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Local adaptation, genetic
diversity and key environmental
interactions in a collection of
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Limited, Lincoln Research Centre, Christchurch, New Zealand, 3Radiata Pine Breeding Company,
Building EN27, University of Canterbury, Christchurch, New Zealand, 4PGG Wrightson Seeds Limited,
C/- Grasslands Research Centre, Palmerston North, New Zealand, 5School of Agriculture and Food
Sustainability, The University of Queensland, Brisbane, QLD, Australia, 6AgResearch Ltd., Grasslands
Research Centre, Palmerston North, New Zealand, 7AgResearch Limited, Invermay Agricultural
Centre, Mosgiel, New Zealand
Red clover (Trifolium pratense L.) is known for its large taproot, nitrogen fixation

capabilities and production of forage high in protein and digestibility. It has the

potential to strengthen temperate pastural systems against future adverse

climatic events by providing higher biomass during periods of water deficit.

Being outcrossing and self-incompatible, red clover is a highly heterozygous

species. If evaluated and utilized correctly, this genetic diversity can be harnessed

to develop productive, persistent cultivars. In this study, we selected 92

geographically diverse red clover novel germplasm populations for assessment

in multi-location, multi-year field trials and for genetic diversity and genetic

relationship characterization using pooled genotyping-by-sequencing (GBS).

Through the development of integrated linear mixed models based on

genomic, phenotypic, and environmental information we assessed variance

components and genotype-by-environment (G x E) interactions for eight

physiological and morphological traits. Key interactions between

environmental variables and plant performance were also evaluated using a

common garden site at Lincoln. We found that the genetic structure of the 92

populations was highly influenced by country of origin. The expected

heterozygosity within populations ranged between 0.08 and 0.17 and varied

with geographical origin. For the eight physiological and morphological traits

measured there was high narrow-sense heritability (h2 > 0.70). The influence of

environmental variables, such as mean precipitation, temperature and

isothermality of the original collection locations, on plant and trait

performance in the local field trials was also highlighted. Along with the
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identification of genes associated with these bioclimatic variables that could be

used as genetic markers for selection in future breeding programs. Our study

identifies the importance of diverse germplasm when adding genetic variation

into breeding programs. It also identifies efficient evaluation methods and key

climatic variables that should be considered when developing adaptive red

clover cultivars.
KEYWORDS

red clover (Trifolium pratense L.), genetic diversity, heritability, genotype by-
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Introduction

Red clover (Trifolium pratense L.) is an important forage

legume species used globally in both pure and mixed stand

pasture systems (Taylor and Quesenberry, 1996). As a legume,

red clover can fix atmospheric nitrogen biologically to generate

plant-available nitrogen through symbiosis with soil-dwelling

Rhizobium bacteria (Taylor and Quesenberry, 1996). This plant

species is high in protein, readily digestible, and can grow in a wide

range of soil types, pH levels and environmental conditions (Taylor

and Quesenberry, 1996). It is thought to have originated from the

Eastern Mediterranean region and spread throughout Europe and

western Asia and is now established throughout most temperate

regions in the world (Annicchiarico et al., 2015; Taylor and

Quesenberry, 1996). Earliest reports of red clover cultivation date

to the 16th century in Spain, where farmers collected and spread

naturalized red clover for the improvement of pasture stands or for

adding into the crop rotation. These landraces possess wide

variation for adaptive and agronomic traits (Annicchiarico et al.,

2015; Taylor and Quesenberry, 1996). Adaptive landraces collected

thus far have either been integrated effectively into breeding

programs or are currently conserved in genebanks worldwide

(Nay et al., 2023). Similar to breeding programs of other

economically important species, further exploration of novel

genetic resources is crucial for the development of new red clover

cultivars ensuring they better meet farmers’ changing needs and

continue to benefit global pastoral farming industries.

Evaluating and efficiently characterizing large quantities of

novel germplasm is hampered by cost and time requirements.

One method is to develop core collections which involves

selecting a representative subsample that encompasses the genetic

diversity of the whole germplasm collection (Kouame and

Quesenberry, 1993; Frankel, 1984). Approaches to developing

core collections vary depending on the objectives and desired

outcomes of individual programs, the tools available and the

quality of passport data, such as country of origin, collection site

abiotic and biotic features, and available phenotypic characteristics

present in germplasm databases. Stratifying collections based solely

on passport data to develop core collections is a cost-efficient
02
method with much of the information readily available from

germplasm databases (Brown, 1989). A simple tool for visualizing

the amount of genetic diversity captured by this technique is to use a

pedigree mapping tool. Pedigrees are useful for interpreting

population structure and any potential genetic bottlenecks (Egan

et al., 2019). However, this method is reliant on the quantity, quality

and reliability of site information including history of introductions

stored in germplasm databases and phenotypic data collected in the

field. The continued advancement of molecular marker

technologies such as genotyping-by-sequencing (GBS) have

enabled researchers to characterize genetic diversity and

population structure rapidly and cost-effectively within large

collections of genetic material in forages (Nay et al., 2023; Faville

et al., 2020). This facilitates screening of whole collections to

develop a representative core collection but can still be costly

when screening large collections.

A cost-effective germplasm stratification solution can be a

combined approach where the collection is filtered using passport

data to identify an initial eco-geographically diverse set of

populations which can then be assessed for genetic diversity and

population structure (Brown, 1989) derived from using methods

such as pooled GBS (Faville et al., 2020). Essentially, this is GBS of a

bulk of numerous individuals within a population and the resulting

genetic data are derived from allele frequencies at each locus for the

population as opposed to genotypes for individuals within the

population (Blanco-Pastor et al., 2019). Bulk, or pooled, GBS is a

cost-effective efficient way to access and harness genetic data

especially for outbreeding, high genetic diversity crops such as red

clover (Blanco-Pastor et al., 2019; Byrne et al., 2013; Faville et al.,

2020). Previous studies have shown a pooled GBS technique can be

effective in assessing genetic diversity amongst red clover

populations (Zanotto et al., 2021; Frey et al., 2022; Nay et al.,

2023 and Zanotto et al., 2023).

Assessing and utilizing red clover germplasm collections to

bring new allele combinations into breeding programs has been

applied rarely in red clover improvement. Previously, researchers

have focused on evaluating genetic diversity among red clover

germplasm populations predominantly from Northern Europe/

Nordic backgrounds rather than in the warm temperate
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conditions where much red clover is grown (Zanotto et al., 2021,

2023; Osterman et al., 2021). The emphasis was on evaluating a

selection of ecotypes and cultivars for improved yield, freezing

tolerance, winter hardiness and survival (Zanotto et al., 2021, 2023;

Osterman et al., 2021) or observing genetic diversity for key plant

structural traits and persistence (Jones et al., 2020). More recently,

Nay et al., 2023 explored genetic and phenotypic diversity of traits

including dry matter yield and survival, amongst a more diverse

selection of Southern and Central European red clover ecotypes.

These studies did not include material from North Africa nor the

southern Caucasus region including Turkey, Georgia, and

Azerbaijan. Populations from these regions may contain

important alleles for biotic adaption to heat and drought stresses

which will likely be valuable for mitigating climate change effects,

particularly in the temperate environments where much agronomic

production occurs.

The relationships between environmental factors and the

genetic variation present amongst populations, known as

landscape genomics, is crucial for understanding the adaptative

phenotypic characteristics present (Capblancq and Forester, 2021).

By introducing germplasm populations into a new environment,

such as common garden experiments, populations with higher local

adaptation can be identified and compared to existing locally

adapted populations (Capblancq et al., 2023). There is, however, a

lack of studies that explore landscape genomics in red clover

populations. The diverse geographical origins of the populations

in this current study combined with genotype data will facilitate a

better understanding of the relationship between environmental

factors and plant adaptation, while also enabling the development

of predictive models for plant performance and persistence within

new environments (Capblancq and Forester, 2021). This provides

another tool when selecting populations to form core collections or

adding to existing breeding programs. Our aim was to identify and

assess red clover material particularly from low rainfall areas that

would add value to breeding programs by harnessing previously

untapped genetic diversity from genebanks based on the following

objectives which were to: (i) assess diverse red clover germplasm

selected by eco-geographic passport data for insight into genetic

diversity and population structure using pooled GBS, including

alignment with pedigree data; (ii) characterize the populations in a

grazed multi-site, multi-year field trial to determine quantitative

genetic attributes of key agronomic traits for incorporation into

breeding programs; and (iii) apply landscape genomics analyses to

identify markers and genomic regions that may be implicated with

field performance and adaptive traits.
2 Materials and methods

2.1 Plant material, trial design and
trial management

Out of the 5223 red clover populations available in the Margot

Forde Genebank at AgResearch Grasslands, Palmerston North,

New Zealand, only 45% of populations had country of origin and
Frontiers in Plant Science 03
collection site information available (Egan et al., 2019).

Ecogeographical factors including both place of origin with

latitude-longitude coordinates and collection site information

along with seed availability were the main selection criteria for

our panel of 92 populations. Increased weighting was given to

selecting populations collected from low rainfall environments. The

final selection of ecotypes was from the following countries:

Armenia (Arm; 11 ecotypes); Azerbaijan (Azb; 8); Bosnia &

Herzegovina (Bos; 1); Croatia (Cro; 1); Czech Republic (Cze; 1);

Georgia (Geo; 5); Greece (Gre; 8); Italy (Ita; 6); Morocco (Mor; 1);

Portugal (Por; 8); Russia (Rus; 12); Spain (Spa; 8); Tajikistan (Taj;

10); Turkey (Tur; 11); and United Kingdom (Uni; 1)

(Supplementary Table 1). This comprised 15 countries with

diverse eco-geographic data that represents the diversity of drier

environments amongst the 41 countries with red clover seed

samples stored at the Margot Forde Genebank (Egan et al., 2019).

