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The early stage pathogens of plant diseases have the characteristic of low

concentration and difficult detection, which exacerbates the difficulty of

tracing the disease, leading to rapid spread and difficulty in effective control.

Currently, common plant disease detection techniques such as imaging and

spectroscopy can only be applied after the occurrence and manifestation of

diseases, and it is difficult to accurately locate the source of disease outbreaks

during spore germination or propagation stages. Therefore, this paper proposes

a method for locating the source of airborne plant diseases based on the non-

local-interpolation algorithm. Firstly, a highly sensitive concentration sensor was

designed based on Mie scattering theory to accurately count spores in plant

diseases, and a multi-sensor collaborative computing network model was

constructed. Secondly, by collecting spore quantity data at different locations,

a particle diffusionmodel is established to summarize the propagation patterns of

particles under specific regional conditions. Finally, a non-local-interpolation

algorithm coupled with improved power-law equations was designed for precise

localization of airborne plant disease sources under different wind and direction

conditions. The experimental results in the greenhouse show that the maximum

error of light scattering counting does not exceed 10%; Under windless and

windy conditions, our method achieved localization accuracies of 94.7% and

92.9%, respectively, with approximately three nodes per square meter. This

provides new ideas and insights for early diagnosis and precise localization of

plant diseases.
KEYWORDS

Mie scattering theory, plant disease source localization, non-local diffusion simulation,
power law equation, multi-sensor collaborative computing
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1 Introduction

With the rapid development of computer technology, wireless

sensor network technology has been widely used in the detection

and identification of plant diseases, providing faster and more

accurate diagnosis than traditional methods (Steeneken et al.,

2023). However, the early detection of plant diseases is faced with

severe tests. In the early stage of the disease, the concentration of

pathogenic bacteria is low, which is difficult to detect, and the rapid

spread of pathogenic bacteria through airflow further aggravates the

complexity of disease tracing (Ali et al., 2022). Therefore, seeking

new methods for early diagnosis and precise localization of plant

diseases can help reduce agricultural economic losses, promote

precise application of biologic agents, and reduce potential

environmental impacts.

At present, biology-based methods for plant disease detection,

such as polymerase chain reaction (PCR) method (Lal et al., 2023),

quantitative real-time PCR method (Wang et al., 2023), and

deoxyribonucleic acid (DNA) analysis (Chavhan et al., 2023),

have become an efficient and accurate method of plant disease

diagnosis. However, biology-based disease detection methods

require a long time to complete sample collection, processing, and

analysis (Yang et al., 2020), with weak timeliness, and cannot meet

the needs of on-site real-time diagnosis. Image-based plant disease

detection methods show significant timeliness (Li et al., 2024). They

are often combined with machine learning algorithms to capture

and preliminary analysis of the disease symptoms of plant leaves or

tissues within a few seconds (Sajitha et al., 2024). (Liu et al., 2024)

collected hyperspectral image data of virus-infected plant leaves and

used machine learning algorithms for model training to establish an

accurate model for identifying leaf disease areas, with a prediction

accuracy of 97.5%. Although hyperspectral imaging technology can

provide high-resolution spectral data and help in the detection of

plant diseases, its high equipment cost and sensitivity to light

intensity hinder its application in the field of rapid detection of

plant diseases. (Panchal et al., 2023) collected image data of infected

leaves and accurately labeled them according to disease

characteristics. Then, key feature patterns were extracted from

diseased leaf images through feature extraction and image

segmentation, solving the problem of disease classification with

an accuracy of 93.5%. However, in order to train highly accurate

plant disease recognition models, it is necessary to rely on a large

number of precisely labeled datasets (Yang et al., 2022). In addition,
Nomenclature: K, turbulent kinetic energy (m2·s-2); e, turbulent dissipation rate

(m2/s3); Gk, turbulent kinetic energy generated by mean velocity gradient (J/kg);

Dkeff, effective diffusion coefficient of k (-); Deeff, effective diffusion coefficient of e

(-); t, time (s); ?2, Laplace operator; Si, Nonlinear properties in diffusion process; z,

wind speed at different node locations (m/s); ssc, scattering cross-sectional area

(m2); l, number of incoming waves; ɑn, amplitude of the nth electrical bias wave;

bn, amplitude of the nth magnetic bias wave; B, boundary condition; C,

concentration of the substance (kg/m3); D, diffusion coefficient; C0, the initial

concentration distribution obtained from these nodes; v, regional wind speed (m/

s); a, power law parameter.

