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Identification of favorable
alleles from exotic Upland
cotton lines for fiber quality
improvement using multiple
association models
Hrithik Mangla1, Min Liu1, Deepak Vitrakoti 1,
Rama Vamsi Somala1, Tariq Shehzad1†, Rahul Chandnani1†,
Sayan Das1†, Jason G. Wallace2, John L. Snider2, Don C. Jones3,
Peng W. Chee2 and Andrew H. Paterson1*

1Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, United States, 2Department of
Crop & Soil Sciences, University of Georgia, Athens, GA, United States, 3Agricultural Research, Cotton
Incorporated, Cary, NC, United States
Upland cotton (Gossypium hirsutum) faces the challenge of limited genetic

diversity in the elite or improved gene pool. To address this issue, we explored

alleles contributed by five ‘converted’ exotic lines sampling most of the

undomesticated botanical races of G. hirsutum, in BC1F2 and F3 populations.

Joint analysis of all populations along with population-specific analyses identified

38 unique QTL for six different fiber quality traits. At 15 of these loci, DES56 or the

elite allele improved upon all the exotics. For another 15, only a single of the five

exotics improved upon the elite allele, suggesting the rare alleles that may not

have been sampled in the cotton domestication or improvement. At the

remaining 8 QTL, multiple exotic lines contributed the superior allele,

suggesting that DES56 (and by extension the elite gene pool) has chronically

poor alleles at these loci. Converted strains T1046, T326, and T063 showed the

highest potential for contributions to cotton fiber quality breeding programs.

Upper Half Mean Length and Fiber Strength showed multiple QTL regions

affecting both traits simultaneously, while the Uniformity Index showed the

smallest heritability values. The estimation of pairwise genetic distances for six

parental lines indicates that DES56 has a higher genetic similarity with each exotic

line than the exotic lines have with each other. Most of the detected QTL were

‘minor’ (explaining less than 10% of variance) supporting the implementation of

genomic selection techniques to utilize the cumulative effects of most of these

QTL distributed genome-wide. Finally, some regions were consistently

unfavorable for exotic introgression such as on chromosomes A13 and D09,

indicating the possible genome-wide haplotypes that may combine the benefits

of a history of scientific breeding of the elite gene pool.
KEYWORDS

Gossypium hirsutum, exotic lines, GBS, QTLmapping, joint linkage associationmapping,
fiber quality, Upland cotton
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2025.1553514/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1553514/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1553514/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1553514/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1553514/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2025.1553514&domain=pdf&date_stamp=2025-04-16
mailto:paterson@uga.edu
https://doi.org/10.3389/fpls.2025.1553514
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2025.1553514
https://www.frontiersin.org/journals/plant-science


Mangla et al. 10.3389/fpls.2025.1553514
1 Introduction

Cotton (Gossypium spp.) is one of the most important cash

crops and a leading source of textile fiber. In the United States,

Upland cotton production was 12.8 million bales from the

harvested area of 8 million acres in 2023 (USDA- National

Agricultural Statistics Service, 2023). The total export value for

cotton in 2023 was $5.95 Billion in the United States.

The genus Gossypium, belonging to the Malvaceae family, is

considered to have more than 50 species, 45 diploid (2n = 26) and

seven tetraploid (2n = 52), with a basic chromosome number of 13

(Fryxell et al., 1992). The allotetraploid cotton species are believed

to have been formed by hybridization of genotypes resembling

modern G. herbaceum (A genome) and G. raimondii or G.

gossyipoides (D genome) about 1-2 million years ago (Guo et al.,

2014; Wendel, 1989). Only 4 Gossypium species are cultivated, 2 of

which are allotetraploid – ‘Upland’ cotton (G. hirsutum) and ‘Pima’

cotton (G. barbadense). Upland cotton dominates commercial

production owing to its higher yield, early maturity, and

resistance to diseases and pests followed by Pima cotton

(Gossypium barbadense) for its superior fiber quality.

The Upland cotton gene pool has experienced multiple genetic

bottlenecks imposed by polyploidization and domestication history

followed by intense selection pressure for high-yielding and early

maturing varieties. Further, repeated intercrossing of a limited

number of selected varieties eventually left breeders with limited

opportunities for continual improvement of fiber quality and other

traits (Hinze et al., 2016; May et al., 1995; Paterson et al., 2004).

Allelic diversity ‘left behind’ in the undomesticated exotic gene

pools, especially from tropical regions like Mexico and Guatemala,

can offer a rich source for superior and novel alleles for improving

fiber quality and other traits (McCarty et al., 1996, 1998). Primitive

accessions and landraces from these regions have been converted to

day-neutral type via repeated backcrosses to facilitate their use in

various breeding operations (McCarty and Jenkins, 2002, 2005;

McCarty et al., 1979). Previous studies have shown the benefits of

the use of converted exotic race stocks in fiber quality improvement

despite that agronomic traits were average or inferior to elite

commercial lines (Campbell et al., 2014; McCarty et al., 1996,

2004, 2007). In such scenarios, the implementation of DNA

markers is necessary to mitigate the undesirable effects of linkage

drag (Campbell et al., 2014; Liu et al., 2000).

