap flux density (Fd) was measured in three non-tapped rubber 
trees (Table 1) with the thermal dissipation method (Granier, 1987). 
Each sensor was comprised of a pair of probes (20 mm long and 2 
mm in diameter), with one probe heated at a constant power of 0.2 
W and the other unheated serving as a temperature reference. These 
probes were inserted into the sapwood at 20–30 mm depth, with 10 
cm vertical separation at 1.5 m height. Voltage difference between 
probes was converted into temperature, recorded at half an hour by 
CR10X data logger (Campbell Scientific Inc., USA). Rubber trees 
are diffuse-porous species, thus, it is appropriate to use Granier’s 
Frontiers in Plant Science 04
empirical equation (Granier, 1987): 

D Tm − D T 
)1:231Fd = 119*( D T 

Where Fd is a sap flux density (g·m-2s-1), △Tm is the maximum 
temperature difference between day and night (°C), △T is the 
instantaneous temperature difference (°C). 
2.4 Root respiration measurements 

Root respiration (Rroot) was estimated using a modified trenching 
method. In May 2018, five paired plots (trenched vs. non-trenched) 
were established. Based on root distribution (predominantly 0–40 
cm), the trenched plots were excavated to 50 cm depth for root 
exclusion. The total soil respiration (Sr) and heterotrophic respiration 
(Hr) were measured in the non-trenched and trenched plots, 
respectively. At the non-trenched plots, PVC soil collars (10.2 cm 
inner diameter × 8 cm height) were vertically inserted to a depth of 6 
cm into the soil, leaving approximately 2 cm protruding 
aboveground. For the trenched plots, two concentric collars were 
deployed, an inner collar matching the non-trenched specifications 
(10.4 cm diameter × 8 cm height), and an outer barrier collar (30 cm 
inner diameter × 50 cm height) inserted to a depth of 47 cm. This 
nested design achieved dual objectives to completely exclude lateral 
root ingrowth via the outer collar’s subsoil isolation, and to minimize 
soil structural disturbance within the inner sampling zone. Paired 
plots were spatially separated by 200 cm to avoid cross-
contamination. Collars were installed 6 months pre-measurements 
to allow root decomposition and soil stabilization (Figure 2). From 
2019-2021, Sr and Hr were measured twice once a month using a 
portable infra-red gas analyzer equipped with a 09-soil flux chamber 
(LI-6400, Li-Cor Inc.). Soil temperature at 0–5 cm was measured 
FIGURE 2 

Experimental design and measurement of belowground respiration. 
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simultaneously using the 09-soil flux chamber with a soil temperature 
probe. Rroot was calculated as the difference between Sr and Hr as 
follows: 

Rroot = Sr − Hr 
 

 

2.5 Experimental design and stem CO2 
efflux measurement 

Stem CO2 efflux (Ec) at 9:00-11:00 am was measured in situ 
twice a month from 2018 to 2021 using a portable infrared gas 
analyzer (LI-6400, Li-Cor Inc.) (Darenova et al., 2024; Mills et al., 
2024). Three tapped and non-tapped rubber trees with compared 
DBH and height were selected. Two home-made PVC collars (10.4 
cm inner diameter, 8 cm height) were installed on the tapped panel 
and untapped panel of tapped trees at 1.5 m height above the 
ground. The height and direction of the PVC collar installation on 
the non-tapped rubber tree matched that of the untapped panel of 
the tapping rubber tree (Figure 3). To avoid the influence of 
atmosphere air on measurement results, glue (100% neutral 
transparent waterproof silicone) was used in the connection 
location between the stem and PVC collar. 