Frontiers in Plant Science 02
the image quality is easily affected by environmental lighting and

background interference, and in the early stage of plant disease,

because the symptoms are not obvious, and cannot be effectively

recognized through images, resulting in lag.

In response to this issue, spore detection technology provides an

effective solution. The pathogens of plant diseases will produce

conidia under suitable temperature conditions, and spread to the

surface of the plant through air flow (Yousef et al., 2024). Upon

germination, these conidia form haustoria that penetrate plant cell

surfaces, facilitating internal spread of the infection (Oro et al.,

2018). Therefore, spore detection technology can achieve early

warning by identifying the spores of pathogens before disease

symptoms appear. In recent years, plant disease detection

methods based on spore detection, such as spore capture

apparatus (Kremneva et al., 2023) and microscopic image

processing technology (Wei et al., 2024), have directly targeted

the reproductive bodies of pathogens, providing direct evidence of

disease occurrence, and can be detected in time even when the early

symptoms of plant diseases are not obvious. (Mahaffee et al., 2023)

collected spores in the air through a spore catcher, providing

physical evidence for the early existence of pathogens. However,

different species of spores may be so similar in appearance that

spore capture apparatus have difficulty distinguishing between

spores of similar morphology and size. (Zhang et al., 2024)

through image processing technology, carried out detailed

segmentation processing on the collect spore microscopic images

to achieve the purpose of morphological recognition and counting

of spores, and the evaluation indexes F1-score and mean

intersection ratio (MioU) reached 0.943 and 0.925 respectively.

The application of microscopic image processing technology

frequently encompasses steps such as staining or surface

modification, which may exert irreversible effects on the

biomolecular structure or function of spores, and thus cause

deviations in the diagnosis and classification of diseases. In

contrast, light scattering technology provides a labeling-free spore

detection method that can avoid these problems. By analyzing the

scattered signals generated by the interaction between spores and

light, (Liu et al., 2024) can conduct detection without disturbing the

natural state of spores. (Son et al., 2023) developed a new method

for monitoring plant diseases by utilizing the chemical specificity of

scattered signals and combining them with sensor technology.

Although light scattering technology can identify the presence of

spores, it has not been able to achieve effective enrichment of spores

and detection under real-time flow conditions, thus making it

impossible to accurately locate plant diseases. (Lee et al., 2023)

combined volatile organic compounds (VOCs) sensors and

temperature and humidity sensors to achieve early detection of

plant pathogens, and analyzed sensor data through a machine

learning model for quantitative detection of viruses. It can be

seen that single point detection cannot provide a detailed

traceability analysis of the origin and transmission pathways of

plant diseases.

The predominant modes of transmission for fungal diseases in

greenhouse plants are air transmission, splash transmission, and

seedling transmission (Spooren et al., 2024). When fungal diseases
frontiersin.org
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in greenhouse plants are transmitted through the air, the estimation

of the location of the plant disease source region has a high degree

of similarity with the location of air pollution sources. (Wang et al.,

2021) proposed a reverse algorithm to estimate the quantity,

location and intensity of unknown air pollution sources. (Kendler

et al., 2021) deployed sparse sensor arrays to collect pollutant

concentration data and then used an adaptive multi-objective

evolution (MOEA) search algorithm to estimate source terms.

However, although the transmission media of disease spores and

air pollutants are the same, there are significant differences in the

transmission mechanism between them. Because of their small size

and mass, disease spores are relatively unaffected by Newtonian

laws of mechanics. Their movement in the air is more likely to be

affected by Brownian motion and airflow disturbance, which

increases the uncertainty and complexity of the spore propagation

path (Aliabadi et al., 2011). In contrast, although atmospheric

pollutants may also be affected by airflow dynamics, their

diffusion process is mainly regulated by physical processes and

possibly accompanying chemical transformations (Pöschl, 2005).

As a result, the atmospheric pollution source location model is not

fully applicable to the spread analysis and location tracing of disease

spores (Li et al., 2023).

