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Beyond salt tolerance: SOS1-13’s
pivotal role in regulating the
immune response to Fusarium
oxysporum in Solanum phureja
Liqin Liang, Xiaona Liu, Liuyan Guo, Liyan Wang, Yuehua Zhao,
Yue Wu, Yiqian Chen, Weizhong Liu* and Gang Gao*

College of Life Science, Shanxi Normal University, Taiyuan, China
Introduction: Fusarium oxysporum (FOX) causes severe Fusarium wilt in the

potato (Solanum tuberosum group Phureja) annually around the world. As an

Na+/H+ antiporter, SOS1, a member of the salt oversensitive (SOS) signaling

pathway plays important role in salt tolerance, but its function in plant disease

resistance has been less studied.

Methods: The function of the potato SOS1 gene (StSOS1-13) responding to the

FOX infection was researched by gain- and loss-of-function assays.

Results: StSOS1-13-overexpressed Arabidopsis differed from WT plants in

multiple aspects post-FOX infection. It exhibited less ROS accumulation and

cell necrosis in leaves, higher SOD and CAT activities accompanied by reduced

MDA content, enhanced root development, increased tolerance to FOX

infection, and an accelerated leaf stomatal closure rate along with a reduced

stomatal aperture area. Additionally, the ectopic overexpression of StSOS1-13 in

Arabidopsis induced down-regulation of AtPR12. Conversely, silencing the

ortholog gene NbSOS1-13 in Nicotiana benthamiana showed more

accumulation of ROS, serious cell necrosis, reduced activities of SOD and CAT,

significantly increased MDA level, obvious leaf wilting, decreased tolerance to

infection, and reduced leaf stomatal closure rate and accelerated stomatal area.

Furthermore, the expression of SA and JA response-related genes (NbPR5 and

NbPR12) was up-regulated in NbSOS1-13-silenced plants.

Discussion: These findings suggest that StSOS1-13 may serve as a key hub in the

immune response to FOX infection by enhancing the antioxidant defense system,

promoting root development to improve water uptake, facilitating leaf stomatal

closure to minimize water loss through evaporation, and associating with the SA

and JA signaling pathways.
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1 Introduction

Plants have evolved several strategies to cope with salinity, in

which the salt-overly-sensitive (SOS) pathway controls the net

uptake of sodium by roots and the xylematic transfer to shoots in

vascular plants (Gámez-Arjona et al., 2024; Villalta et al., 2021).

SOS conduction pathway is consisted of three components: SOS1,

SOS2 and SOS3 and, mediate salt stress signal transduction,

transport excess Na+ out of the cell to maintain the relative

balance of ion in the cell (Cheng et al., 2019; Jiang et al., 2019;

Yang and Guo, 2017). The SOS1s of glycophytes and halophytes,

located in the plasma membrane and expressed in the wood

parenchyma and root epidermal cells, are primarily involved in

the efflux of Na+ from the cytoplasm to the soil and the transport of

Na+ to the leaves via transpiration (Ali et al., 2021).

At present, the involvement of SOS1 in plant salt tolerance has

been demonstrated in a variety of plants, such as Arabidopsis (Shi

et al., 2003), tomato (Olias et al., 2009), sweetpotato (Gao et al., 2012),

cotton (Chen et al., 2017), soybean (Zhang M, et al., 2022; Zhao et al.,

2016), maize (Zhou et al., 2022), potato (Liang et al., 2023). However,

the involvement of SOS1 in plant disease resistance was only found in

the immunity of Brassica juncea var. tumida SOS1 (BjSOS1) to

Plasmodiophora Brassicae (Cheng et al., 2019). Furthermore, NHX1

is involved in the resistance to Phytophthora parasitica nicotianae

(Ppn) in Nicotiana benthamiana. NbNHX1 silencing led to the

reduction of H+ efflux from vacuole to cytoplasts, a lower pH in

vacuole, the NAD(P) (H) pool decreased, and a lower reactive

oxidative species (ROS) level in cell, down-regulated of ROS-

responsive genes, impaired ability to scavenge ROS induced by the

pathogen, and decreased Ppn resistance in N. benthamiana (Chen

et al., 2014). In contrast, transient overexpressed NbNHX1 led to the

increase of vacuolar pH and cellular ROS level in theN. benthamiana,

which was associated with an enlarged NAD(P) (H) pool and up-

regulated ROS-responsive genes, and SeNHX1 (from Salicornia

europaea) or AtNHX1 (from Arabidopsis) ectopic expression

enhanced the resistance to Ppn with a lower H2O2 concentration

and the reduced blight area in the leaves. It has been shown that

NHX1 is involved in plant disease defense by regulating the pH of the

vacuole, affecting the oxidation state of cells, and priming the

antioxidant system associated with resistance to Ppn in N.

benthamiana (Chen et al., 2015). Nevertheless, whether SOS1 is

involved in disease resistance in other plants remains to be

explored further.