To assess the agronomic potential of these diverse populations

in contrasting environments, a field trial based on a row-column

experimental design with two replicates was established in Spring

2020 at two sites, Lincoln (AgResearch Lincoln research farm: 43°

38’ S, 172° 30’ E) and Palmerston North, New Zealand (AgResearch

Aorangi research farm: 40° 19’ S, 175° 29’ E). The Lincoln site was

situated on Wakanui silt loam soil (Brown et al., 2005), 14 m above

sea level. The annual rainfall for years 1, 2, 3 and for the years

combined was 556.8 mm, 739.4 mm, 392.4 mm and 1688.6 mm

respectively. Mean maximum temperature for years 1, 2, 3 and

average overall was 18°C, 17°C, 20°C and 18°C, respectively. Mean

minimum temperature for years 1, 2, 3 and average overall was 8°C,

8°C, 10°C and 8°C. The Palmerston North site was situated on

Kairanga silt loam soil (Cowie, 1978), 15 m above sea level. The

annual rainfall for years 1, 2, 3 and years combined was 1057.6 mm,

1371.5 mm, 540.4 mm and 2969.5 mm, respectively. Mean

maximum temperature for years 1, 2, 3 and overall was 18°C, 18°

C, 20°C and 19°C, respectively. Mean minimum temperature for

years 1, 2, 3 and overall was 9°C, 10°C, 12°C and 10°C. Both

locations were sown with a diploid perennial ryegrass (Lolium

perenne L.) cultivar ‘Ceres One50’ containing the Epichloë

festucae fungal endophyte strain AR37 to mimic a mixed sward

cattle/sheep grazed management.

A random sample of seed from each red clover population was

scarified using sandpaper, then germinated to provide sixteen plants

per plot for each replicate. These plants were transferred

individually to root trainer pots (3 cm x 3 cm x 10 cm) filled with

Dalton’s Premium Potting Mix (Daltons®, Matamata, New

Zealand). The plants were maintained in glasshouse conditions

for two months (max./min. temperatures: 24°C/12°C; photoperiod:

9 h light/15 h dark). They were then transferred outside onto a

concrete pad in late winter for “hardening” over two months to

increase post-transplanting survival. In spring, field trials were

established, sixteen plants of each population were hand

transplanted into each plot. Plots were 1 m × 1 m with inter-plot

spacings of 1.5 m. Within each plot, plants were arranged in four

rows of four plants starting at the top left corner with approximately

25 cm between plants. Both trials were established in September

(spring) 2020 and continued until March (early autumn) 2023.
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Prior to establishment, trial sites were treated with the selective

herbicide Kamba®500 (Nufarm) for the control of volunteer

clovers. During the life of the trial any volunteer clovers were

spot-sprayed using Kamba500 as required. Soil tests were

completed annually, and 15-20 kg ha−1 nitrogen in the form of

Urea (46% w/w N) was applied twice a year at the Palmerston North

site and once a year at the Lincoln site to maintain ryegrass health.

At both locations, standard farming practices were followed by

rotationally grazing the trials when herbage mass was between 2,500

and 2,800 kg DM ha−1, as assessed by a rising plate meter. Animals

were removed when pasture residuals were between 1,000 to 1,200

kg DM ha−1. Each grazing was for a period of 1 to 2 days, season

dependent, to ensure rapid and uniform defoliation and minimize

the effect of urine and fecal patches in the trials. Trials were

rotationally grazed by sheep at Lincoln and cattle at Palmerston

North. Both sites were run as dryland with only natural

precipitation for the entirety of the trial.
2.2 Morphological and physiological traits

Eight morphological and physiological traits were assessed at

least seasonally each year. At both Lincoln and Palmerston North

sites three key agronomic morphological traits were measured: (i) A

qualitative visual score was used to measure plant biomass based on

a 1 (low) to 9 (high) scale, with 1-unit increments. Calibration

biomass cuts using a 0.25 m2 quadrat cutting to 4 cm and

interspecies dissections were completed for each of the growth

notes, with an average R2 alignment with visual scores of 0.81 and

0.67 at Lincoln and Palmerston North, respectively. (ii) Growth

habit was assessed using a qualitative visual 1 to 4 scale with 1 =

erect habit, 2 = semi-erect habit, 3 = semi-prostrate, 4 = prostrate.

(iii) Average leaf size per plot was measured using a qualitative

visual 1 (low) to 5 (high) scale, with 1-unit increments. As Lincoln

was used as a common garden experiment site five further traits

were measured: (i) A qualitative visual score was used to measure

plant plot density based on a 1 (low) to 9 (high) scale, with 1-unit

increments. (ii) Average plot height (cm) was measured using a

ruler at the highest three points of the plot; (iii) Plant survival was a

visual count of survivors within each plot of 16 plants. (iv) The

average lamina area of two randomly chosen young, fully unfolded

leaves per plant was determined using the open-source image

processing and analysis program “ImageJ” (Katabuchi, 2015). (v)

Relative chlorophyll content was measured using a Konica Minolta

SPAD-502Plus chlorophyll meter. An average reading was taken

from three randomly selected young, fully unfolded leaves per plant

(Ling et al., 2010). All traits were measured immediately prior

to grazing.
2.3 DNA isolation and genotyping of
bulked samples

For DNA extraction, a random sample of each of the accessions

was germinated and grown to the four-leaf stage in glasshouse
Frontiers in Plant Science 04
conditions as described above. Sample harvesting and DNA

extraction for bulked samples of each population was performed

as described previously for white clover (Faville et al., 2020). Briefly,

a single trifoliate leaf was harvested from thirty individuals for each

red clover population germinated as described above and combined

into a single bulked sample. To ensure similar representation of

each individual within a population, effort was made to maintain

similarity of harvested leaf size for each individual in the bulk. The

leaf material for each population was freeze-dried, ground to a fine

powder and DNA extracted as described (Anderson et al., 2018).

Genotyping-by-sequencing (GBS) libraries were developed in 96-

plex using a protocol adapted from Griffiths et al. (2019) with

modifications as described by Faville et al. (2020) including

digestion with Pst I restriction enzyme and inclusion of four

technical replicates for each population. Each library was single-

end sequenced (150 bp reads) on two lanes of an Illumina HiSeq

2500 (Illumina, San Diego, CA, USA) at AgResearch Invermay,

New Zealand. Single nucleotide polymorphisms (SNPs) were

identified using a custom SNP identification pipeline. In short,

reads were quality-checked, demultiplexed, and mapped to the ARS

RC 1.1 (GCA_020283565.1) red clover reference genome from

Bickhart et al. (2022) using “Burrows Wheeler Aligner” v0.7.17 (Li

and Durbin, 2009). SNP variants were detected using the “mpileup”

command from “bcftools” v1.13 (Li, 2011), filtering low mapping

quality (MQ>20) and base quality (BQ>20) reads. “Vcftools” v0.1.16

(Danecek et al., 2011) then utilized to only include the SNPs with

coverage across greater than 95% of samples, allele frequencies

between 0.05 and 0.95 in at least 10 populations, and mean allele

frequencies across all populations between 0.05 and 0.95. Allele

frequencies were combined across the four technical replicates and

were an estimate of the allele frequency at a SNP for the pooled

sample. Allele frequencies were extracted and frequencies of one

indicated homozygosity of the population for the reference allele

and an allele frequency of zero indicated homozygosity of the

alternative allele. The alternative allele frequency (AAF) was

calculated by using the following equation:

AAF = Alt=(Alt + Ref )

Where: Alt is the alternative allele count and Ref is the reference

allele count (Li, 2011). For analysis, missing data of the filtered

SNPs with greater than 95% coverage was replaced by mean allele

frequency across populations at the given SNP position. SNP

filtering and missing data replacement was completed using a

custom R script which is available on GitHub.
2.4 Population structure and genomic
relationship matrix

Modified Rogers Distance was used to calculate genetic distance

between different genotypes using the alternative allele frequency

data of the 92 populations. An initial optimal number of principal

components to apply to the discriminant analysis of principal

components (DAPC) analysis was determined by generating an

A-score (Jombart et al., 2018). The optimal number of PCs was
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incorporated into the K-means clustering algorithm which was run

iteratively from 1 to 85 genetic clusters (K). The optimal cluster

number corresponded with the lowest Bayesian information

criterion value. DAPC (Jombart et al., 2010) was performed using

“adgenet” v2. 1 (Jombart, 2008) to assess population structure and

individuals were then assigned to genetic clusters. Analysis of

molecular variance between the identified genetic clusters,

countries of origin and amongst the 92 populations and fixation

index (FST) values were calculated using the “poppr” and “hierfstat”

R packages respectively (Kamvar et al., 2014; DeMeeûs and Goudet,

2007). To interpret FST values we used Wright (1978) suggestion for

biallelic markers with little genetic differentiation (0-0.05),

moderate genetic differentiation (0.05-0.15), and great genetic

differentiation (0.15-0.25) (Cheng et al., 2020). Expected

heterozygosity (HE) or gene diversity of the clusters were also

calculated, and HE values computed using the “dplyr” R package

(Wickham et al., 2023). Geneflow was calculated using the following

equation:

Nm =
1 − FST
4*FST

Where: Nm is gene flow and FST is the fixation index value. To

assess gene flow levels, we used Wright’s (1978) classification of

three grades: low gene flow (0.0 to <0.25), medium gene flow (0.25

to 0.99) and high geneflow (>1.0) (Cheng et al., 2020). As the pooled

samples contained multiple genomes, alleles were combined by

multiplying alternative allele frequencies by two to fit a “0/0, 0/1, 1/

1” structure then recoded to a -1 to 1 scale to generate a genomic-

based relationship matrix. The genomic based relationship matrix

was generated based on the method proposed by VanRaden (2008)

using the A.mat function in the R package “rrBLUP” (Endelman,

2011). A dendrogram was generated using the “Ape” R package

(Paradis et al., 2004).
2.5 Pedigree information and
relationship matrix

Pedigree information for 77 of the 92 populations was extracted

from a database previously established by Egan, et al. (2019), where

they constructed a pedigree map of the entire red clover collection

of the Margot Forde Genebank. A pedigree-based relationship

matrix (A matrix) was generated and displayed as a heatmap

using the “ASRgenomics” tool and “AsReml-R” R package (Butler

et al., 2017). The R package “pedigree” was used to calculate kinship

and inbreeding as shown in Egan et al. (2019).
2.6 Variance components and heritability

As the 92 populations were not part of a structured population,

the genomic relationship matrix information was used to enable

estimation of quantitative parameters including narrow-sense

heritability. A linear mixed model was fitted for the eight
Frontiers in Plant Science 05
morphological and physiological traits using “AsReml-R” v4.2

(Butler, et al., 2017). The following linear mixed model was fitted

as a full model and altered depending on the analysis needed using

“AsReml-R”:

Yinojklm =  m + pi + yo + en + (pe)in + sj + (ps)ij + (py)io + (sy)jo

+ (pey)ino + (psy)ioj + bnojk + rnojkl + cnojkm + einojklm

Where: Yinojklm is the value of a trait measured from population

i, at the nth location of the oth year in the jth season, within the kth

replicate, in lth row, andmth column. i = 1,…, nf; n = 1,…, ne; o = 1,

…, ny, j = 1,…, ns; k = 1,…, nb; l = 1,…, nr; m = 1,…, nc; where, p, y,

e, s, b, r, and c are populations, years, locations, seasons, replicates,

rows, and columns, respectively. µ is the overall mean; pi is the

random effect of population i and distributed as N(0, Gs2g); where
G is the genomic relationship matrix, yo is the fixed effect of year o;

en is the fixed effect of location n; (pe)in is the random effect of the

interaction between population i and location n, N(0, Is2 ge); where

I is the identity matrix, sj is the fixed effect of season j, N(0, Is2s);
(ps)ij is the random effect of the interaction between population i

and season j, N(0, Is2gs); (py)io is the random effect of the

interaction between population i and year o, N(0, Is2io); (sy)jo is

the random effect of the interaction between season j in year o, N(0,

Is2sy); (pey)ino is the random effect of the interaction between

population i location n and year o, N(0, Is2gey); (psy)ioj is the

random effect of the interaction between population i season j and

year o, N(0, Is2ioj); bnojk is the random effect of replicate k within

season j within year o in location n, N(0, Is2b); rnojkl is the random
effect of row l within replicate k in season j within year o in location

n, N(0, Is2r); cnojkm is the random effect of column m in replicate k

within season j within year o in location n, N(0, Is2c); and einojklm is

the residual effect of population i in location n within year o in

season j of replicate k in row l and columnm of replicate k in season

j within year o in location n. This produced residual maximum

likelihood estimates of the variance components for each trait and

genomic best linear unbiased prediction values for each population.

The variance components estimated on the linear mixed model

analysis were used to calculate a narrow sense heritability or

genomic heritability based on G-matrix for each trait using

different adaptations of the following equation:

h2n =  
s 2
p

(s 2
p ) + (s 2

pb)=nr + (s 2
ps)=ns + (s 2

py)=ny + (s 2
pl)=nl + (s 2

e )=(2*4*3*2)

Where: h2n is narrow sense heritability. In the estimation of

narrow sense heritability; s2p was the estimated additive genetic

variation amongst the 92 populations; s2pb is the variance

associated with the population-by-replicate interaction; nr was the

number of replicates; s2ps is the variance associated with

population-by-season interaction; ns was the number of seasons;

s2py is the variance associated with population-by-year; ny was the

number of years; s2pl is the variance associated with population-by-

location interaction; nl was the number of years and s2e is the

variance of residuals (Arojju et al., 2020). From here on, heritability

will be referred to as narrow sense heritability.
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2.7 Landscape genomic analysis

Redundancy analysis was performed using the “Vegan” package

in RStudio, with morphological and physiological traits as the

response variable and bioclimatic variables the explanatory

variable (Capblancq and Forester, 2021; Oksanen et al., 2013).

Based on collection site coordinates obtained from passport

information of the 92 populations retrieved from the Margot

Forde Genebank database, the analysis used 19 bioclimatic

variables (Bio1 to Bio19) sourced from the ‘WorldClim’ database

(worldclim.org) (Supplementary Table 1). Bioclimatic variables were

extracted at 2.5 arcminutes (~4.5 km at the equator) spatial

resolution (Hijamans et al., 2005). A superior model was fitted

after multiple models were run, containing variables that explained

the most variation present and while also reducing collinearity

through removing highly correlated (r ≥ 0.8) variables based on the

Pearson correlation coefficient. Biplots were generated to show

associations between the environmental explanatory factors,

cluster groupings, explanatory (plant performance) and trait

response by using the “ggplot2” R-package and the “Data

integration app” (Wickham, 2011; Luo, 2022).

Candidate SNPs, SNPs that showed significant associations with

environmental variables, involved in local adaptation, were identified

through redundancy analysis using the “Vegan” package in RStudio

(Oksanen et al., 2013; Capblancq and Forester, 2021). Genetic

information from the filtered SNPs of the 92 populations served as

the response variables, while bioclimatic variables were the

explanatory variables. Candidate SNPs were identified has having a

threshold of 3 standard deviations from themean SNP loading, a false

discovery rate correction applied to adjust for multiple comparisons

and to avoid false discoveries (Benjamini and Hochberg, 1995). For

each candidate SNP the bioclimatic variables most strongly correlated

with it was identified along with p-values for associations. Using the

ARS RC 1.1 (GCA_020283565.1) red clover reference genome

(Bickhart et al., 2022), the closest gene associated with each SNP

was extracted using a custom R script. Gene descriptions including

type and role and the location of the SNP in reference to the allele

were also collated.

Gene Ontology (GO) terms for the associated genes for the

candidate SNPs involved in local adaptation were annotated using the

package “GOMAP‐Singularity” v1.3.4 (Wimalanathan and Lawrence-

Dill, 2021) with the default parameters. The GO term information

was then sourced from the NCBI database. GO term enrichment was

performed using the “topGO R‐package” v2.54.0 (Alexa, 2023) for the

molecular function process ontology with the ‘weight01’ algorithm

and Fisher’s exact test. Enriched GOterms were filtered based on a p‐

value threshold of < 0.05. The GO enrichments were visualized as

treemaps generated using “rrvgo” v1.14.1 (Sayols, 2023) with the

Trifolium pratense annotation database (Sayers et al., 2022). The

scores were set as the p‐values resulting from the topGO enrichment

analysis. A chi-square test was performed to assess independence

between the SNP frequency and cluster membership, and a false

discovery rate correction was applied to adjust for multiple

comparisons. All statistical analysis were performed in R v4.4.1 (R

Core Team, 2021), implemented in Rstudio (RStudio Team, 2020).
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3 Results

3.1 Genetic diversity of global red clover
populations showed geographic clustering

GBS of pooled samples for each of the 92 red clover populations

identified 12,168 SNPs which reduced to 4,509 SNPs after filtering

and were then used to construct a genomic relationship matrix for

the 92 populations. The A-score optimization determined that

seven principal components were ideal (Supplementary Figure S1)

for the DAPC analysis which indicated two to eight clusters as

potential outcomes based on Bayesian Information Criteria values

(Supplementary Figures S2, S3). Assessing the different grouping

options with the geographic information identified seven clusters as

an optimal interpretation of the data, as these clusters

predominantly aligned with their geographical sources (Figure 1;

Supplementary Table S2). Cluster membership probability

(Figure 1a) showed little admixture among the populations,

although there was some evidence of mutual geneflow where

clusters overlapped geographically such as Clusters 2 and 6 in the

western Caucasus, and Clusters 1 and 7 in the northern Iberian

Peninsula (Figures 1a, b). Geographic placement of the groupings

showed Clusters 4 and 5 were the most localized and contained

populations restricted either to Tajikistan (with one exception in

northern Spain), or northern Greece, respectively (Figure 1b). The

Caucasus region had two distinct groups, Cluster 3 in the east

(Armenia, Azerbaijan, and Caucasian Russia), and Cluster 6 in the

west (Armenia, Georgia, Caucasian Russia, and Eastern Turkey), as

well as an overlap with the cosmopolitan Cluster 2 which

encompassed the Caucasus, Central Europe to the United

Kingdom. Cluster 1 was restricted to northern Spain/Portugal and

co-located with some members of Clusters 2, 4 and particularly 7

which contained populations from northern Spain through

Portugal, North Africa (Morocco) and southern Greece (Figure 1b).

The principal components PC1, PC2 and PC3 together

explained 19.22% of the genetic variation (Figure 1c). Separation

of clusters along PC1 (9.45%) aligned with longitude as the samples

following a transect from Central Asia (Tajikistan) to Western

Europe, whereas PC2 (5.15%) appeared to be driven by variation in

the Iberian Peninsula (Clusters 1 and 7 in particular) and may

represent differences in latitude (Figure 1c). PC3 (4.62%) separated

clusters in the Iberian Peninsula further from the rest, similarly with

the Greek cluster and Tajikistan populations (Figure 1d).
3.2 Genetic diversity found to be greatest
amongst populations with high gene flow

Analysis of molecular variance was used to characterise the total

genetic variation present between clusters and among populations

(Table 1). Of the three levels of variation assessed, variation

amongst the seven clusters and country of origin accounted for

14.6% and 6.4% of the total variance, respectively. The greatest

source of variance (79.1%) was detected among populations.