Based on this, a method of locating airborne plant disease

sources based on a non-local-interpolation algorithm was studied in

this paper. Firstly, a highly sensitive concentration sensor was

designed based on the Mie scattering theory to accurately count

spores in plant diseases. Subsequently, by collecting spore quantity

data at different locations, a particle diffusion model was established

to summarize the diffusion patterns of particles under specific

regional conditions. By analyzing the diffusion law, a non-local-

interpolation algorithm coupled with improved power law

equations was designed for precise localization of airborne plant

disease sources under different wind and direction conditions. Our

method provides a research solution for early diagnosis and

traceability of plant diseases in the future.
2 Materials and methods

2.1 Experimental scenario setting

In this study, simulation experiments were carried out in a

Venlo-type greenhouse with an area of 600 square meters. To

mitigate environmental contamination, 5mm polystyrene

nanoparticles were employed as surrogates for real botrytis

spores, which typically range in size from a few microns to ten

microns (Rhouma et al., 2022). The greenhouse was equipped with

a wet curtain-fan forced cooling system. The average temperature

inside the greenhouse was 21 ± 2 °C, and the relative humidity was

70 ± 10% RH. A microbial aerosol generator (TK-3) was employed

to release 5mm nanospheres, with a concentration of 1mg/ml. The

experimental nodes are arranged in a grid area of 0.8m*0.8m in the

greenhouse to facilitate accurate control and monitoring. Since

crops such as greenhouse strawberry cultivation are usually

arranged in rows and planted in 20cm high ridges, their
Frontiers in Plant Science 03
distribution can be approximated as a two-dimensional plane

structure. Based on this geometric feature, the non-local-

interpolation algorithm proposed in this paper is specially

designed for two-dimensional space. In order to verify the

accuracy of the simulation model, we set up 5 detection nodes in

the experimental site to measure the nanosphere concentration and

wind speed data to verify the consistency of the simulation results

with the actual environment.
2.2 Method of disease spore counting

According to the size and arrangement of particles in the gas,

the light scattering phenomena of the gas can be divided into

different types and arrangement intervals, including Rayleigh

scattering, Mie scattering, and Raman scattering (Kerker, 2013).

The arrangement interval mainly depends on the density and spatial

distribution of particles in the gas. For gases, Mie scattering typically

occurs in small particles, such as water droplets, haze, and aerosols,

with particle sizes ranging from a few nanometers to several

hundred micrometers. These particles will produce obvious

scattering effects on electromagnetic waves in visible and infrared

bands. The formula is shown as Equation 1 (Jones, 1999):

sSC =
2p
k2 o

∞

n=1
(2n + 1)

an
bn

����
����2 (1)

where sSC is the scattering cross-sectional area; k is the wave

number of the incident wave, k=2p/l, and l is the wavelength of the
incident wave; ɑn and bn are the Mie coefficients, which represent

the amplitudes of the electric and magnetic fields of the

electromagnetic wave on the surface of a particle, and are at the

heart of the Mie scattering theory.

The particle size range of plant disease spores is usually between a

few microns and tens of microns, as shown in Table 1 (Wang et al.,

2022), which is equivalent to the wavelength of visible light, so the Mie

scattering theory can be considered to count disease spores. We use a

laser with the same wavelength as the characteristic of plant disease

spores to illuminate the collected disease spores to produce scattering

phenomena. By collecting scattered light signals at a specific angle, the

curve of scattering light intensity with time can be obtained.

Subsequently, the microprocessor employs an algorithm based on

Mie scattering theory to analyze the intensity and angle of scattered

light, thereby calculating the refractive index and extinction coefficient

of particles (Shao et al., 2017). This analysis enables a certain degree of

differentiation between spores and inorganic particles to infer the

number of different disease spores per unit volume. In order to
TABLE 1 Average spore size of fungal and bacterial diseases of major
greenhouse crops.