Potato is a significant staple crop globally, serving as an essential

food source (Munthali et al., 2022) and after maize (Zea mays),

wheat (Triticum aestivum) and rice (Oryza sativa) (Qin et al., 2022).

However, the ever-changing biotic stresses are causing widespread

declines in potato yields and quality (Dahal et al., 2019), such as the

late blight pathogen Phytophthora (Ali et al., 2014), bacterial wilt

pathogen Ralstonia solanacearum (Wullings et al., 1998) and

Fusarium wilt pathogen Fusarium oxysporum f. sp (Li L, et al.,

2022). Fusarium wilt disease poses a serious threat to global potato

yields during the potato growing season (Li M, et al., 2022).

Therefore, it is of great importance to mine stress-resistant genes
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at the molecular genetic level for the utilization of potato

germplasm resources and the improvement of potato varieties

(He F, et al., 2022). We have shown previously that the potato

SOS1 (StSOS1-13) gene would be potential candidate gene for

potato salt-tolerant seeding (Liang et al., 2023). However, the role

of SOS1 in plant disease resistance response conjugating with

operation of the SOS pathway for salt tolerance has not

been assessed.

In this work, we aimed to determine the precise role of StSOS1-

13 in response to FOX using gain- and loss-of-function assays in

Arabidopsis and N. benthamiana. This approach allows the quick

and accurate dissection of the gene function and pathway

constituents in simplified gene expression systems for a

preliminary investigation into its molecular mechanism in FOX

resistance through silencing orthologous gene in tobacco and

heterologous overexpression in Arabidopsis. Our results

demonstrate that StSOS1-13 plays a special comprehensive

regulatory role in plant immunity against FOX infection,

providing interesting insights into understanding SOS1-mediated

plant disease resistance responses.
2 Materials and methods

2.1 Plant material, growth conditions and
Fusarium oxysporum inoculation

The potato (Solanum tuberosum Group phureja), Nicotiana

benthamiana and Arabidopsis thaliana (Col-0) seeds used in this

study were all provided by institute of vegetables and flowers,

Chinese academy of agricultural sciences, the corresponding

plants were grown in a growth chamber with a 16:8 light:dark

cycle, and at a 26°C/18°C: 60-70% (Ali et al., 2014), 24°C/22°C: 40%

(Murphy et al., 2018) and 22°C: 70-80% (Zhang L, et al., 2022)

temperature(day/night): relative humidity correspondingly. The

FOX strain used in this study was stored in our laboratory and

cultured with PDA at 28°C, and then transferred to PDB liquid

culture in a shaker for propagation culture (Li M. et al., 2022), the

culture solution was filtered, conidia were collected, and diluted to

1×107/mL. Plant seedlings were inoculated with suspension of FOX

with a concentration of 107 spores/mL for 30 min before being

transplanted back into the soil for normal culture using root

infection method according to previous descriptions (Qian et al.,

2022). Samples for RNA extraction were collected from the whole

leaves at 6, 12, 24, 36, 48, 60, and 72 h (0 h as a control) after

inoculation (Wang X, et al., 2022).
2.2 Vector construction and
plant transformation

The tobacco rattle virus (TRV) system was used for VIGS

analysis. A 300 bp interference fragment from NbSOS1-13 (NCBI

accession number: Niben101Scf00485g02023.1, the ortholog of
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StSOS1-13 in N. benthamiana) was inserted into the pTRV2 vector

by double-enzyme digestion (XbaI/BamHI) to generate the pTRV2-

NbSOS1-13 vector and verified by sequencing (Kang et al., 2021).

NbPDS gene (Supplementary Note 1) was also inserted into the

pTRV2 vector and used as the positive control. The pTRV2,

pTRV2-PDS, and pTRV2-NbSOS1-13 vectors were transformed

into Agrobacterium strain GV3101 for Agrobacterium-mediated

transient transformation of plants via syringe infiltration (Li et al.,

2021; Yin et al., 2022).