Ec was measured per unit surface area of the stem. Since 
the stem surface was not flat, the collar-covered area and air 
enclosed in the chamber differed among plots. Therefore, it is 
necessary to calibrate the obtained value with the following 
equation (Xu et al., 2011): 

V + V 0 − p( d )2h S 
E0 2= ∗ ∗ Ecc V S0 
Frontiers in Plant Science 05 
-1)Ec and Ec ’, are the stem area-based CO2 release rates (mmol·m-2s 
before and after calibration, respectively; V and V’, the default values of 
the systemic chamber and actual value of the collar volume (cm3); S 
and S’, the default values of the systemic chamber and actual value of 
surface area the collar (cm2). D and h; the external diameter and the 
depth of the collar chamber (cm), respectively. 
2.6 Data processing and analysis 

In this study, we initially utilized data collected from 2018 to 2021 
to explore the seasonal patterns of Ec. Restricted Maximum Likelihood 
(REML) linear mixed-effects models (LMMs) were fitted using the lme 
function in R (nlme package; Pinheiro et al., 2013) to assess the effects 
of treatments, sampling times, and their interaction on Ec, with
treatment and time as fixed effects and tree identity as a random 
intercept. Subsequent analyses focused exclusively on 2019–2020, as 
data from both dry and wet seasons were available during this interval. 
Following Yang et al. (2023), data were grouped by season, and LMMs 
were tested for treatment and seasonal differences in Ec. Linear
regression analyzed relationships between Ec and environmental/ 
physiological factors during each season. To ensure comparability, 
all factors were measured daily between 09:00–11:00 (aligned with Ec 
measurements). Since tapping reduces sap flow flux density (Fd) but  
not its diurnal/seasonal trends in rubber forests (Kunjet et al., 2013), 
we used Fd from non-tapped trees to assess correlations with Ec. This  
approach minimizes confounding effects on correlation analyses. 
Finally, a piecewise structural equation model (SEM; piecewiseSEM 
R package;  Lefcheck, 2016) was built using control (CK; non-tapped) 
trees to evaluate interactions among variables. This data analysis is to 
ensured completeness of physiological data (e.g., Fd), and avoidance of 
FIGURE 3 

Experimental design and measurement of stem CO2 efflux in rubber trees. 
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tapping-induced confounding of Ec. Multicollinearity was controlled 
by calculating variance inflation factors (VIF; vif function, car 
package). Predictors with VIF > 5 were excluded (Santibáñez-
Andrade et al., 2015). Remaining variables were selected based on 
biological relevance, balancing model parsimony and explanatory 
power. Model fit was assessed via Fisher’s C statistic (p > 0.05) 
and AIC. 
3 Results 

3.1 Seasonal dynamics in environmental 
and physiological variables 

Precipitation distribution was uneven throughout the year, with 
85.6-92.7% of annual totals occurring from May to October. Soil 
temperature (Tsoil), moisture (SWC), air temperature (Ta), relative 
humidity (RH), and vapor pressure deficit (VPD) exhibited unimodal 
seasonal patterns. The study area exhibited a concurrent hot-wet 
season climate, with significantly higher temperature and soil 
moisture during the wet season than the dry season (p < 0.05;  Figure 4). 

In terms of physiological variables, the leaf area index (LAI), sap 
flow flux density (Fd), and root respiration (Rroot) also presented 
Frontiers in Plant Science 06
single-peak seasonal variation, with interannual variation in peak 
timing (Figure 5a). Compared with dry seasons, rubber trees have 
higher LAI, Fd and Rroot in the wet season (p < 0.05; Figures 5b-d). 
Soil respiration (Sr) showed distinct seasonality, with wet season 
rates significantly exceeding dry season values (p < 0.05; Figure 5e). 
3.2 Seasonal dynamics in stem CO2 efflux 
of the rubber trees 

Seasonal patterns in Ec were consistent across tapping treatments, 
mirroring temperature and moisture trends (Figure 6a). Rubber tree 
Ec in the wet seasons was significantly higher than the dry seasons (p < 
0.05; Figures 6b, c). Ec at the tapped panel of tapping rubber trees 
ranged between 0.89 and 5.71 mmol·m-2·s-1, while the untapped panel 
of tapping and non-tapped rubber trees ranged from 0.77 to 2.86, 0.73 
to 2.77 mmol·m-2·s-1, respectively. Compared with non-tapped 
treatment (CK), tapping significantly increased Ec at the tapped 
panel (10.37%-233.66%), but did not affect the untapped panel. The 
minimum difference between Ec on the tapped panel and the 
untapped panel occurred during dry seasons (e.g., February), while 
maxima aligned with the wet seasons, though peak months varied 
interannually (Figure 6a). 
FIGURE 4 