Species Spore size (mm)

B. cinerea spores 19.3 (11.4–26.7) × 11.7 (8.3–14.5)

P. cubensis spores 30.6 (21.1–39.8) × 20.5 (13.8–23.6)

P. xanthii spores 35.4 (30.2–39.5) × 14.2 (7.3–22.2)
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improve the accuracy of distinguishing between spores and inorganic

particles, we introduce cardinal subtraction. The background particle

concentration was determined using a light scattering sensor in an

environment devoid of plant disease spores and was recorded as a

baseline. Whereafter, this baseline is then subtracted from the particle

concentration measured in the actual environment. This subtraction

effectively mitigates the interference from environmental background

noise, thereby yielding a more accurate determination of the actual

concentration of plant disease spores. The sensor structure is shown in

Figures 1a, b. The scattering module consists of a 635nm wavelength

laser, focusing lens, reflector, photomultiplier tube, light trap, and

gas channel.
Frontiers in Plant Science 04
2.3 Location network construction and
framework of IoT node

The framework of airborne plant disease source location

method based on non-local-interpolation algorithm proposed in

this paper is shown in Figure 1c. Firstly, the cloud server receives the

spore count information sent by the node. Secondly, the cloud

server receives the temperature and humidity information and wind

speed and direction information sent by the node. Then, according

to the analysis of spore number data and environmental

information, the location information of plant disease source was

obtained by using disease source location algorithm. Finally, the
FIGURE 1

Schematic diagram of airborne plant disease location based on non-local-interpolation algorithm. (a) Node shell and Light scattering structure.
(b) Light scattering schematic diagram. (c) System frame diagram.
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cloud platform synchronizes the number of spores and the location

of plant disease sources to the client.

The node takes MCU module (STM32F407VGT6) as the core

to realize data collection and transmission. The concentration

sensor based on laser scattering has a detection accuracy of 90%.

The detection range and accuracy of the temperature and humidity

sensor are -40 to 100°C (± 1°C) and 0 to 100% RH (± 3% RH),

respectively. The wind speed and direction sensor (SM5388V) has a

wind speed detection range and accuracy of 0~30 m/s (± 3%), and a

wind direction detection range and accuracy of 0~360° (± 22.5°).

Each detection node is equipped with a 4G module (EC20), which

regularly transmits environmental information data to the cloud

server, and the cloud server can also send commands to the node for

data collection. We use Alibaba Cloud Internet of Things as a cloud

server, these nodes through the 4G network to achieve data storage

and circulation. In addition, each detection node is equipped with a

battery (12 V) to supply power.
2.4 Construction of diffusion model

In order to accurately analyze the flow field in the greenhouse,

we used SolidWorks to accurately model the experimental area and

SolidWorks Flow Simulation to conduct gas diffusion analysis

(Fedorenko et al., 2023). Taking into account the requirements of

changing flow field gradients, we used an unstructured meshing

approach and refined the area near the wet curtain and the fan

perimeter to ensure better flow detail capture.

In the experimental environment, gas flow and heat exchange

follow the basic principles of conservation of mass, momentum, and

energy (Bejan, 1987). Considering the low airflow speed in the

greenhouse, this case can be described as a low Reynolds number

flow, and the compressibility of the fluid is usually negligible

(Bartzanas et al., 2013), thus simplifying the analysis process.

Nevertheless, the physical properties of the fluid, such as density

and viscosity, exhibit variations over time and space. Our

simulation comprehensively accounts for and reflects these

changes. When simulating the greenhouse flow field, the Euler

method was used to numerically describe the motion characteristics

of the flow field, so as to obtain the distribution of state parameters

such as fluid velocity, pressure, and temperature (Chen et al., 2006).

Through detailed modeling of gas flow and heat exchange processes

in the greenhouse, we can provide a reliable basis for experimental

design and equipment optimization (Zhang et al., 2021).

In addition, in order to better describe the turbulence

characteristics of greenhouse air and optimize the experimental

environment. We choose to adopt the standard k-emodel, which is

one of the most widely used turbulence models in computational

fluid mechanics and can effectively predict the development and

transfer process of turbulence (Yu and Thé, 2016). By combining

the actual situation of the greenhouse with the standard k-e model,

we can better understand the characteristics of the air flow in the

greenhouse, including the formation, transmission and attenuation

of turbulence, which helps to improve the efficiency and reliability

of the experiment. In the standard k-emodel, k and e are unknown
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quantities. The k equation and the e equation are expressed as

Equation 2 (Shaheed et al., 2019):

∂ k
∂ t +

∂ (uik)
∂ xi

= ∂
∂ xi

Dkeff
∂ k
∂ xi

� �
+ Gk − e

∂ e
∂ t +

∂ (uie)
∂ xi

= ∂
∂ xi

Deeff ∂ e
∂ xi

� �
+ C1e

e
k Gk − C2e

e2
k

(2)

Together, these equations describe the transport and evolution

of turbulent kinetic energy k and turbulent dissipation rate e in

a fluid.