To investigate the role of StSOS1-13 in Arabidopsis against FOX

infection, StSOS1-13 was overexpressed in Arabidopsis under the

control of the CaMV35S. Firstly, full-length StSOS1-13 cDNA

sequence (1734 bp) was amplified using gene-specific primers, and

then inserted into the pCAMBIAsuper1300 vector containing the XbaI

and SacI restriction site, and then the pCAMBIAsuper1300-StSOS1-13

vector generated were transformed into E.coli DH5a and verified by

sequencing (Shi et al., 2022). Secondly, the pCAMBIAsuper1300-

StSOS1-13 vectors were transformed into the A. tumefaciens strain

GV3101 (re-suspended with a suspension containing 5% sucrose and

0.05% Silwet L-77 to OD630 = 0.8) using the freeze-thaw method, and

then transferred into the Arabidopsis via the flower dipping method.

Thirdly, the Arabidopsis plants were incubated in the dark for 24 h

(Sakata et al., 2022) before being transferred to a culture chamber for

normal culture. The primary seeds harvested were recorded as the T0

generation and sown on soil, the resulting plants (T1 generation) were

used to screen for homozygous transgenic lines by MS medium

containing hygromycin (25 mg/L). Subsequently, Hyg-resistant T2

generation Arabidopsis plants were used for further validation

whether the positive plant material, including DNA extracting by a

DNA Quick Plant System (TransGen Biotech, Beijing, China), and

PCR analysis based on the 35S promoter using specific primers

(Supplementary Table S1).
2.3 RNA extraction and RT-qPCR analysis

Total RNAs were extracted using TransZol Up Plus RNA Kit

(Transgen, Beijing, China) and then employed as a template with

TransScript® One-Step gDNA Removal and cDNA Synthesis Super

Mix for qPCR (Transgen, China) for the first strand cDNA

synthesis. The RT-qPCR was performed on the QuantStudio-3

system (Thermo Fisher Scientific, Shanghai, China). The reaction

mix contained 2 µL template cDNA, 0.4 µL F primer (10 µM), 0.4

µL R primer (10 µM), 0.4 µL passive reference dye (50×), 10 µL

2×PerfectStart® Green Super Mix and 6.8 µL nuclease-free water.

The RT-qPCR amplification parameters were as follows:

predenaturation at 94°C for 30 s, followed by 35 cycles of

denaturation at 94°C for 30 s and annealing at 60°C for 30 s.

Finally, the relative gene expression level was calculated using the

2−DDCT method (He J, et al., 2022). As a reference, the actin of N.

benthamiana, Arabidopsis and other primers (Supplementary Table

S1) used in this study were designed by Primer Blast website1 of
1 https://www.ncbi.nlm.nih.gov/tools/primer-blast/.
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NCBI. Three biological experiments with three technical replicates

were performed for each reaction.
2.4 Hydrogen peroxide localization and
necrotic cells detection

The accumulation of H2O2 in the tobacco and Arabidopsis leaf

tissues was visualized by 3,3′-diaminobenzidine (DAB) staining.

The leaves immersed in DAB were incubated for 6 h with gentle

shaking in dark conditions and the ROS fluorescence intensity was

measured using ImageJ software (Yin et al., 2022).

Tobacco and Arabidopsis leaf tissue were evaluated for cell

death using trypan blue staining. The leaves immersed in 0.4%

trypan blue were incubated for 6 h with gentle shaking and cell

death was measured using ImageJ software (Wang W, et al., 2022).
2.5 Biochemical analysis

The malondialdehyde (MDA) content, catalase (CAT) and

superoxide dismutase (SOD) activities of tobacco and Arabidopsis

tissue were determined separately using the corresponding kits,

following the manufacturer’s instructions (Nanjing Jiancheng

Bioengineering Institute, China).
2.6 Determination of fungal biomass in
leaves of plants infected with FOX

Evaluation of FOX colonization in the inoculated plant leaves

was determined using plate counts at specified time points by the

colony forming unit (CFU) per gram of leaf tissues according to

previous descriptions (Qian et al., 2022).
2.7 The stomatal movement observation
and measurement

The stomatal movement of WT, OE5 and OE6 Arabidopsis

lines were observed under a microscope (40 ×) before and after

infection with FOX. Ten random visual fields for each group of

plant and three duplicates for each line were also observed. Stomatal

apertures (Stomata aspect ratios) in the images were measured

using the software ImageJ (Zhu et al., 2021). The length of a stoma is

defined as the distance between the internal contact points of the

two guard cells, while the width is the maximum distance between

the two innermost guard cells.
2.8 Statistical analysis

The data were presented as means ± standard deviation (SD) of at

least three independent experiments. All statistical analysis was carried

out by GraphPad Prism 9 software, and the significance of differences

between different groups was evaluated by Student t-test or ANOVA.
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3 Results