Variation of daily mean environmental variables. SWC, soil moisture; RH, relative humidity; VPD, vapor pressure deficit; Ta, air temperature; Tsoil, soil 
temperature. The gray area and blank area in the figure represent the wet season and dry season respectively, the same below. 
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3.3 Variation in the relationships between 
Ec and environmental and physiological 
factors 

Overall, a clear linear relationship was observed between Ec and 
soil temperature and moisture, LAI, Fd, root respiration (Rroot) and 
air temperature (p < 0.05) but these showed seasonal divergence 
(Figure 7; Supplementary Figures S1, S2). In terms of environmental 
variables, while Ec demonstrated a significant positive correlation 
with soil, air temperature and LAI on an annual scale, these 
relationships became non-significant in seasonal analyses 
(Supplementary Figure S2). Similarly, annual positive correlations 
with soil moisture (Figures 7a, e) shifted seasonally, only surface soil 
moisture (10 cm depth) correlated with Ec in wet seasons 
(Figures 7f–h), whereas deep soil moisture (50 cm depth) showed 
this relationship in dry seasons (Figures 7b–d). Physiological factors 
exhibited analogous patterns. Ec showed no annual correlation with 
soil respiration (Figure 7i) but a significant negative wet-season 
correlation (p < 0.05;  Figures 7k, l). Conversely, Rroot and Fd 

correlated positively with Ec annually (Figure 7m; Supplementary 
Figure S2I) but exclusively during dry seasons (Figure 7n; 
Supplementary Figure S2J). 
Frontiers in Plant Science 07 
Structural equation models to uncover significant seasonal 
variations in the factors influencing stem CO2 efflux (Ec). During the 
wet season, surface soil moisture at 5 cm soil depth and air temperature 
emerged as the primary factors directly affecting Ec (Figure 8a). 
Conversely, in the dry season, the Ec variations were predominantly 
influenced by belowground root respiration (Rroot), sap flow flux 
density (Fd), and deep soil moisture content at 50 cm soil depth 
(Figure 8b). The model explain 87% and 84% of the variability in stem 
CO2 efflux during the wet season, respectively (Figure 8). 
4 Discussion 

4.1 Seasonal patterns in stem CO2 efflux in 
the rubber trees 

Our results demonstrate distinct seasonal patterns in rubber Ec, 
with significantly higher values during the wet seasons and reduced 
rates in dry seasons (Figure 6). This aligns with prior observations in 
rubber plantations (An et al., 2024), but contradicts patterns in other 
tree species (Zach et al., 2010; Ranniku et al., 2024). These discrepancies 
may reflect interspecific differences in growth phenology (Etzold et al., 
FIGURE 5 

Daily (a) and seasonal (b–e) variations in physiological factors and soil respiration. LAI, leaf area index; Fd, sap flux density; Rroot, root respiratory; Sr, 
soil respiration. Values are means ± SE. Lowercase letters indicate a significant difference between the wet season and the dry season (p < 0.05). 
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̌2013; Machácová et al., 2023). Ec reached minima during the growth 
dormancy periods and increased with active growth. As we all know, 
leaf area index (LAI) dynamics reflecting canopy leaf flushing in early 
wet seasons and senescence in late dry seasons served as a reliable 
alternative indicator of growth phenology (Meir and Grace, 2002; Yang 
et al., 2016; Rogers et al., 2021). The significant positive correlation 
between LAI and Ec throughout the study periods demonstrates that 
growth phenology regulates Ec variation (Supplementary Figure S2E). 
Our data and previous studies have shown that rubber LAI and 
vegetation growth rate peaked during the wet season, while growth 
rate was slower during the dry season (Figures 5a, b; Liu et al., 2022). Ec 
was generally highest when tree transpiration and stem growth rate 
were at their peak (Salomón et al., 2016; Chan et al., 2018), which is 
typically during a high rate of cell enlargement and growth phase, 
accompanied by high photosynthetic activity (Gordon and Larson, 
1968; Hernández-Santana et al., 2021). As a result of this 
photosynthetic activity, carbohydrate concentration levels are likely 
to rise (Chan et al., 2018). Plant respiratory activity is believed to be 
influenced by substrate supply, respiratory product demand, and 
potential enzyme capacity (Zach et al., 2010). Consequently, rubber 
Frontiers in Plant Science 08
tree Ec tends to be higher during the wet season when growth is rapid 
and lower during the dry season when growth is slower. 
4.2 Response of rubber tree Ec to tapping 
activities 