Pairwise FST values (Table 2) showed moderate differentiation
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between most of the clusters with the highest value (0.098) being

between Clusters 1 (Northern Spain/Portugal) and 4

(predominantly Tajikistan) which are geographically the most

distant. A single population belonging to Cluster 4 that was

located in Northern Spain rather than Tajikistan is a potential

artefact due to mislabeling in either the germplasm center or in the

laboratory workflow. Of the seven clusters, four had pairwise FST
values between 0.037 and 0.044, indicating little genetic

differentiation. These were either geographically adjacent clusters,

such as Clusters 3 and 6 (both Caucasus) and Clusters 4 and 6

(Tajikistan and Caucasus) or overlapped with the region as

exemplified by the pairwise FST of Clusters 3 and 6 with the

cosmopolitan Cluster 2 (Table 2; Figure 1c). These relationships

were reflected in the geneflow estimates which ranged from 2.3 to

6.5 and indicated high geneflow (≥ 1.0) among the clusters,

particularly with increasing geographic proximity (Table 2).

Expected heterozygosity (HE) was calculated to assess genetic

variation within each of these clusters (Figure 2). The mean HE

ranged from 0.10 to 0.16 with the Iberian Peninsula/North

African/Southern Greece-derived Cluster 7 having the lowest

mean HE but also exhibited the greatest variation in HE. By

contrast, the cosmopolitan Cluster 2 and the Eastern Caucasus-

based Cluster 3 exhibited the greatest HE values as well as the least

variability among their constituent populations (Figure 2).

Clusters 1, 4, 5 and 6 had similar amounts of variation

amongst populations.
3.3 Genotype data provided more insight
than pedigree information

Comparisons between genetic and pedigree matrices for the 77

populations with available pedigree information are shown in

Figure 3. As most of these populations were classified as

founders, we were unable to estimate inter-population

relationships based on pedigree data, hence a pedigree

relationship matrix (A-matrix) could not be calculated

(Figure 3a). This reflected that the populations had no prior

breeding history or generational structure, but did, however,

suggest a lack of inbreeding within or relatedness among

populations. By contrast, the GBS-derived genotype data

identified clear structures of relationships and groupings between

the 77 populations as indicated through color differentiation and

clades on the modified Roger’s distance heatmap that were

undetectable using the pedigree data (Figure 3b).
3.4 Significant variance components and
narrow-sense heritability identified

When assessing the 92 populations in the field, population by

locations interactions were highly significant (p ≤ 0.001) for

biomass, growth habit and leaf size across years and seasons

(Tables 3, 4). Across both sites and at the Lincoln site there were
FIGURE 1

Population structure of 92 red clover populations and their alignment
with geographic origins (a) Membership probability based on an
optimum of seven clusters using DAPC analysis (b) The geographic
location of each germplasm population along with color coordinated
cluster groupings. The map was generated using Microsoft Excel
(Microsoft Corporation, 2024), with geospatial data sourced from Bing
Maps. (c) Principal component analysis plot based on Modified Rogers
Distance among the 92 red clover populations showing components
PC1 and PC2 and (d) components PC1 and PC3. Populations have
been assigned to the seven genetic clusters indicated by color.
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varying significant (p < 0.01) population by season interactions

(s2P×S) and population by year interactions (s2PxY) for biomass,

growth habit, leaf size, and additionally at the Lincoln site for plot

height, chlorophyll content and plot density (Tables 5, 6). At the

Palmerston North site, only year 1 biomass had a highly significant

(p ≤ 0.001) population by season interaction and only spring and

summer biomass had highly significant (p ≤ 0.001) population by

year interactions. As the population significant variance was greater

than the population by location variance this indicated that the

performance of the populations was relatively consistent

between sites.

Narrow-sense heritability (h2) for biomass, growth habit, and

leaf size was high (≥ 0.60) across most years, seasons, and locations,

along with within years, seasons, and locations. Exceptions were at

Palmerston North for biomass in year 3 (0.44) and year 1 spring

(0.55), growth habit at Palmerston North for year 1 (0.26) and

summer (0.26), along with growth habit across both sites in year 1

(0.55). At the Lincoln site, narrow-sense heritability was high (≥

0.60) across and within years and seasons for plot height, plot

density, lamina area and survival, except for plot height in year 2

(0.52) and survival in year 1 (0.09). By contrast, chlorophyll content

narrow-sense heritability was high (≥ 0.60) only across years

and summer.
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3.5 Genetic diversity clustering and
phenotypic trait expression
showed commonality

Principal component analysis of the 92 populations’

performance, based on genomic best linear unbiased prediction

values for a range of traits over three years at the Lincoln site,

showed that the first two principal components explained 81.6% of

the phenotypic variation among populations (Figure 4a). The first

principal component (PC1) explained 52.8% of the variation and

was driven primarily by plant biomass, leaf area, plot density, and

plot height. The second principal component (PC2) explained

27.8% of variation and was underpinned by growth habit,

survival, and plot density. Many of the traits had significant

positive relationships with each other, particularly plot height and

leaf size, and plot density and leaf area (Figure 4a). By contrast,

growth habit, for which high scores indicated more prostrate plants,

was strongly negatively correlated with chlorophyll content, and

slightly less so with plot height and leaf size.

As described previously, the 92 populations were assigned to

seven clusters based on genetic diversity analysis. Some member

populations within these clusters also grouped similarly by

distinctive phenotypic characteristics as expressed in a New
FIGURE 2

Expected heterozygosity (HE) to assess genetic diversity within the seven red clover clusters identified by DAPC genetic diversity analysis.
TABLE 1 Results of an analysis of molecular variance between the seven red clover clusters, countries of origin and amongst populations.

Source of variation Degrees
of freedom

Sum of Squares Mean
Square

Variance
explained (%)

F-value P-value

Clusters 6 26430 4405 14.6 3.12 0.001

Countries of Origin 21 29631 1411 6.4 0.08 0.001

Populations 64 75255 1176 79.1 0.001

Total 91 131316 1443 100
fro
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Zealand field trial context. Cluster 7 (yellow), which comprised of

eight populations predominantly from the Iberian Peninsula,

Morocco, and southern Greece, was placed in near proximity on

the biplot and had similar characteristics such as a semi-prostrate

growth habit which produced high biomass and had high plot

density and survival (Figure 4a). Likewise, the eight populations

from Northern Greece (Cluster 5; light blue) formed a cluster and

aligned according to phenotype and exhibited a short, small leaf,
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prostrate growth habit and produced low biomass. By contrast,

Cluster 1 (Northern Spain; black), which contained six populations

(Figure 1; Supplementary Table 2), each of which showed different

phenotypes across the eight traits and were scattered around the

biplot (Figure 4a).

The cosmopolitan Cluster 2 (red) contained 27 populations

which, despite being sourced from many European or Caucasian

countries (Figure 1; Supplementary Table 2), aligned phenotypically
FIGURE 3

Comparison of interpopulation relationships based on either pedigree or genotype information. (a) A heatmap of the pedigree relationship matrix (A-
matrix) of the 77 populations. As most accessions are founders with no pedigree details, no A-matrix was produced, hence only accession
relationships with themselves shown. (b) Heatmap of the genetic relationship matrix for the 77 populations based on the Modified Roger’s distances.
Accessions are ordered by groups based on discriminant analysis of principal components (DAPC) analysis cluster analysis.
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and were characterized by their erect, large leaf growth habit

(Figure 4a). These populations produced high biomass but had

lower plot density and survival. The 12 populations from the

Eastern Caucasus (Cluster 3; green), were placed near the center

of the biplot and exhibited average performance for most of the

growth traits but some populations did have higher plot density and

survival compared to most (Figure 4a). The neighboring Cluster 6

(purple) populations in western Caucasus and Eastern Turkey

(Figure 1; Supplementary Table 2) were similar to Cluster 3 but

had lower plot density and survival. Cluster 4 (dark blue) which

contained 11 populations from Tajikistan and one from Spain were

scattered near the center of the biplot and exhibited average growth,

although some were categorized by their erect larger leaf growth

habit and others with lower survival (Figure 4a).
3.6 Landscape genomics identified key
environmental relationships

For the landscape genomics analysis, the best model was fitted

based on the predicted influence of bioclimatic variables.

Collinearity of these variables across the map locations of the

source sites, which can skew the redundancy analysis, was

accounted for through identification and removal of one in each

pair of highly correlated variables (r ≥ 0.8). This resulted in seven

out of the 19 bioclimatic variables (Supplementary Table 1) being

retained for the analysis, and these were: Isothermality (Bio3);

Minimum temperature of coldest month (Bio6); Mean

temperature of driest quarter (Bio8); Precipitation seasonality

(Bio15); Precipitation of wettest quarter (Bio16); Precipitation of

driest quarter (Bio17); and Precipitation of warmest quarter

(Bio18). The subsequent redundancy analysis evaluated patterns

between allele frequency of the populations in response to these

bioclimatic data based on the source map coordinates of the 92

populations. This showed that the first two principal components

accounted for 66.4% of the allelic frequency variation where the first

redundancy analysis component (RDA1) explained 42.7% of the

allelic variation and was driven by precipitation bioclimatic

variables (Bio15, 16, 17 and 18), and RDA2 (23.7% variation) was

underpinned by temperature (Bio3, 6 and 8) (Figure 4b). Most of

the environmental explanatory variables had positive relationships
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with each other, however Precipitation seasonality (Bio15) had a

strongly inverse relationship with both Precipitation of warmest

quarter (Bio18) and Precipitation of driest quarter (Bio17), and

Mean temperature of driest quarter (Bio8) had a strong inverse

relationship with Isothermality (Bio3) (Figure 4b).