3.1 RT-qPCR analysis of StSOS1-13 gene
expression under FOX infection

To investigate whether StSOS1 genes were involved in immune

response to FOX (Supplementary Figure S1), the phenotypes and

StSOS1-13 gene expression of the potato infected by root infection

method was observed and analyzed. The results showed that the

leaves of potato plants exhibited slight wilting symptoms at 24 hpi

after inoculation with FOX, while exhibited severe disease symptom

at 60 hpi (Figure 1A). The StSOS1-13 gene expression level showed

a significant trend of first increasing and then decreasing

(Figure 1B), and rose 184-fold at 36 h after inoculation with FOX,

suggesting that the StSOS1-13 was involved in the resistance of

potato to FOX and played an important role.
3.2 Silencing of NbSOS1-13 affected
tobacco against FOX

To better understand the putative function of StSOS1-13 during

the immune response against FOX, its ortholog gene (NbSOS1-13)

was identified based on the highest sequence similarity for VIGS

(Supplementary Figure S2) with the pTVR2-PDS as an inner

reference. As shown in Supplementary Figure S3, compared to

mock-treated wild type (WT), there was no obvious phenotypic

change in the leaves of pTRV2 empty vector (EV) transformed

plants. The leaves of pTRV2-NbSOS1-13 transformed strain showed

yellow or even white pigmentation, and apparent shrinkage. The

results of the RT-qPCR analysis indicated that the transcript level of

NbSOS1-13 in pTRV2-NbSOS1-13 transformed plants was

significantly reduced.

Within 60 hpi after infection, the vascular bundle browning and

leaves wilting of NbSOS1-13 VIGSed plants were faster and more

severe than those of WT plants (Figure 2A). The transcription level

of NbSOS1-13 was significantly lower than that of WT leaves

(Figure 2B) after continuous observation, especially at 24 h, it was

only one fifth of that of WT. The staining degree of DAB and trypan

blue in leaves was higher than that in WT plants, and the

accumulation of ROS and the number of cell death were higher
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(Figures 2C, D). The activities of SOD and CAT decreased

significantly, while the content of MDA increased significantly

(Figure 2E). These results suggest that NbSOS1-13 may be

involved in the early immune response of tobacco to FOX.

Furthermore, the expression of SA-responsible gene PR5 and

JA-responsible gene PR12 related to the defense response

(Anisimova et al., 2021) were compared between WT and

NbSOS1-13 VIGSed plants infected by FOX. The results showed

that the expression levels of NbPR5 and NbPR12 were significantly

lower in NbSOS1-13 VIGSed plants than in WT plants at 12 h and

48 h, respectively (Figure 2F), suggesting that NbSOS1-13 is

positively correlated with gene expression of NbPR5 and

with NbPR12.

Based on the importance of stomatal movement in regulating

transpiration in plants in response to adverse water conditions, the

opening and closing of the leaf stomata pores of WT, NbSOS1-13

VIGSed plants before and after infected with FOX were observed

microscopically. The results showed no significant difference in leaf

stomatal aperture between the NbSOS1-13 VIGSed and WT plants

before treated with FOX, but after treated with FOX for 48 hpi,

compared with silenced plants, the leaf stomatal aperture of WT

plants showed smaller (Figure 3A), the aspect ratio of stomatal

aperture significantly greater (Figure 3B), and the stomata area

significantly lesser (Figure 3C), respectively. It indicates that the

WT plant shows a faster response to leaf stomatal movement under

FOX treatment than the NbSOS1-13 VIGSed plant.
3.3 Overexpression of StSOS1-13 affected
Arabidopsis thaliana against FOX

To elucidate the role of StSOS1-13 gene in conferring resistance

to FOX, StSOS1-13 was heterologously overexpressed in

Arabidopsis (Supplementary Figure S4). In Appendix F, two

overexpressing lines OE5 and OE6 were obtained and were

employed for resistance analysis, the RT-PCR showed that

StSOS1-13 was highly expressed compared with WT plants, and

the root length was significantly increased at the seedling stage, but

the plant height decreased significantly, and the florescence was

delayed at the mature stage. These results indicated that the

heterologous overexpression of StSOS1-13 inhibited the growth of
FIGURE 1

The expression analysis of StSOS1-13 gene under FOX infection. (A) The typical withering phenotype appeared at 60 hpi; (B) RT-qPCR level of
StSOS1-13 gene expression under FOX infection. The expression level of StSOS1-13 (with control at 0 h) was normalized against StAct. The vertical
bars indicate the standard error of the mean. Asterisks indicate a significant difference based on the T test. (*, p<0.05, **, p<0.01, ***, p<0.001).
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the aboveground part of Arabidopsis, but promoted the

root elongation.