To determine the fluid temperature distribution influenced by

diverse thermal sources, which subsequently modulates the fluid’s

viscosity and density, and thereby governs its flow and diffusion

dynamics, the energy equation is utilized to characterize the

conservation of thermal energy within the fluid. The equation is

presented as Equation 3 (Antontsev et al., 2002):

rcp
∂T
∂ t

+ u · ∇T
� �

= m · (k∇T) + Q (3)

where cp is the specific heat capacity; T is the temperature; k is

the thermal conductivity and Q is the heat source term.
2.5 Disease location algorithm

Considering the impact of disease spores on the environment, we

chose nano-microspheres instead of real spores for the experiment.

Each node in the wireless sensor network monitors the concentration

of nanospheres in the current environment. According to the

coordinates of the nodes and the observed concentration data of the

nanospheres, the concentration distribution is obtained by cubic spline

interpolation. This concentration distribution was used as the initial

concentration distribution of the non-local diffusion simulation, and

then the non-local diffusion simulation was carried out by iterative

updating to obtain the final concentration distribution, so as to estimate

the disease source. We considered the localization algorithm of

nanospheres in both windless and windy conditions. The windless

state refers to the diffusion of particles not being affected by the airflow

field. The flowchart of the non-local-interpolation localization

algorithm is shown in Figure 2.

The formula of the non-local-interpolation algorithm is as

Equation 4:

C0(x, y)

∂C
∂ t = D∇2C

B = f (v)

8>><
>>: (4)

where B is the boundary condition, C is the concentration of the

substance, t is the time, D is the diffusion coefficient, and ?2 is the

Laplace operator, which represents the spatial variation of

concentration. In this case, assume that there is a set of known

data points (xi,yi), where i=0,1,2,……,n, and satisfy x0<x1<x2<…

<xn. A smooth curve C0(x,y) is generated through these points.

Fit a cubic polynomial between each neighboring data point to

obtain a series of cubic polynomial segments. For the ith data point,

assume that the cubic polynomial is Si(x), where x falls in the
frontiersin.org
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interval [xi,xi+1]. This cubic polynomial can be expressed as

Equation 5:

Si(x) = ai + bi(x − xi) + ci(x − xi)
2 + di(x − xi)

3 (5)

The coefficients of the cubic polynomial are determined by the

Equation 6 steps:

Si(xi) = yi

S
0
i(xi+1) = S

0
i+1(xi+1)

S
0 0
i (xi+1) = S

0 0
i+1(xi+1)

8>><
>>: (6)

The non-local diffusion term encompasses both horizontal and

vertical diffusion functions. Given that the nodes data were collected

along the same horizontal plane as the plant, this study focuses solely

on the horizontal diffusion function. The distinction among the three

prevalent single-parameter models lies in the characteristics of their

tails. The tail quality of the horizontal propagation function is a critical

aspect in plant epidemiology, as it influences the pattern of epidemic

spread. The distributions are ranked from the lightest to the heaviest

tail: Gaussian distribution, Exponential distribution, and Cauchy

distribution function, respectively (Soubeyrand et al., 2008). Given

the enclosed nature of a greenhouse, which tends to restrict long-range

propagation, Gaussian or Exponential distributions are deemed more

suitable for modeling. Furthermore, the high humidity and optimal

temperatures prevalent in greenhouses can enhance the transmission

of diseases. Consequently, distributions with heavier tails, such as the

Exponential or Cauchy distributions, are more frequently utilized.