The 92 populations on the RDA plot in response to climatic

variables were clustered in groups that in many cases reflected the

genetic diversity analysis (Figure 4b). Populations from discrete

regions such as Northern Greece (Cluster 5; light blue) and

Tajikistan (Cluster 4; dark blue) exhibited localized clustering on

the RDA plot, whereas Cluster 6 (Turkey/Western Caucasus; pink)

and the cosmopolitan Cluster 2 (red) from a range of environments

were more widely dispersed (Figure 4b). The single Spanish-sourced

population (Spa60, blue) that had been grouped with Cluster 4

(Tajikistan, blue), was placed with other Spanish material in the

redundancy analysis (Figure 4b). The Tajikistan populations

aligned strongly with seasonal precipitation (Bio15) whereas some

Turkish (Tur, pink) and Italian (Ita, red) germplasm has strong

relationships with drought and summer rainfall (Bio17 and 18).

Material from the Caucasus region (Clusters 2 (red), 3 (green) and 6

(pink)) aligned with Mean temperature of the warmest quarter

(Bio8) suggesting alleles associated with adaptation to summer heat.

The distribution of populations from within genetic clusters across

bioclimatic variables suggests that while there were sufficient alleles

in common that underpinned genetic grouping, there were subsets

associated with environmental adaptation that aligned populations

from similar environments.

Incorporating data from a three-year trial at the Lincoln

common garden site provided further insight into relationships

between phenotype and underlying genetic drivers of local

adaptation. This was derived from phenotype data aligned with

genotype information and the source environmental explanatory

factors (Figure 5). As when assessing allele frequency and

bioclimatic variables alone, the 92 populations formed groups

that aligned with their genetic clustering described previously.

The addition of plant phenotype data (Figure 5) was found to

tighten some of the clusters described in Figure 4b, along with

identifying several notable relationships between trait response and

environmental explanatory variables from where the populations

came. An example of this was the cosmopolitan Cluster 2 (red),

which formed a tight grouping compared to Figure 4b. This was
TABLE 2 Results of pairwise FST calculations (lower triangle) and Geneflow (upper triangle) among the seven red clover clusters.

Cluster1 Cluster2 Cluster3 Cluster4 Cluster5 Cluster6 Cluster7

Cluster1 ~ 3.85 2.35 2.30 2.53 2.66 3.18

Cluster2 0.061 ~ 5.46 4.21 3.85 6.51 3.85

Cluster3 0.096 0.044 ~ 3.43 2.80 5.70 2.84

Cluster4 0.098 0.056 0.068 ~ 2.53 5.70 2.38

Cluster5 0.090 0.061 0.082 0.090 ~ 3.43 2.96

Cluster6 0.086 0.037 0.042 0.042 0.068 ~ 2.84

Cluster7 0.073 0.061 0.081 0.095 0.078 0.081 ~
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TABLE 3 Estimated population (s2<sub>P</sub>), population-by-season (s2<sub>P×S</sub>), population-by-location (s2<sub>P×E</sub>), population-by-year (s2<sub>P×Y</sub>), residual error (s2<sub>Er</sub>); variance
components, their associated interactions, and standard errors (± SE); and population mean narrow-sense heritability (h2) for biomass, growth habit and leaf size for 92 red clover germplasm populations across
two locations, Lincoln and Palmerston North, and per year and across 3 years. Significance levels of interaction (*P < 0.05; **P < 0.01; *** P < 0.001).

Leaf size

Lincoln Palmerston North Combined

0.40 ± 0.07 0.37 ± 0.07 0.38 ± 0.07

* 0.06 ± 0.01 *** 0.00 ns 0.03 ± 0.01 ***

0.42 ± 0.02 0.32 ± 0.03 0.42 ± 0.02

* ~ ~ 0.02 ± 0.01 ***

0.03 ± 0.01 *** 0.00 ns 0.04 ± 0.01 ***

0.84 0.77 0.85

0.44 ± 0.08 0.40 ± 0.09 0.45 ± 0.08

0.02 ± 0.03 *** ~ 0.00 ns

0.41 ± 0.03 0.29 ± 0.04 0.42 ± 0.03

~ ~ 0.00 ns

0.84 0.68 0.86

0.37 ± 0.07 0.41 ± 0.10 0.36 ± 0.06

s 0.00 ns ~ 0.00 ns

0.39 ± 0.03 0.34 ± 0.05 0.38 ± 0.02

s ~ ~ 0.00 ns

0.81 0.71 0.88

0.55 ± 0.12 ~ ~

0.16 ± 0.05 *** ~ ~

0.46 ± 0.04 ~ ~

~ ~ ~

0.72 ~ ~
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Source of variation

Biomass Growth habit

Lincoln Palmerston North Combined Lincoln Palmerston North Combine

Across years

s2P 1.12 ± 0.21 1.16 ± 0.26 0.86 ± 0.20 0.20 ± 0.04 0.18 ± 0.05 0.16 ± 0.03

s2P×S 0.24 ± 0.06 *** 0.18 ± 0.07 ns 0.10 ± 0.03 *** 0.02 ± 0.01 *** 0.00 ns 0.02 ± 0.01 *

s2Er 1.8 ± 0.1 2.57 ± 0.11 2.20 ± 0.06 0.29 ± 0.01 0.53 ± 0.05 0.36 ± 0.02

s2P×E ~ ~ 0.26 ± 0.06 *** ~ ~ 0.03 ± 0.01 *

s2P×Y 0.19 ± 0.05 *** 0.44 ± 0.11 ns 0.32 ± 0.06 *** 0.02 ± 0.01 *** 0.00 ns 0.00 ns

h2 0.81 0.74 0.7 0.87 0.68 0.76

Year 1

s2P 1.31 ± 0.27 1.52 ± 0.35 1.44 ± 0.27 0.23 ± 0.04 0.09 ± 0.06 0.13 ± 0.04

s2P×S 0.58 ± 0.14 *** 0.67 ± 0.19 *** 0.04 ± 0.07 *** 0.00 ns ~ ~

s2Er 1.70 ± 0.13 1.94 ± 0.17 2.09 ± 0.11 0.25 ± 0.02 0.45 ± 0.06 0.35 ± 0.03

s2P×E ~ ~ 0.15 ± 0.08 *** ~ ~ 0.00 ns

h2 0.76 0.72 0.82 0.84 0.26 0.55

Year 2

s2P 1.68 ± 0.32 1.77 ± 0.33 1.08 ± 0.25 0.17 ± 0.04 0.38 ± 0.11 0.15 ± 0.04

s2P×S 0.00 ns 0.00 ns 0.02 ± 0.06 *** 0.00 ns ~ 0.04 ± 0.03 n

s2Er 2.06 ± 0.14 2.69 ± 0.14 2.42 ± 0.11 0.28 ± 0.02 0.47 ± 0.07 0.38 ± 0.03

s2P×E ~ ~ 0.58 ± 0.13 *** ~ ~ 0.01 ± 0.03 n

h2 0.8 0.79 0.66 0.73 0.61 0.64

Year 3*

s2P 1.01 ± 0.24 1.59 ± 0.89 1.10 ± 0.28 0.28 ± 0.06 ~ ~

s2P×S 0.54 ± 0.13 *** 0.00 ns 0.35 ± 0.12 *** 0.06 ± 0.03 *** ~ ~

s2Er 1.05 ± 0.08 3.21 ± 0.69 1.38 ± 0.10 0.33 ± 0.03 ~ ~

s2P×E ~ ~ 0.25 ± 0.15 ** ~ ~ ~

h2 0.63 0.44 0.63 0.75 ~ ~

Significance levels of interaction (*P< 0.05; **P< 0.01; *** P< 0.001).
d

*

*
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TABLE 4 Estimated population (s2<sub>P</sub>), population-by-location (s2<sub>PxE</sub>), population-by-year (s2<sub>PxY</sub>), residual error (s2<sub>Er</sub>); variance components, their associated interactions,
and standard errors (± SE); and population mean narrow-sense heritability (h2) for biomass, growth habit and leaf size for 92 red clover germplasm populations across two locations, Lincoln, and Palmerston
North, and over 3 seasons.

owth habit Leaf size

erston North Combined Lincoln Palmerston North Combined

0.38 ± 0.11 0.16 ± 0.04 0.51 ± 0.09 0.40 ± 0.10 0.42 ± 0.08

0.47 ± 0.07 0.33 ± 0.02 0.37 ± 0.02 0.29 ± 0.04 0.51 ± 0.03

0.00 ns 0.04 ± 0.02 * 0.06 ±
0.02 ***

0.00 ns 0.01 ± 0.03 ***

~ 0.04 ± 0.02 ** ~ ~ 0.00 ns

0.61 0.62 0.82 0.68 0.88

~ ~ 0.46 ± 0.08 0.41 ± 0.10 0.42 ± 0.08

~ ~ 0.56 ± 0.04 0.34 ± 0.05 0.36 ± 0.02

~ ~ 0.00 ns 0.00 ns 0.07 ± 0.02 ***

~ ~ ~ ~ 0.05 ± 0.03 ***

~ ~ 0.81 0.71 0.8

0.09 ± 0.06 0.24 ± 0.05 0.38 ± 0.07 ~ ~

0.45 ± 0.06 0.38 ± 0.03 0.28 ± 0.02 ~ ~

0.00 ns 0.00 ns 0.00 ns ~ ~

~ 0.00 ns ~ ~ ~

0.26 0.71 0.84 ~ ~
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Source of variation