Three days after inoculation of FOX at seedling stage, compared

with the symptoms of yellowing and wilting of most leaves of WT

plants and obvious damage to root growth, OE5 and OE6 lines only

showed slight yellowing or even no symptoms of disease

(Figure 4A). The root growth was weakened, but the damage was

mild (Figure 4B). The expression of StSOS1-13 in WT, OE5 and
Frontiers in Plant Science 05
OE6 lines increased after 24 h treatment, and the expression level of

StSOS1-13 in OE5 and OE6 lines was 11 and 5 times higher than

that in WT, respectively (Figure 4C). The content of FOX in the

leaves of OE5 and OE6 strains was significantly lower than that of

WT lines from 24 h to 48 h, and decreased by 1.64 and 1.25 times

compared with WT plants at 48 h (Figure 4D), respectively. The

ROS accumulation, cell death number and the content of MDA in

the leaves of OE5 and OE6 lines were significantly lower than those
FIGURE 2

The resistance function analysis of the NbSOS1-13 gene using VIGS. (A) The phenotypic responses of WT and NbSOS1-13 VIGSed tobacco plants
were observed following infection with FOX, with photographs captured five days post-inoculation; (B) The expression levels of WT and NbSOS1-13
VIGSed tobacco plants infected with FOX were quantified using RT-qPCR at various time points post-infiltration; (C) The ROS were detected
through DAB staining, with the ROS-positive areas quantified using ImageJ software; WT plants served as the control group; (D) Cell death in 4-
week-old WT and NbSOS1-13 VIGSed tobacco leaves was assessed two days post-inoculation with FOX. Trypan blue staining was employed to
assess cell death, and ImageJ was utilized to quantify the regions of cell death, using WT as a control; (E) The activities of SOD and CAT, as well as
the MDA content, were measured in WT and NbSOS1-13 VIGSed tobacco leaves subjected to varying hpi with FOX; (F) RT-qPCR was conducted to
evaluate the transcription levels of NbPR5 and NbPR12, in WT and NbSOS1-13 VIGSed tobacco plants following FOX treatment. Asterisks indicate
significant differences based on two-way ANOVA (NS, no significant difference, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001), these experiments
were performed with three independent biological replicates with similar results.
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of WT plants (Figures 4E–G), while the activities of SOD and CAT

were significantly increased, which were 25.8 and 11.6 times higher

than those of WT plants at 24 hpi (Figure 4G). In the above results,

compared with WT, the change of OE5 was more obvious than that

of OE6, which was consistent with the higher overexpression level

of OE5 than OE6 (Supplementary Figure S5). The above results

showed that the heterologous overexpression of StSOS1-13 could

improve the disease resistance of Arabidopsis by promoting root

growth and development, reducing the root damage caused by FOX,

increasing the activity of antioxidant enzymes, eliminating ROS and

reducing the damage caused by MDA production, and the level of

heterologous overexpression was positively correlated with the

disease resistance of Arabidopsis.

In contrast to the NbSOS1-13 VIGSed tobacco plants, infection

with FOX resulted in elevated expression levels of AtPR5 in the OE5

and OE6 lines compared to WT plants at 24 hpi, with a particularly

significant increase observed in the OE6 line. Unexpectedly, AtPR12

expression levels were significantly reduced in the OE5 and OE6

lines compared to WT plants at 48 hpi (Figure 4H). These findings

suggest that StSOS1-13 may be positively correlated with the

expression of the SA-responsible gene AtPR5, while exhibiting a

negative correlation with JA-responsible gene AtPR12.

There was no significant difference in leaf stomatal aperture

among the OE5, OE6 lines and WT before treated with FOX, but the

difference was significant after FOX treatment for 48 hpi (Figure 5A),

this was similar to NbSOS1-13 silence in tobacco. Specifically, the

stomatal aspect ratios (length/width) of the OE5, OE6 lines and WT

lines increased to 2.7, 1.63 and 1.58 times of that before treated with

FOX, respectively (Figure 5B), and the stomata area decreased

(Figure 5C), that was, stomata were partially closed. Compared to

WT plants, the stomata of the OE5 and OE6 lines were significantly

closed, and the closure of the OE5 line was even more significant. The
Frontiers in Plant Science 06
above results indicate that the OE5 and OE6 lines show a faster