After careful consideration, we have selected the product of the

Exponential distribution and the initial concentration distribution to

represent the non-local diffusion term.
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In greenhouse simulations, it is often assumed that the walls and

tops of the greenhouse are impermeable and that the formula for

the concentration of diffusive substances at the boundaries is as

Equation 7:

f (v) = 0, v = 0m=s

f (v) = v(x, y), v ≠ 0m=s

(
(7)

The improved power-law equation is as Equation 8:

v(x, y) = k · (xa · yb) (8)

where v(x,y) is the wind speed at coordinates (x,y), k is constant, ɑ
and b are exponents. In the experimental environment of this study,

when the wind speed is 1m/s, k=0.29591, ɑ=0.11069, b=0.14347.
Finally, a final concentration distribution is obtained based on

the results of the non-local diffusion simulation. This distribution

will take into account the initial predicted distribution and the

effects of the diffusion process.
3 Results and discussion

3.1 Verification of the light-scattering
nodes

To verify the detection performance of the laser scattering node

for particulate matter, the nodes was tested at the ambient

temperature of 21±2 °C and the ambient humidity of 70±10%

RH, using 5mm nanospheres as the release source. The test results
FIGURE 2

Flow chart of non-local interpolation localization algorithm.
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are shown in Figure 3a, indicating that the actual consistency error

at room temperature is ±10%. Compared with ordinary laser

scattering sensors, it has higher consistency and accuracy. In

addition, we positioned node 1 near the visually identified gray

mold area in the strawberry greenhouse, while nodes 2, 3, 4, and 5

were distributed around it. In the case of subtracting the

environmental base, it is obviously found that the value of node 1

is higher than that of other nodes, thus confirming that this node

can effectively detect the presence of disease spores, as shown

in Figure 3b.
3.2 Diffusion model verification and wind
field distribution verification

Since there is always airflow in the greenhouse, the particles

always follow a non-Gaussian distribution. In windy conditions,

particles travel through the environment with airflow, and their

diffusion path and range are significantly affected by wind speed and

direction. Our research not only covers the diffusion behavior of

particles under constant wind speed conditions, but also extends to

the effects of temperature and humidity on the diffusion

of nanospheres.

To verify the accuracy of the simulation model, a microbial

aerosol generator (TK-3) and nanospheres (5mm) were used as

particle release sources. Five detection nodes were arranged at the

sites to measure the concentration of the nanospheres, and the

diffusion of the nanospheres was verified by using a fan to simulate

natural wind. SolidWorks Flow Simulation software was used to

draw the diffusion diagram of nanospheres and analyze the

diffusion trend of nanospheres. As shown in Figure 4a, when

there is wind, the distribution of nanospheres will have a greater

diffusion in the downwind direction. Due to the environmental

pressure where the wet curtain is set, the nanospheres may spread to

the area with lower pressure based on the wind direction, resulting

in a certain diffusion of the nanospheres on the side. As shown in
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Figure 4c, the distribution of the nanospheres showed a tendency to

spread from the center to the periphery under the condition of

windless. To further evaluate the accuracy of the simulation model,

we normalized the nanosphere concentration data at 5 different

locations measured by the experiment and compared them with the

normalized simulation data. The results show that there is a high

correlation between the experimental data and the simulation data,

with correlation coefficients of 0.9144 and 0.9280 in windy and

windless conditions, respectively shown in Figures 4b, d.

In the environment under the rotation of the greenhouse fan,

most plants require the air passing speed between 1m/s and 2.78m/s

to ensure that the growth and ventilation needs of the plant are met.

Therefore, under normal circumstances, when the fan in the

greenhouse is turned on, the airflow speed should be maintained

within this range to ensure that it will not adversely affect the plants,

but also effectively carry out ventilation. By using SolidWorks

modeling and Flow Simulation analysis, we simulated the wind

field distribution of 2 m/s in a specific area and compared the

simulation data with the experimental data after normalization, as

shown in Figure 4e. Figure 4f shows that the correlation coefficient

results in 0.8796. Similarly, we simulated the wind field distribution

in a specific region at 1m/s wind speed and compared it with the

actual measured data after normalization, and the correlation

coefficient was 0.8633, as shown in Figures 4g, h.
3.3 Plant influences in experimental
settings

In the process of node deployment of wireless sensor networks,

many factors need to be considered, including signal transmission

range, signal interference, energy consumption and data acquisition

efficiency. When the sensor node is deployed in the plant, it may

encounter problems of occlusion and interference caused by the

plant itself. This physical barrier can lead to instability in signal

transmission, which in turn affects the accuracy and reliability of the
FIGURE 3

Laser scattering node test results. (a) Normal temperature consistency error distribution of light scattering nodes. (b) Spore count at five different
locations at the same time.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1553281
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2025.1553281
data. The sensor nodes deployed near the plant can effectively

reduce the signal transmission interference caused by the plant.