Biomass Gr

Lincoln Palmerston North Combined Lincoln Palm

Spring

s2P 1.27 ± 0.25 1.12 ± 0.35 1.01 ± 0.23 0.23 ± 0.05

s2Er 1.31 ± 0.09 2.69 ± 0.3 1.92 ± 0.09 0.28 ± 0.02

s2P×Y 0.43 ± 0.11 *** 0.34 ± 0.28 *** 0.31 ± 0.08 *** 0.03 ±
0.02 ns

s2P×E ~ ~ 0.34 ± 0.10 *** ~

h2 0.73 0.55 0.66 0.79

Autumn

s2P 1.05 ± 0.23 1.79 ± 0.36 1.14 ± 0.24 0.17 ± 0.04

s2Er 2.10 ± 0.18 2.88 ± 0.18 2.58 ± 0.13 0.31 ± 0.03

s2P×Y 0.22 ± 0.16 *** 0.00 ns 0.11 ± 0.08 *** 0.02 ±
0.02 ***

s2P×E ~ ~ 0.18 ± 0.09 *** ~

h2 0.67 0.75 0.72 0.68

Summer

s2P 1.68 ± 0.34 1.20 ± 0.34 0.87 ± 0.26 0.29 ± 0.06

s2Er 1.65 ± 0.17 2.28 ± 0.17 1.90 ± 0.13 0.25 ± 0.02

s2P×Y 0.01 ± 0.15 *** 0.59 ± 0.21 *** 0.27 ± 0.11 *** 0.00 ns

s2P×E ~ ~ 0.58 ± 0.15 *** ~

h2 0.8 0.58 0.57 0.82

Significance levels of interaction (*P< 0.05; **P< 0.01; *** P< 0.001).

https://doi.org/10.3389/fpls.2025.1553094
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Heslop et al. 10.3389/fpls.2025.1553094
influenced by chlorophyll content and aligned with Precipitation of

Driest Quarter (Bio17) and Precipitation of Warmest Quarter

(Bio18) (Figure 5). Precipitation of Wettest Quarter (Bio16) of

the source material was strongly aligned with increased plot height

and leaf size, which had an inverse relationship with the prostrate

small-leaved tightly grouped Greek material in Cluster 5 (Light

Blue). Populations from Portugal, Spain, Morocco and Southern

Greece (Cluster 7, Yellow) performed best in the common garden

which exhibited high growth, plot density, lamina area and plant

survival and were strongly aligned with Minimum Temperature of

Coldest Month (Bio6), Precipitation Seasonality (Bio15) and

Isothermality (Bio3) of their origin.
3.7 Candidate SNPs associated
with adaptation

From the 4,509 SNPs used in the DAPC and subsequent

analyses, redundancy analysis identified 123 SNPs as candidates
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associated with local adaptation based on population collection site

eco-geographic data (Figure 6). These candidate SNPs were aligned

with temperature bioclimatic variables as 69 SNPs were identified

that were predominantly associated with Isothermality (Bio3), 9

SNPs with Minimum temperature of the coldest month (Bio6), and

44 SNPs with Mean temperature of driest quarter (Bio8). No SNPs

were found to associate with precipitation variables (Bio15,16, 17

and 18). The location of each candidate SNP was based on the ARS

RC 1.1 (GCA_020283565.1) red clover reference genome (Bickhart

et al., 2022), and its position relative to a gene, either within, or no

more than 3KB upstream or downstream was described

(Supplementary Table 3). Based on these 123 SNPs, 89 separate

genes were identified, of which 33 contained multiple SNPs

(Supplementary Table 3). Most genes identified were protein

coding (81) but pseudo genes (5), non-coding RNA (1), small

nucleotide RNA (1) and one unknown were also identified. The

majority of GO terms for the 89 genes associated with local

adaptation were found to be at a high level and associated with

metabolic process functions involved in photosynthesis, respiration,
TABLE 5 Estimated population (s2<sub>P</sub>), population-by-season (s2<sub>P×S</sub>), population-by-year (s2<sub>P×Y</sub>), residual error (s2<sub>Er</

sub>); variance components, their associated interactions, and standard errors (± SE); and population mean narrow-sense heritability (h2) for plot
height, plot density, chlorophyll content, lamina area and survival for 92 red clover germplasm populations at Lincoln per year and across 3 years.

Source
of variation

Plot height Plot Density Chlorophyll content Lamina area Survival

Across years

s2P 8.83 ± 1.87 1.14 ± 0.21 3.67 ± 0.78 3.22 ± 0.73 4.61 ± 0.90

s2P×S 6.56 ± 0.97 ns 0.03 ± 0.04 *** 0.01 ± 0.32 *** 0.74 ± 0.38 ns 0.00 ns

s2Er 13.98 ± 0.63 1.80 ± 0.07 12.87 ± 0.63 3.24 ± 0.34 6.54 ± 0.38

s2P×Y 0.11 ± 0.32 *** 0.26 ± 0.06 *** 0.18 ± 0.35 *** ~ 0.65 ± 0.34 ***

h2 0.63 0.84 0.7 0.72 0.73

Year 1

s2P 11.10 ± 2.43 1.09 ± 0.23 4.50 ± 1.09 6.57 ± 1.47 0.13 ± 0.24

s2P×S 6.12 ± 1.39 *** 0.37 ± 0.13 *** 0.00 ns 0.00 ns 0.00 ns

s2Er 12.80 ± 1.11 1.75 ± 0.13 12.13 ± 0.81 4.27 ± 0.62 2.55 ± 0.33

h2 0.69 0.71 0.57 0.75 0.09

Year 2

s2P 8.97 ± 2.16 1.68 ± 0.32 3.34 ± 0.90 1.96 ± 0.48 6.98 ± 1.44

s2P×S 6.38 ± 1.60 *** 0.00 ns 0.00 ns 0.00 ns 0.00 ns

s2Er 15.45 ± 1.36 1.95 ± 0.13 11.61 ± 0.78 1.92 ± 0.27 7.29 ± 0.64

h2 0.52 0.82 0.49 0.6 0.72

Year 3*

s2P 8.40 ± 1.83 1.58 ± 0.29 7.88 ± 2.91 ~ 7.21 ± 1.42

s2P×S 0.86 ± 0.97 *** 0.08 ± 0.08 ns 0.00 ns ~ 0.00 ns

s2Er 10.24 ± 1.13 1.12 ± 0.09 14.82 ± 2.17 ~ 6.56 ± 0.58

h2 0.64 0.82 0.49 ~ 0.76
Significance levels of interaction (*P< 0.05; *** P< 0.001).
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protein synthesis or nutrient absorption processes (Supplementary

Figure 4a). For Isothermality (Bio3) and mean temperature of driest

quarter (Bio8), GO terms were primarily associated with

macromolecule metabolic and cellular processes (Supplementary

Figures 4b, c).
4 Discussion

4.1 Population structure aligns with
source regions

The center of origin for red clover is thought to be the Eastern

Mediterranean region, from where it spread throughout Europe and

western Asia (Annicchiarico et al., 2015; Taylor and Quesenberry,

1996). The 92 red clover populations were selected from across this

range and were assigned to seven clusters based on their SNP allele

frequencies. These clusters aligned with latitude from East to West

Europe and reflect outcomes from previous red clover germplasm

panels (Jones et al., 2020; Frey et al., 2022 and Zanotto et al., 2023).

Identification of seven clusters based on Bayesian information

criterion (BIC) to group the populations was corroborated as the

seven clusters aligned predominantly with countries/regions. This

coupled with the fact that the majority of variance being within
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populations showed a degree of local adaptation among populations

from similar origins. In this study, describing the diversity of

germplasm using a combined process of selecting a representative

subset using eco-geographical factors then employing pooled-GBS

to describe relationships among populations mostly showed strong

alignment between ecogeographic clustering and the genetics.

Notable exceptions were, however, Cluster 2 which was not

associated with a specific region but spread across Europe and the

Caucasus, and Cluster 7, which extended from Spain to Morocco

and Southern Greece. This highlighted that in some cases, the

genetic diversity information provided a more nuanced

interpretation of population relatedness and insight into potential

movement around a region than could be determined from using

location data alone. However, the close alignment in majority of

clusters validates that selection based on ecogeographic variables as

a quicker resource conserving methodology. Furthermore, the use

of bulk GBS in a population provided a cost-effective and efficient

way to describe the genetic diversity. This technique has been used

successfully for red clover, perennial ryegrass and white clover, all

genetically diverse outcrossing species (Zanotto et al., 2021; Frey

et al., 2022; Nay et al., 2023; Zanotto et al., 2023; Bryne et al., 2013

and Faville et al., 2020) and is a way to reduce genotyping

costs significantly.

The highest biomass producing populations in our trials in

New Zealand were from Cluster 7 and comprised populations that

were spread throughout Spain, Portugal, Morrocco and Southern

Greece. As cultivation of red clover has been reported in Spain

from the 16th century, it may be these populations are remnants of

early cultivars or landraces spread by farmers (Annicchiarico et al.,

2015; Taylor and Quesenberry, 1996), predisposing these

populations to enhanced agronomic performance. Alternatively,

the environmental parameters of the collection and evaluation sites

in particular isothermality, temperature of the coldest month and

precipitation seasonality shared similarities which could have

favored the performance of these populations in the New Zealand

environment. This is supported further through the development

and release in recent decades of high performing cultivars

‘Grasslands Broadway’, ‘Grasslands Crossway’, ‘Grasslands

Colenso’ and ‘Grasslands Relish’ which contain either Spanish,

Moroccan or Portuguese genetic backgrounds (Rumball et al.,

2003; Claydon et al., 1993; Ford and Barrett, 2011). This suggests

populations from these regions have genetics suitable for

performance in New Zealand.

Based on the data in this study, it appears that the Caucasus

Mountain range is a geographic hotspot for variation amongst the

populations in this study. Of the seven groups, two were located

here and the cosmopolitan Cluster 2 overlapped with this region in

addition to Southern/Central Europe and the Iberian Peninsula.