Consistent with our first hypothesis, tapping activities increased 
stem CO2 efflux from rubber trees, and the magnitude of this increase 
showed clear seasonality. Notably, compared to the non-tapped trees, 
tapped trees exhibited a significant increase in Ec on the tapped panel, 
without altering the seasonal trend and affecting Ec on the untapped 
panel (Figure 6).  The increase in CO2 efflux on the tapped panel of 
tapped rubber trees may be attributed to the  following reasons: First,  
non-structural carbohydrates (NSC) are the precursor of rubber 
molecules and serve as energy for latex metabolism (Jacob et al., 
1998), tapping increases the NSC accumulation on the tapping panel 
(unpublished data; Silpi et al., 2007; Chantuma et al., 2009). Increased 
NSC provides sufficient substrate supply for tree respiratory activities, 
potentially resulted in heightened Ec (Maier et al., 2010; Rodrıgueź
FIGURE 6 

Daily and seasonal variation in stem CO2 efflux (Ec). Values are means ± SE. Lowercase letters indicate a significant difference between the wet 
season and the dry season, Capital letters indicate differences between treatments (p < 0.05). The effects of treatment, sampling time, and their 
interaction on Ec are displayed in the figure. (n.s., p > 0.05; ***p < 0.001; **p < 0.01; *p < 0.05). 
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Calcerrada et al., 2014). Second, a significant anatomical difference exist 
between renewed bark formed after tapping and virgin bark. Renewed 
bark had a higher proportion of soft to hard bark compared to virgin 
bark (Thomas et al., 1995). Functionally active tissue and conductive 
tissue were primarily concentrated in soft bark, while tissue in hard 
Frontiers in Plant Science 09
bark  was less functional  or shriveled  (Bowman et al., 2005; Gopal and 
Thomas, 2014). In addition, renewed bark exhibits greater radial 
diffusion ability than virgin bark (Gopal and Thomas, 2014). This 
enhanced diffusion likely facilitates greater release of CO2 from the 
tapped panel of the tapping rubber trees. Consequently, alterations in 
FIGURE 7 

Relationships between Ec and soil moisture (a-h), soil respiration  (i-l), and root respiration (m-p). ETP, Ec in the tapped panel of tapping rubber trees; EUP, 
Ec in the untapped panel of tapping rubber trees; ECK, Ec in non-tapped rubber trees; VWC10, soil moisture at 10 cm soil depth; VWC50, soil moisture at 
50 cm soil depth; Sr, soil respiration; Rroot, root  respiration. R2 and p-values for the relationships were calculated using a linear regression model. The 
solid line indicates a significant linear relationship between the two factors (p < 0.05), while the dotted line signifies the absence of such a relationship. 
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the anatomical structure of the bark post-tapping contributed to 
increasing Ec on the tapped panel. Third, tapping reduces sap flow 
density (Kunjet et al., 2013), increasing the likelihood of radial diffusion 
of CO2 dissolved in the transpiration stream. As a result, more CO2 

from belowground respiration may more easily diffuse through the 
more conductive regenerated bark, thereby increasing stem CO2 efflux 
on the tapped panel of the tapping rubber trees. 