This layout helps to improve the signal stability and the overall

performance of the network. Artificial plants are used in this

experiment. Figure 5a shows the layout of sensor nodes deployed

inside the plant; Figure 5c shows a layout scheme where sensor

nodes are deployed next to the plant.

To systematically evaluate the performance differences of two

different node deployment schemes in particle release source

localization experiments. In this study, we designed the following

experiment, in which the particle release source was randomly

placed in five different locations, and the test was repeated three

times at each location. Under the conditions of windless and windy,

the influence of plant interference on sensor nodes on positioning

accuracy is shown in Figures 5b, d, respectively. The results show

that, overall, the plants have a significant interference effect on the

data obtained by the sensor, and in the evaluation of the localization
Frontiers in Plant Science 08
algorithm, the non-local-interpolation (NLD-I) algorithm shows

higher adaptability than the particle filter (PF) algorithm and the

centroid localization (CL) algorithm. We deployed sensors in a 600

square meter greenhouse using the strategy depicted in Figure 5c.

The distribution density was calculated by dividing the area of a

circle defined by the positioning error radius by the total

experimental area, yielding an average density of approximately 3

sensors per square meter.
3.4 Positioning algorithm verification

In order to accurately predict the location of pathogen of

strawberry gray mold, a disease spore transmission model was

established according to the transmission characteristics of disease

spores in windy and windless conditions. Cubic spline interpolation

algorithm, non-local diffusion simulation, and improved power-law
FIGURE 4

Comparison diagram between simulation and experiment. (a) Diffusion simulation under windy conditions. (b) Normalization comparison between
simulated data and experimental data under windy conditions. (c) Diffusion simulation under windless conditions. (d) Normalization comparison
between simulated data and experimental data under windless conditions. (e) Wind speed simulation at 2 m/s. (f) Comparison of simulation and
experimental data at 2 m/s wind speed. (g) Wind speed simulation at 1 m/s. (h) Comparison of simulation and experimental data at 1 m/s
wind speed.
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model were used to predict the location of the disease source. To

verify the accuracy of the positioning algorithm, the microbial

aerosol generator (TK-3) was first used as the particle release

source, and the pre-equipped nano microspheres solution was

continuously sprayed, and five nodes were arranged according to

Figure 5c. The nodes were composed of light scattering module,

Internet of Things module, battery, and MCU module. Then five

different positions were randomly selected for the experiment, and

each position was tested three times. The diffusion of the

nanospheres was verified by using a fan to simulate natural wind.

When there is no wind, the non-local-interpolation algorithm is

used to locate the release source, and the positioning error is shown

in Figure 6a. Under windy conditions, improved power-law

equation model was introduced into the non-local-interpolation

algorithm to locate the release source. The positioning error when

the wind speed was 1m/s is shown in Figure 6b. In addition, under

the same environmental interference condition, the comparison of

positioning errors of the non-local-interpolation algorithm (NLD-

I), the centroid positioning algorithm (CL) and the particle filter

algorithm (PF) under the conditions of windless and windy is

shown in Figures 7a, b respectively. Therefore, compared with the

non-local-interpolation algorithm, the particle filter algorithm has

the disadvantages of randomness, high computational complexity,
Frontiers in Plant Science 09
and difficult particle number selection, while the centroid location

algorithm is not sensitive to small data concentration changes. By

taking the positioning error distance as the radius, the positioning

accuracy of the non-local-interpolation algorithm is 94.7% and

92.9%, respectively, under the conditions of windless and windy.
3.5 Comparative analysis