response to leaf stomatal movement under FOX treatment than the

WT, and further confirm the hypothesis of the silence experiment,

that is, StSOS1-13 is involved in stomatal closure to maintain water

and achieve disease resistance in Arabidopsis.
4 Discussion

As an Na+/H+ antiporter, SOS1 has been confirmed playing an

important role in salt tolerance in plants. There was evidence to

suggest that BjSOS1 implicate in disease resistance to

Plasmodiophora Brassicae (Cheng et al., 2019). In previous

studies, we found that StSOS1 is involved in potato resistance to

salt stress, but whether StSOS1 is involved in resistance to disease

has not been reported. Therefore, this paper presents a preliminary

study of whether and how StSOS1 is involved in resistance to FOX.
4.1 SOS1-13 was actively involved in
immune resistance to FOX in potatoes

In this study, six StSOS1 genes were randomly selected for RT-

qPCR analysis to assess their expression levels before and after

infection with FOX. The results demonstrated that the expression

levels of these genes initially increased and subsequently decreased,

with StSOS1-13 exhibiting the most pronounced changes (Figure

S1). To further investigate the role of StSOS1-13, we employed gene

silencing of its ortholog, NbSOS1-13, in tobacco and heterologous

overexpression of StSOS1-13 in Arabidopsis. The findings suggest

that StSOS1-13 plays a significant role in mediating the immune

response of both tobacco and Arabidopsis to FOX infection.
FIGURE 3

Stomata dynamics of tobacoo leaves under FOX treatment at 48 hpi. (A) Stomatal opening and closing of WT and NbSOS1-13 VIGSed leaves at
seeding stage under FOX treatment; (B) Aspect ratio of stomatal aperture in WT and NbSOS1-13 VIGSed plants under FOX treatment 48 h calculated
by ImageJ; (C) Leaf stomata area of WT and NbSOS1-13 VIGSed plants under FOX treatment 48 h calculated by ImageJ. Asterisks indicate significant
differences based on two-way ANOVA (NS, no significant difference, *p<0.05).
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FIGURE 4

Heterologous overexpression of StSOS1-13 impacts the resistance to FOX in Arabidopsis. (A) Effect of FOX treatments on growth of WT, OE5 and
OE6 in Arabidopsis; (B) Effect of FOX treatment on root growth of WT and transgenic lines (OE5 and OE6); (C) Relative expression levels of StSOS1-
13 in WT, OE5 and OE6 inoculated with FOX; (D) Analysis of fungal biomass in the leaves of WT, OE5 and OE6 inoculated with FOX; (E) DAB staining
of hydrogen peroxide (ROS) in the leaves of 2-week-old WT, OE5, and OE6 lines following inoculation with FOX; (F) Trypan blue staining indicates
cell death in the leaves of 2-week-old WT, OE5, and OE6 lines post-inoculation with FOX; (G) Determination of SOD, CAT activities and MDA
contents in leaves of WT, OE5 and OE6 inoculated with FOX for 0-48 hpi; (H) Transcription levels of AtPR5 and AtPR12. Asterisks indicate significant
differences based on two-way ANOVA (*p<0.05, **p<0.01, ***p<0.001), these experiments were performed with three independent biological
replicates with similar results.
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4.2 StSOS1-13 was positively involved in
ABA-mediated early plant immune events
triggered by FOX inductors

Under drought stress, stomata are closed which are regulated by

ABA-mediated signal regulation mechanisms, thereby reducing

transpiration, water loss and (Mega et al., 2015) photosynthesis

(Gagné-Bourque et al., 2016). Under bacteria stress, plants also has

evolved defense mechanisms for stomata closure, or inhibited

pathogen-mediated stomata reopen upon sensing PAMPs to

actively prevent bacteria from entering plant leaves (Melotto et al.,

2006). Previous study has found that overexpression of AtGAP1 can

reduce the size of the stomatal pore and thicken the mesophyll cell

wall of Arabidopsis, forming a defense barrier that effectively limiting

the entry of pathogens into the leaves (Cheng et al., 2022).

Research indicates that soybean chitinase enhances plant

disease resistance and mitigates cell death by augmenting ROS

accumulation and the activity of active oxygen scavenging enzymes

(Zhang et al., 2016). Colletotrichum infection increased the

accumulation of MDA, CAT, and SOD in cucumber resistant and

susceptible lines. The resistant lines have lower MDA content and

higher SOD and CAT activity compared to the sensitive lines (Yang
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et al., 2022). The resistance factor Pti4/5/6 may mediate the

expression of PR genes regulated by SA- and ET/JA-, and Pti4

may play a role in the communication between these pathways.