Tapping induces a greater increase in stem CO2 efflux (Ec) during 
the wet season compared to the dry season (Figure 6). This difference 
is likely attributed to tree phenology, the tapping intensity, and 
seasonal environmental factors (Figure 7; Supplementary Figures S1, 
S2). In the wet season, rubber trees experience active growth under 
favorable conditions (e.g., abundant water, optimal temperatures), 
associated with higher metabolic rates and increased respiration 
(Figure 6). Tapping wounds initiate energy-intensive processes such 
as cellular repair, tissue healing, and enhanced latex production (Biggs, 
1992), demanding significant energy and elevating CO2 release 
through respiration. As trees are more metabolically active during 
the wet season, the energy required for these reparative processes is 
higher, leading to a greater rise in CO2 emissions. Conversely, during 
the dry season, water scarcity and lower temperatures slow tree growth 
and metabolic activity. In this context, the overall metabolic and repair 
processes decelerate, diminishing the impact of tapping on stem 
respiration and CO2 efflux. 
4.3 Seasonal differences in the relationship 
between Ec and belowground respiration 

During the dry season, a significant linear relationship was 
observed between Ec and root respiration, with belowground 
respiration identified as the primary driver of Ec changes. In 
contrast, the wet season exhibited no similar correlation. These 
findings supported our second hypothesis. One potential 
explanation for this phenomenon is the variability in tree growth, 
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transpiration, and other physiological activities resulting from the 
uneven rainfall distribution (Buzková et al., 2015; Salomón et al., 
2024). Most stem CO2 originates from respiring cells in stems and 
roots (Teskey et al., 2008). Living cells reside in the inner bark, 
vascular cambium, and xylem, whereas the outer bark (rhytidome) 
lacks living cells (Rosell, 2019). Stem CO2 efflux derives from 
respiration in xylem, cambium, and inner bark, or is imported via 
the transpiration stream. CO2 diffuses radially through inner and 
outer bark via structures such as lenticels, cracks, and wounds 
(Teskey et al., 2008). Consequently, variations in the properties of 
the bark, cambium, lenticels, cracks, and wounds significantly 
impact CO2 diffusion. Bark and cambium activity exhibit 
significant seasonal changes (Rao and Rajput, 2001). During the 
wet season, vigorous growth metabolism drives active cambium cell 
division, generating new xylem and phloem cells (Teskey et al., 
2008). These newly formed cells exhibit stronger metabolism and 
more efficient CO2 exchange than in the dry season. This seasonal 
metabolic pattern is indirectly supported by the stem CO2 

seasonality we observed in our rubber trees. 
Interestingly, no significant relationship was observed between root 

respiration and stem CO2 efflux during the wet season in our study, 
which may be due to the high transpiration (Dukat et al., 2024). In the 
wet season, frequent rainfall allows for the full replenishment of soil 
moisture, creating a hydrothermal synchronization conditions that 
foster rapid tree growth, metabolism and enhanced tree transpiration 
and respiration rates (Figures 5, 8b). Previous studies demonstrate a 
significant negative correlation between sap flow rate and stem CO2 

efflux under ample water availability (Bowman et al., 2005; Dukat et al.,  
2024). High transpiration rate facilitates transport of dissolved CO2 

(from root respiration) to the canopy, reducing its radial diffusion 
opportunity. Consequently, root-derived CO2 contributes to stem CO2 

efflux is minimal or negligible, leading to the observed lack of 
significant correlation (Bloemen et al., 2013a, b; Kumagai et al., 
2015). Furthermore, during the wet season, root metabolism was 
more  active. Hence, part of the  CO2 produced by the root 
FIGURE 8 