In order to verify the superiority of the airborne plant disease

source localization method designed in this study, we

comprehensively compared its concealment, wind speed

interference resistance, real-time on-site detection ability, cost-

effectiveness, and non-destructive testing characteristics with

existing plant disease detection methods in the early stages of the

disease. The results are listed in Table 2. (Chavhan et al., 2023)

proposed a novel approach for the early detection of plant diseases

based on multiple molecular marker-assisted analysis. This method

encompasses both multiplex PCR detection and CAPS labeling,

characterized by its high specificity and sensitivity. Nevertheless,

this method is lossy detection and difficult to detect in real time in

the field. (Panchal et al., 2023) employ an image-based deep

learning approach for plant disease detection. This method
FIGURE 5

Effect of plant disturbance on sensor deployment. (a) Nodes are deployed between plants. (b) Comparison of positioning errors of the three
algorithms with or without plant interference when the wind speed is 0 m/s. (c) Nodes are deployed next to the plants. (d) Comparison of
positioning errors of the three algorithms with or without plant interference when the wind speed is 1 m/s.
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requires labeling of leaf images of infected crops according to

disease patterns and utilizing pixel-based operations to enhance

the information in the images. Then feature extraction and image

segmentation were carried out, and crop diseases were classified

according to the extracted diseased leaf patterns. But in the absence

of obvious symptoms, this method cannot detect early plant

diseases. (Xie et al., 2024) proposed a plant disease detection

method based on hyperspectral imaging technology. This method

used hyperspectral imaging technology to detect plant biological

stress, thus achieving early diagnosis. However, hyperspectral

cameras and related equipment are relatively expensive. Above

analysis shows that the plant disease detection method proposed

in this paper can timely diagnose the disease and locate the source

of the outbreak in the early stage of plant disease, with strong anti-

interference ability and cost-effectiveness. Therefore, this method

has application potential and practical value in the field of plant

disease detection.
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4 Conclusion

In this paper, a method for locating airborne plant disease

sources based on non-local-interpolation algorithm is proposed.

Firstly, the scattering characteristics of spores are studied, and a

high-sensitivity concentration sensor is designed on the basis of Mie

scattering theory. The concept of radix subtraction is innovatively

introduced to accurately count spores in plant diseases. Secondly,

two sensor deployment schemes are designed, the optimal sensor

deployment strategy is determined by applying the accurate

positioning algorithm, and the wireless sensor network model is

constructed. Then, by collecting data on the number of spores at

different locations, a particle diffusion model was established to

deeply study the propagation law of particles under specific regional

conditions, and simulation experiments were carried out through

SolidWorks flow simulation software. The correlation coefficients

between the particle diffusion predicted by the simulation model and
FIGURE 6

Positioning error diagram. (a) The location distribution map and location error diagram of non-local interpolation algorithm when there is no wind.
(b) The location distribution map and location error diagram of non-local interpolation algorithm when the wind is 1 m/s.
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the experimental data reached 0.9144 and 0.9280 respectively under

windy and windless conditions. Finally, according to the law of

particle propagation, a disease source location algorithm coupled

with the non-local-interpolation algorithm and improved power-law

equation was designed to accurately locate the plant disease source
Frontiers in Plant Science 11
under different wind direction conditions. The results of greenhouse

experiments show that our method achieves localization accuracy of

94.7% and 92.9% respectively under windless and windy conditions

with approximately three nodes per square meter. In summary, the

source location method of airborne plant diseases based on the non-
FIGURE 7

Positioning error comparison diagram. (a) Comparison of positioning errors and comparison of the average positioning errors of the three
algorithms when there is no wind. (b) Comparison of positioning errors and comparison of the average positioning errors of three algorithms when
the wind speed is 1 m/s.
TABLE 2 Comparison between the proposed method and the current methods of plant disease detection.

Reference
No obvious symptoms in the
early stage of plant disease

Resistance to
wind

interference

On-site real-time
detection
capability

Cost-
effectiveness

Nondestructive
testing

characteristics

(Chavhan et al., 2023) ✓ ✓ × ✓ ×

(Panchal et al., 2023) × ✓ ✓ ✓ ✓

(Xie et al., 2024) ✓ × ✓ × ✓

proposed ✓ ✓ ✓ ✓ ✓
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local-interpolation algorithm can realize the early diagnosis and

location tracing of plant diseases.
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