Over-expression of Pti4/5/6 in tomato plants increased CAT

activity, decreased MDA content, and enhanced resistance to

pathogens (Wang et al., 2021).

Our previous study found that StSOS1-13 was significantly up-

regulated about 250 times at 1 d in leaves under ABA treatment

(Liang et al., 2023), and in this study, compared with the wild type,

over-expression of StSOS1-13 in Arabidopsis plants reduce the size

of the stomatal pore (Figure 5A), increased SOD and CAT activity

(Figure 4G), decreased ROS and MDA content (Figures 4E, G), and

enhanced resistance to FOX (Figures 4D, F). However, NbSOS1-13

VIGSed tobacco lines demonstrated the contrary effect (Figures 2A,

C, E). The findings suggest that StSOS1-13 plays a positive role in

ABA-mediated signaling pathways during the initial immune

responses of plants. This involvement is characterized by the

closure of stomata, which serves to reduce transpiration and

conserve water, thereby mitigating the effects of blocked xylem

vessels and impaired water transport in roots induced by FOX

elicitors. Additionally, StSOS1-13 contributes to the enhancement

of the plant’s antioxidant capacity.
FIGURE 5

Stomata dynamics of Arabidopsis leaves under FOX treatment at 48 hpi. (A) Stomata aperture of WT and OE lines with mock (upper panel) and FOX
(lower panel) treatment at 48 hpi; (B) Stomata aspect ratios (length/width) in WT, OE5 and OE6 lines before and after FOX treatment at 48 hpi
calculated with ImageJ; (C) Leaf stomata area of WT, OE5 and OE6 lines before and after FOX treatment at 48 hpi calculated with ImageJ. Asterisks
indicate significant differences based on two-way ANOVA (NS, no significant difference, *p<0.05, **p<0.01. ***p<0.001, ****p<0.0001).
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4.3 StSOS1-13 may play a role in
coordinating SA- and JA-
mediated pathways

Overexpression of certain PR genes, including PR5 and PR12,

greatly increased the level of plant defensive response to various

pathogens (Liu et al., 2022), and overexpression of PR5 may active

many defense genes in the SA or JA/ET signaling pathways (Liu et al.,

2022; Yan et al., 2017). In A. sativum, expression of the PR1, PR3, and

PR5 genes was thought to be a positive marker of plant resistance to

FOX f. sp (Anisimova et al., 2021), and PR1, PR2, and PR5 were the

marker genes induced by SA (Ali et al., 2022). In Arabidopsis, the

cad-C/cad-D mutation negatively affected PR1 and PR5 expression

after infection with P. syringae pv (Rong et al., 2016). Our prior study

also corroborated these findings, and there was a significant

upregulation of StSOS1-13 gene expression following 1 to 5 days of

SA treatment, with a pronounced peak on day 3 (Liang et al., 2023).

In the present study, the findings demonstrated that, compared to

WT plants, the expression level of StSOS1-13 was significantly up-

regulated in the OE5 and OE6 lines at 24 and 48 hpi with FOX

(Figure 4C). Additionally, the expression level of AtPR5 at 12 hpi was

significantly higher in the OE6 lines than in the WT plants

(Figure 4H). Unexpectedly, the expression level of AtPR12

exhibited an opposite trend to that of AtPR5, being significantly

lower at 48 hpi in the OE5 and OE6 lines compared to the WT

(Figure 4H). The findings indicate that the overexpression of StSOS1-

13 potentially enhances the expression of the SA-responsible gene

AtPR5, while concurrently reduces the expression of the JA-

responsible gene AtPR12. This divergent outcome may be

attributed to the antagonistic effects of SA (is pivotal in early PTI)

and JA (is essential in late ETI) signaling pathways during immune

responses (Ali et al., 2018; Luo et al., 2020).

Conversely, in comparison to WT plants, the expression level of

NbSOS1-13 was significantly downregulated in NbSOS1-13-silenced

tobacco lines between 24 and 48 hpi (Figure 2B), particularly at 24

hpi. Furthermore, the expression levels of NbPR5 and NbPR12 in

the NbSOS1-13-silenced tobacco lines were significantly lower than

those in theWT at 12 and 48 hpi with FOX, respectively (Figure 2F).

Compared with the OE5 and OE6 lines, the consistency of NbPR5

andNbPR12 gene expression trends inNBSOS1-13-silenced tobacco

may be due to the fact that the silencing of NbSOS1-13 leads tobacco

to enter the ETI stage from PTI more quickly, and there is a

synergistic effect between SA and JA in this stage.