The Caucasus Mountain range are known for highly variable and

localized landforms, climates and seasonal characteristics which are

difficult to summarize for large areas (Greene et al., 1999). Previous

studies in both red and white clover have identified this region as a

center of diversity for heterogeneous populations mainly due to

topographic separation and isolation (Greene et al., 1999, 2004;
TABLE 6 Estimated population (s2<sub>P</sub>), population-by-season
(s2<sub>P×S</sub>), population-by-year (s2<sub>P×Y</sub>), residual error
(s2<sub>Er</sub>); variance components, their associated interactions, and
standard errors (± SE); and population mean narrow-sense heritability
(h2) for plot height, plot density, and chlorophyll content for 92 red
clover germplasm populations at Lincoln over 3 seasons.

Source
of variation

Plot
height

Plot
Density

Chlorophyll
content

Spring

s2P 7.80 ± 1.55 1.18 ± 0.24 3.40 ± 1.06

s2P×Y 1.58 ±
0.73 ***

0.49 ± 0.11 *** 0.01 ± 0.86 ns

s2Er 8.62 ± 0.76 1.33 ± 0.09 9.66 ± 1.02

h2 0.62 0.71 0.52

Autumn

s2P 4.36 ± 0.91 1.01 ± 0.23 4.26 ± 1.24

s2P×Y 0.00 ns 0.14 ± 0.16 *** 0.33 ± 1.19 ns

s2Er 7.57 ± 0.51 2.24 ± 0.20 16.74 ± 1.48

h2 0.66 0.67 0.47

Summer

s2P 3.51 ± 5.91 1.17 ± 0.29 4.82 ± 1.20

s2P×Y 0.00 ns 0.13 ± 0.18 *** 0.00 ns

s2Er 5.83 ± 2.21 1.81 ± 0.19 8.71 ± 0.75

h2 0.76 0.69 0.65
Significance levels of interaction (*** P< 0.001).
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Mosjidis et al., 2004; Caradus and Forde, 1996; Faville et al., 2020).

This region is a potentially rich source of genetic diversity.

Another measure of genetic diversity is the expected

heterozygosity which indicates the proportion of different alleles
Frontiers in Plant Science 15
in the populations. While our data suggested that there was high

gene flow mediated by pollen or seeds among the seven clusters, the

variation in expected heterozygosity for our populations was at the

lower end of levels found in other studies (Mosjidis and Klinger,
FIGURE 4

(a) Biplot generated using standardized Genomic Best Linear Unbiased Prediction values of 92 red clover germplasm populations assessed in a
common garden experiment at Lincoln over 3 years for chlorophyll content, growth, growth habit, lamina area, leaf size, plot density, plot height,
and survival. Populations were clustered into groups based on discriminant analysis of principal components (DAPC) analysis; groups are indicated by
color and align with those in Figure 1. (b) Redundancy analysis biplot generated from pattern analysis using bioclimatic variables for the collection
sites of the 92 germplasm populations. These were: Isothermality (Bio3); Min temperature of coldest month (Bio6); Mean temperature of driest
quarter (Bio8); Precipitation seasonality (Bio15); Precipitation of wettest quarter (Bio16); Precipitation of driest quarter (Bio17); Precipitation of
warmest quarter (Bio18). Populations were colored according to previous DAPC clustering described above.
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2006; Jones et al., 2020; Osterman et al., 2021). This reduced

expected heterozygosity could be attributed to the restricted

sample size (30 individuals) we used to develop the bulk DNA

samples, although previous work noted that within-population

genetic diversity of out-crossing populations can be determined

using at least 20 individuals per population (Khanlou et al., 2011). It

may also reflect that the earlier investigations had fewer individuals

per population sampled which could have had an upward pressure

on expected heterozygosity as, for example, previous studies with

higher expected heterozygosity had between 8 and 18 individuals

per population (Mosjidis and Klinger, 2006; Jones et al., 2020;

Osterman et al., 2021). Additionally, red clover is well known for its

high genetic diversity, and partitioning the genetic variance using

AMOVA in this study identified higher levels of variation was

found among-population (79%) compared to among (14.6%). This

is expected in outcrossing species and reflects previous studies on

this species (Kölliker et al., 2003; Pagnotta et al., 2011; Dias et al.,

2008). This abundance of diversity provides an advantage for

breeding programs but does cause issues with identifying and

generating an accurate representation of this diversity to be

conserved in a genebank (Dias, et al., 2008; Osterman et al., 2021;

Taylor and Quesenberry, 1996).
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4.2 Limitation of a pedigree-based
approach to assessing and
evaluating germplasm

When assessing collections of raw germplasm, the efficiency and

accuracy of a pedigree-based approach will be limited depending on

the amount of information available (Egan et al., 2020). Due to the

smaller number of populations combined with a high number of

founder populations present, there were limitations in using a

pedigree-based mapping tool to describe relationships amongst

our populations. A pedigree relationship or A-matrix could not

be generated for incorporation into the linear mixed model, but we

could confirm a high level of diversity amongst our populations as

none of the 77 populations with some pedigree information

available showed any relatedness or inbreeding. A genomic

relationship matrix based on the DNA, therefore, provides a more

accurate representation of population structure which reflects the

genetic pedigree of the samples at hand, whereas a standard

pedigree-based approach requires accurate data recording across a

number of generations. The usefulness of pedigree information is

not in question, due to a well-recorded benefit of being a low-cost

tool to improve accuracy when integrated with genomic prediction
FIGURE 5

Redundancy analysis biplot generated from pattern analysis using standardized genomic best linear unbiased prediction values of 92 globally diverse
red clover germplasm populations assessed at the common garden Lincoln site over 3 years for chlorophyll content, growth, growth habit, lamina
area, leaf size, plot density, plot height, and survival. Combined with bioclimatic variables (Isothermality, Bio3; Min temperature of coldest month,
Bio6; Mean temperature of driest quarter, Bio8; Precipitation seasonality, Bio15; Precipitation of wettest quarter, Bio16; Precipitation of driest quarter,
Bio17; Precipitation of warmest quarter, Bio18) for the collection sites of the 92 germplasm populations. Populations were clustered to groups based
on discriminant analysis of principal components (DAPC) analysis; groups are indicated by color aligned with Figure 1.
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models, but is better suited for crops such as wheat which have well

established multi-generational pedigree lines which many forage

species lack (Cericola et al., 2018; Crossa et al., 2010; Egan et al.,

2020, 2019).
4.3 Significant narrow-sense heritability
and genetic variance identified

Overall, the high narrow-sense heritability (h2 > 0.60) for most

of the eight traits (biomass, growth habit, leaf size, plant height,
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plant density, chlorophyll content, leaf area and survival)

suggests that improvement of these traits can be attained via

breeding. When scrutinizing the data at a site level, however,

growth habit and leaf size additive/population variance

components, hence narrow-sense heritability values, were not

significant at the Palmerston North site across years and seasons.

This may be due to fewer seasonal measurements being recorded,

two for each trait compared to nine at the Lincoln site due to limited

resources. There were fewer measurements at the Palmerston

North site due to issues with controlling volunteer white clover

amongst plots. Fewer measurements can make it difficult to
FIGURE 6

(a) All SNPs with candidate SNPs and their association with bioclimatic variables identified through redundancy analysis along RDA1 and RDA2.
Candidate SNPs colored by the bioclimatic variable they are predominantly associated with. (b) All SNPs with candidate SNPs and their association
with bioclimatic variables identified through redundancy analysis along RDA1 and RDA3. Candidate SNPs colored by bioclimatic variable they are
predominantly associated with.
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distinguish the proportion of trait variance due to genetic versus

environmental effect.

For both physiological and morphological traits there was,

however, large genetic variation for trait expression, a trend also

found in other red clover germplasm trials (Annicchiarico and

Pagnotta, 2012; Dias et al., 2008; Greene et al., 2004; Kouamé and

Quesenberry, 1993; Pagnotta et al., 2011; Zanotto et al., 2021; Nay

et al., 2023). Morphological variation has been shown to strongly

interact with environmental variation through the expression of

different phenotypes in different environments (Greene et al., 2004).

As this is unimproved germplasm material, most observed variation

in plant type or morphological traits is a direct reflection of natural

selective pressures from original collection sites (Annicchiarico and

Pagnotta, 2012). The large amount of variation among our

populations reflects the diverse collection regions and local

habitats. Additional exploration of the variation within these

populations is important, especially in additional diverse

environments. This would add to the precision and utilization of

predictive models based on genomic, phenotypic, and

environmental information. However, the high heritability and

diversity observed for these traits indicate the potential for trait

improvement through the selected addition of populations into

existing breeding pools.
4.4 Local adaptation and phenotypic trait
expression characterized
among populations

When assessing the phenotypic diversity among the seven

clusters, the amount of trait variation was extensive. A noted

pattern was the commonality of the phenotype of populations

placed within the same clusters based on genotype data. This

suggests that the commonality of environment has shaped the

genetics and the phenotype, indicating populations in a region

have genetics and phenotypic traits in common. When focusing on

specific phenotypes, the populations in Cluster 5 (Northern Greece)

are of interest due to their very prostrate growth habit. These

populations more closely resembled a white clover creeping plant

type compared to a typical erect red clover growth habit. Similar

growth habit has been observed in the red clover cultivars ‘Astred’,

‘Grasslands Crossway’, ‘Grasslands Broadway’ and ‘Rubitas’, which

are known for their prostrate stoloniferous growth habit (Hyslop

et al., 1998; Rumball et al., 2003; Watson et al., 2015). These

attributes enable them to better withstand repeated defoliation,

which underpins persistence as a grazed red clover. Although, as

observed in this grazed trial and previous work, this growth habit is

compromised as biomass is severely reduced compared to more

erect populations (Jones et al., 2020; Riday, 2009; Mirzaie-

Nodoushan et al., 1999; Zanotto et al., 2021). However, although

these populations themselves may not produce large amounts of

biomass, they can be crossed with more erect high biomass

producing types to increase the persistency and performance of
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the semi-prostrate/semi-erect progeny in a mixed sward grazing

system (Mirzaie-Nodoushan et al., 1999).