Piecewise structural equation models (SEM) for drivers of stem CO2 efflux variation during the wet season (a) and dry season (b). RH, relative 
humidity; VWC10, soil moisture at 10 cm soil depth; VWC50, soil moisture at 50 cm soil depth; Ta, air temperature; Fd, sap flux density; Rroot, root 
respiratory; Sr, soil respiration. Blue and Gray arrows represent a significant positive relationship and a non-significant relationship, respectively. 
Arrow width corresponds to the strength of the relationship, while the numbers adjacent to the arrows indicate standardized path coefficients. The 
goodness-of-fit statistics for the model are presented below. *p < 0.05; **p < 0.01; ***p < 0.001. 
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respiration may dissolve into soil water rather than xylem  sap.  Elevated  
temperatures also decrease the solubility of CO2 in water (according to 
Henry’s law), resulting in the release of CO2 from the soil to the 
atmosphere. This may partly explain both the lack of correlation 
between the Ec and Rroot and the negative correlation with soil 
respiration during the wet season (Figures 7k, l, n). In contrast, 
during the dry season, inadequate rainfall does not sufficiently 
replenish soil moisture, with trees relying primarily on deeper soil 
water. Consequently, tree metabolism and transpiration rates slow 
significantly compared to those observed during the wet season 
(Figure 5). This prolongs retention of root-absorbed water within the 
stem (Bowman et al., 2005), providing greater opportunity for root-
respired CO2 to diffuse radially into the atmosphere (Bloemen et al., 
2013a). A recent study reported a positive correlation between sap flow 
flux density and the vertical transport of CO2 and pointed out that 
minimal sap flow density coincided with maximal contribution of 
axially transported CO2 to stem CO2 efflux (Dukat et al., 2024). Our 
findings partially elucidate the strong seasonal variability in how 
environmental factors explain tree Ec (Etzold et al., 2013). 
Furthermore, our case emphasizes that the seasonal relationship 
between Ec and belowground respiration results from complex 
interactions between environmental conditions and eco-physiological 
processes (Steppe et al., 2015; Yang et al., 2016; Tarvainen et al., 2018). 
4.4 Implications 

Our study conducted a paired experiment using tapped and 
non-tapped rubber trees as the subjects of research. This 
experimental design offers the advantage of comparing the impact 
of tapping activities on the Ec of rubber trees. Additionally, the 
alterations in the structure of the regenerated bark of rubber trees 
post-tapping facilitate the diffusion of CO2 within the tree, enabling 
an investigation into whether stem CO2 efflux is influenced by 
belowground respiration. Our findings indicated that seasonal 
variations in the environment altered the role of belowground 
respiration in Ec by changing physiological traits. These findings 
add to the growing body of evidence that transpiration rate and root 
respiration play an important role in regulating stem CO2 efflux 
(Bloemen et al., 2013a, b). 

Furthermore, our findings suggested that Ec reflected both stem 
and belowground (soil and root) respiration activity, with seasonal 
climate variations influencing the relative contributions of each to 
the Ec (De Roo et al., 2019; Salomón et al., 2024). This study 
advances our mechanistic understanding of how climate-driven 
environmental variability modulates carbon allocation in rubber 
tree ecosystems, offering critical empirical evidence for refining 
carbon flux models under projected climate change scenarios. 
 

5 Conclusion 

A long-term investigation of stem CO2 efflux (Ec) in both

tapped and non-tapped rubber trees, in combination with an 
examination of environmental factors and physiological traits, 
Frontiers in Plant Science 11 
enabled the study of seasonal Ec patterns and underlying 
mechanisms. Our results suggested that the Ec seasonal dynamics 
of rubber trees exhibited a single-peak pattern. This pattern may be 
attributed to the growth phenology of rubber trees, because in our 
study, although rubber tapping influenced Ec magnitude, it did not 
significantly alter the overall seasonal trend. The relationships 
between stem CO2 efflux and belowground respiration varied 
significantly with season. These phenomena likely originated from 
seasonal fluctuations in tree metabolic activity and soil moisture 
driven by uneven annual rainfall distribution and environmental 
changes. During the wet season, rainfall was frequent, soil moisture 
was adequate, and tree transpiration was vigorous. High 
transpiration rate facilitated the rapid transport of root-derived 
CO2 to the canopy, thereby diminishing its contribution to Ec. 
Conversely, in the dry season, reduced rainfall limited soil moisture 
recharge, leading to declines in tree metabolism and transpiration 
rate. This slower transpiration resulted in greater lateral diffusion of 
CO2 originating from root respiration through the stem to the 
atmosphere. Our results suggested a more complex and challenging 
linkage between belowground respiratory processes and Ec than 
previously understood. Integrating seasonal Ec dynamics with 
physiological traits will offer a more comprehensive approach to 
understanding how environmental and physiological factors 
interact to regulate stem CO2 efflux. 
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