Based on the above analysis, it is speculated that StSOS1-13

plays a role in coordinating SA- and JA-mediated pathways,

specifically, influencing PR5 and PR12 expression in response to

FOX invasion during the early stages of immune events.
4.4 Ectopic overexpression of StSOS1-13
enhances root development and inhibiting
aboveground growth in Arabidopsis

Gibberellic acid (GA), a phytohormone, plays a crucial role in

regulating multiple facets of plant development and growth,
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including seed development and germination, stem and root

growth, cell division, and the timing of flowering (Kwon and Paek,

2016). StSOS1-13 gene expression increased significantly within 1 to 2

days of GA treatment (Liang et al., 2023). Compared with WT,

StSOS1-13 overexpression Arabidopsis (OE5 and OE6 lines)

significantly increased root length (Figure 4B) and decreased

sensitivity to FOX (Figures 4A, B), and during the mature stage,

the OE5 and OE6 lines exhibited a significant decrease in plant

height, a reduction in stem length, a delay in flowering

(Supplementary Figure S5). These results indicated that the ectopic

overexpression of StSOS1-13 may enhance resistance to FOX by

inhibiting the growth of the aboveground part of Arabidopsis, but

promoted the root elongation through positively participating in GA-

mediated growth and development metabolic pathways. The results

suggest that StSOS1-13 may enhance resistance to FOX by actively

participating in GA-mediated growth and developmental metabolic

pathways. This process promotes root development while inhibiting

aerial growth in Arabidopsis.
4.5 StSOS1-13 acts as a key hub in various
hormone signaling pathways and is
involved in early plant immunity

Based on our findings and others existing studies (Dai et al.,

2018; Feki et al., 2016; Guo et al., 2004; Kumari et al., 2017), a

potential mechanism by which StSOS1-13 contributes to disease

resistance in potato can be inferred as follows: upon infection by

FOX, plants experience competition for essential nutrients and

water with the pathogen, leading to water loss in plant tissues,

elevated intracellular Na+ concentrations, Ca2+ influx, and the

activation of downstream Ca2+ signal pathways. The proteins

StSOS2 and StSOS3 interact to form a complex that activates

StSOS1-13 (D et al., 2008; Yuan and Poovaiah, 2022), which plays

a crucial role in pathogen immunity through signaling pathways

mediated by ABA, GA, SA and JA. StSOS1-13 is actively involved in

the early ABA-mediated PTI signaling pathway during the initial

stages of FOX infection. This involvement includes enhancing the

antioxidant capacity to mitigate damage caused by ROS

accumulation, which further facilitates the binding of StSOS1-13

with the StSOS2-StSOS3 complex, and promoting stomatal closure

to counteract the clogging of woody tubes and water loss (Gu et al.,

2022) associated with the proliferation of FOX. In this study, plants

overexpressing StSOS1-13 exhibited slower growth and delayed

flowering in their above-ground parts (Supplementary Figure

S5E), potentially due to excessive stomatal closure (Figure 5A).

This condition likely resulted in reduced photosynthesis and a

deceleration of anabolic metabolism. The involvement of StSOS1-

13 in the ABA-mediated signaling pathway appears to inhibit

growth and development in the aerial portions of the plants

(Supplementary Figure S5E), and slowed down FOX reproduction

(Figure 4D). Conversely, overexpression of StSOS1-13 is associated

with increased GA-mediated root length (Figure 4B), which may

enhance water absorption during stomatal closure (Gu et al., 2022)

and provide resistance against FOX through root exudates (Lu et al.,
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2022; Zhang et al., 2020). Furthermore, the silencing or

overexpression of SOS1-13 was found to respectively changed the

expression of PR5 and PR12, suggesting that StSOS1-13 is involved

in regulating SA and JA mediated immune responses. In general,

StSOS1-13, as a regulate hub of the defense response to FOX, plays

an indispensable role in multiple signaling pathways, thereby

resisting the invasion of FOX. This study offers a novel

perspective for further elucidating the mechanisms of StSOS1-13

mediated resistance to plant diseases.

However, The precise function of StSOS1-13 in the potato

immune response requires more in-depth research, such as

through genome editing techniques in potato to understand the

function of this gene and its upstream and downstream regulatory

relationships, and then use StSOS1-13 as a possible candidate gene

for disease resistance breeding in the future.
5 Conclusions

In summary, this study shows that StSOS1 -13 can serve as a

connection point for multiple signaling pathways, such as ABA, SA,

JA, and GA, by improving the antioxidant defense system,

promotes root development to enhance water uptake, and closes

leaf stomata to conserve water from evaporation, in response to

FOX stress in potatoes.
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