The persistency of semi-erect populations is shown by the

populations in Cluster 7 (Iberian Peninsula, Morocco, Southern

Greece). These populations were found to produce high biomass

and a higher survival rate in the field trials and tended to possess a

medium-sized leaf and plot height. These populations would make

a great addition to or a starting point for a breeding program for

these environments and could be enhanced by incorporating more

prostrate material from Cluster 5 (described above) as a route to

increasing persistence further. The positive associations between

erect growth habit, plot height, and leaf size, a feature of Cluster 7

populations, have also been found in other red clover studies

(Annicchiarico and Pagnotta, 2012; Pagnotta et al., 2011; Mauro

et al., 2011; Zanotto et al., 2021). Similarly, the negative association

between growth habit and chlorophyll observed has also been

reported in both red and subterranean (Trifolium subterranean

L.) clovers (Brougham, 1960; Mauro et al., 2011). This is attributed

to the prostrate plants being more prone to shading from

companion species such as ryegrass which reduces the number of

leaves and stalk exposed, minimizing the potential amount of light

that can be intercepted. In turn, this reduces the efficiency of the

photosynthetic process, limiting the amount of energy produced

(Brougham, 1960; Mauro et al., 2011).
4.5 Key interactions between performance,
trait response and environment identified

Landscape genomics is an interdisciplinary methodology that

investigates the influence of environmental variables on the

distribution of genetic variation within and amongst populations

(Bragg et al., 2015). It is, however, an under-utilized tool with few

publications in crop species, and none to date in red clover. The

most recent studies have focused on adaptation to climatic variables

in forest species such as lodgepole pine (Pinus contorta), red spruce

(Picea rubens Sarg.) and common beech (Fagus sylvatica)

(Capblancq and Forester, 2021; Capblancq et al., 2023, 2020).

Other studies have focused on barley (Hordeum vulgare L.),

Arabidopsis (Arabidopsis thaliana L.), and poplar tree species

(Populus trichocarpa L. and Populus balsamifera L.) (Abebe et al.,

2015; Lasky et al., 2014; Evans et al., 2014; Fitzpatrick and Keller,

2015). The influence of soil environments on adaptation for barrel

medic (Medicago truncatula L.) has also been investigated

(Guerrero et al., 2018). These studies showed how landscape

genomics can contribute to identifying genetic variation

underpinning stress response and local adaptation and how this

information may be incorporated into predictive models to assess

the impact of environmental change.

Redundancy analysis allowed us to identify key associations

between population performance, trait response and environmental

explanatory factors using the common garden Lincoln site. A

notable association was between chlorophyll content, used here as
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a proxy for photosynthetic capacity, and the level of precipitation of

the driest and warmest quarters in the geographic sites from which

the populations were sourced. Both precipitation and temperature

play an important role in the photosynthetic capacity of plants

(Taylor and Quesenberry, 1996) and identifying populations

capable of maintaining high levels of photosynthesis during

periods of stress is important for the introduction of key adaptive

traits into future cultivars.

Precipitation seasonality (Bio15), the irregular distribution of

rain over a year, was identified as a key environmental factor that

influenced the growth traits including chlorophyll content, biomass,

plot density, lamina area and survival. The timing of rainfall events

is crucial for plant growth, especially leading into and exiting

periods of stress such as drought or cold, where plants look to

replenish or increase stored carbohydrates used to promote growth

(Taylor and Quesenberry, 1996). The performance of populations

in Clusters 3 (eastern Caucasus), 4 (Tajikistan) and 7 (Iberia/

Morocco) in the field trials on the drought-prone east coast of

New Zealand (Lincoln) had the strongest association with

precipitation seasonality of their source locations. These three

groups originate from either mountainous or steep coastal areas,

which have irregular rainfall. It may be that this precipitation

irregularity in the source regions primed the populations for

suitability to New Zealand environments as evidenced by the

success of these populations in our field trials.

Isothermality (Bio3) refers to the level of variance in

temperature throughout the year and has strong relationships

with plant survival and growth habit (Osterman et al., 2021). The

change between seasons can be critical for plant survival especially

entering and exiting periods of stress such as drought or cold. A

plant must be able to replenish stored carbohydrates key for the

promotion of growth over these periods of stress (Black et al.,

2009). It is expected that having less variance between

temperature extremes throughout the year would allow the

plants to be less stressed without having to adapt to large

temperature fluctuations. The performance of Clusters 1 and 7,

both predominantly of Spanish and Portuguese origins had the

strongest association with isothermality in terms of their

performance at the common garden Lincoln site. The

mediterranean climate of both Spain and Portugal means they

have hot dry summers and very mild winters which aligns with the

New Zealand sites. This suggests that material from this region is

primed to perform well as shown by the success in our field trials.

However, other factors such as grazing pressure, pest, diseases,

and soil nutrition will impact how well these populations will

adapt and perform.
4.6 Candidate SNPs associated
with adaptation

The identification of the 123 candidate SNPs that were

predominantly associated with bioclimatic variables provide a
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route to identifying candidate genes and genetic regions that

could influence phenotypic adaptation to local conditions (Bragg

et al., 2015). While the majority of the identified genes had a protein

coding function which could be associated with key cell functions,

further investigation into the role each of these genes has on plant

performance is needed. However, a set of 57 of our candidate SNPs

and associated genes aligned with a previous study assessing

drought response and tolerance in red clover through differential

gene expression amongst droughted and non-droughted red clover

plants (Yates et al., 2014). The 57 genes in common with this

drought trial were linked to temperature variables with 32 solely

associated with Isothermality (Bio3), 21 with Mean temperature of

driest quarter (Bio8), two with Minimum temperature of coldest

month (Bio6) and one to all three bioclimatic variables in our study.

Of these 57 SNPs, three and their associated genes were also

identified by Yates et al. (2014) as being present in drought

tolerant plants (Supplementary Table 4). These genes could be a

potential SNP marker linked to drought tolerance.

Investigating the Gene Ontology (GO) terms of the 123 SNPs/

genes associated with the bioclimatic variables variable to gain some

insight as to the functionality of these genes was not conclusive. The

majority of GO terms were found to be at a high level, which may be

due to there being several variables and stress responses influencing

gene expression and for each environment. It may reflect the

annotation of the genome or that only 123 genes were assessed

compared with the multiple thousands of differentially expressed

genes in a typical transcriptome analysis. For example, exposure of

white clover to frost revealed ~3,200 upregulated transcripts, and

GO analysis of these showed greater enrichment for and resolution

of the pathways involved, particularly the expected plant stress

responses (Fechete et al., 2024), compared to the 123 genes we

investigated. Even so, the commonality of some SNP-associated

genes with previous red clover drought work, and the association of

a set of SNP-associated gene with bioclimatic variables data

strengthens the need to further investigate the role and influence

of these genetic regions and how they may be used in selection for

trait enhancement.
4.6 Conclusions and future steps

This study assessed the genetic diversity and genetic

relationships among 92 red clover raw germplasm populations

tested in environments different to where they are adapted and

highlighted an abundance of potential diversity available in

untapped germplasm material. We applied a range of

methodologies including common garden trials, genetic

relationship models, pedigree relationship matrix and landscape

genomics to assess this material. All methodologies provided

different insights and usefulness. The limitations of the pedigree-

based mapping tools were highlighted, with genomic relationship

matrices better reflecting relatedness amongst populations with

little pedigree information, a feature of many forage crops,
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especially where there are many populations recognized as being

founders. The benefit of conducting multi-year, multi-location,

multi-grazing pressure field trials was emphasized through

quantifying the magnitude of genotype and G × E variances for

key agronomic and physiological traits. Key interactions between

plant performance and survival with these traits were also

identified. The influence of environmental variables from original

collection locations on local adaptation through plant and trait

performance and the identification of candidate alleles was

highlighted. The alignment between the genetic diversity and the

ecogeographic information showed the diverse nature of the

selected plant material. It also gave confidence in using quality

ecogeographic information for selecting populations from

genebanks, but also highlighted the advantage of using genotype

data for the genetic insight which is independent and may be used

to corroborate genebank labeling/passport information. As the

populations are genetically separate and diverse it enables us to

focus on using landscape genomics to identify markers associated

with adaptation to those ecogeographic regions, with the potential

to harness these in future breeding decisions.

Further investigation is needed to determine the accuracy and

importance of these methods for selecting germplasm material to

introduce into breeding programs. The approach in this study was

based on the ecogeographic information followed by a molecular

marker characterization to assess diversity. A future approach to

capture more diversity before initial field trialing would be to

identify a larger cohort of accessions then perform the genetic

diversity analysis to select a smaller number of accessions based on

maximizing ecogeographical and genetic diversity although this will

require more resources. However, data from the current study

showed that material can perform well agronomically when

placed into similar environments such as with the populations in

Cluster 7 (Por/Spa/Mor/Gre), particularly when assessed in New

Zealand’s dry east coast. It also highlighted that raw populations

from other areas do not necessarily perform agronomically well in

those same new locations. This emphasizes that the next step to

access the novel genetics available in this material should be to cross

these individuals to locally-adapted material. Although resource

intense, it is an important and logical progression from testing raw

germplasm populations to assessing how these new genetics

perform when incorporated into populations adapted for local

environments. This is where the impact of adaptive markers

identified by landscape genomics can be validated in testing of

this material. Therefore, plans are in place to follow up this study

with the selection of locally adaptive elite material and top

performing germplasm populations to cross and subsequently

field test.
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