Fiber quality is a set of traits with many components, controlled

by networks of genes in various molecular pathways exemplifying

the quantitative nature of the inheritance of these traits (Paterson

et al., 2012). In the current study, we explore 6 fiber quality traits:

Micronaire (MIC), Upper Half Mean Length (UHM), Fiber

Elongation (ELO), Fiber Strength (STR), Uniformity Index (UI)

and Short Fiber Content (SFC). MIC is an airflowmeasurement that

estimates fiber fineness and maturity, with lower MIC values
Abbreviations: SNP, Single Nucleotide Polymorphism; DNA, Deoxyribonucleic

acid; GBS, Genotyping by Sequencing; JLM, Joint Linkage Association Mapping;

MLMM, Multi-Locus Mixed Linear Model; QTL, Quantitative Trait Locus; PVE,

Percent Phenotypic Variance Explained; Mbp, Million Base Pairs.
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indicating finer fiber usually preferred by the textile industry,

though sometimes it could be the result of immaturity (Draye

et al., 2005). UHM is the mean length of the longer half of the fibers

in a sample measured in hundredths of an inch. Longer UHM

lengths are preferred. STR is reported as ‘grams per tex’, indicating

the force in grams required to break a bundle of fibers one ‘tex’ unit

in size (the weight in grams of 1000 meters of fiber), and stronger

fibers are preferable. Fiber elongation (ELO) is the percentage

increase in fiber length before breaking when subjected to a

specific amount of tensile force. The stretchiness of fibers is

preferable, reducing breakage during processing. Uniformity

Index (UI) is a ratio between the mean length and the upper half

mean length of the fibers, expressed as a percentage and indicating

the uniformity of fiber length in a sample. Short fiber content (SFC)

is the proportion of fibers with a length less than 0.5 inches,

generally inversely related to UHM, and with a minimum

value preferable.

The development of high-quality reference genomes, high-

density linkage maps, and high throughput phenotyping

techniques amplified the acquisition of QTL information related

to several fiber quality traits, serving as the foundation for marker-

assisted selection and genomic selection. For example, an important

QTL region validated on chromosome 25 for fiber length or upper

half mean length has been introgressed from G. barbadense into G

hirsutum lines (Brown et al., 2020). However, QTL data often is

incongruent among different studies due to factors like

environmental variation, genetic background effects, and the type

and size of mapping populations used. To generate consensus QTL

information from large numbers of studies, meta-QTL analyses

have been conducted (Rong et al., 2007; Xu et al., 2020) and suggest

a non-uniform distribution across the genome for fiber quality

traits. Some of these converted exotic race stocks have also been

utilized in biparental populations with SSR (Simple Sequence

Repeats) markers genotyping to identify favorable alleles that

could be introgressed into elite cultivars (Adhikari et al., 2017).

However, the advent of high-density genotyping techniques like

Genotyping-by-sequencing (GBS) (Elshire et al., 2011) and the

cheap prices for sequencing present the opportunity to further

accelerate the process of dissecting these QTL regions with

more precision.

QTL mapping studies for fiber quality traits using advanced

backcross families (Chee P. et al., 2005; Chee P. W. et al., 2005;

Chen et al., 2020) helps in the simultaneous discovery and

introgression of traits in the recurrent background (Tanksley and

Nelson, 1996). Both linkage mapping using bi-parental populations

(Chandnani et al., 2018; Chee P. et al., 2005; Kumar et al., 2019) and

association mapping techniques (Ademe et al., 2017; Liu et al.,

2020) have shown potential in mapping the genomic regions

associated with fiber quality traits. To further increase the power

and precision of mapping these QTL, joint linkage association

techniques (leveraging the strength of an increased number of

recombination events and sample size) could be implemented in

multiple biparental populations (Myles et al., 2009) as reported

using nested association mapping populations in other crops

(McMullen et al., 2009; Olatoye et al., 2020).
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Hence, to leverage the strengths of these high-density

genotyping techniques and powerful joint linkage association

mapping techniques, we describe QTL mapping in five BC1F2 and

one F3 intermated population(s) generated using five exotic day-

neutral converted Upland cotton lines sampling most of the

botanical races of G. hirsutum (Supplementary Table S1A). The

choice of a common elite parent was strategic: DES56 is suggested to

be in the pedigrees of more elite cotton cultivars than any other line

and is arguably the best single representative of the elite cotton gene

pool (Suszkiw, 2010). The major objective is to identify the genomic

regions in these exotic lines that can contribute the favorable alleles

for fiber quality improvement in Upland cotton.
2 Materials and methods

2.1 Plant materials and phenotyping

Five BC1F2 populations, each comprised of 4 families from

different BC1F1 plants; and an F3 intermated population of 4 F2-

derived families resulting from intermating among different F1
plants, were developed using five converted exotic cotton lines

namely T326, T281, T257, T063 & T1046, with elite line DES56

as the recurrent parent in all backcross populations (Supplementary

Figure S1). The exotic lines were selected based on their estimated

genetic effects for various fiber quality traits reported by previous

studies (McCarty et al., 1996, 1998, 2007).

In 2012, 200 seeds per population were planted at the University

of Georgia’s Plant Science Farm, including 50 seeds from each of

four different BC1F1 or F2 (in the case of F3 population) plants, at

12” intervals. The final number of lines achieved for the 6

populations were 168 (T326 x DES 56), 179 (T0257 x DES 56),

180 (T1046 x DES 56), 176 (T1046 x DES 56 (IM)), 162 (T0281 x

DES 56), 179 (T063 x DES 56). Hereafter, these populations will be

denoted as populations 1, 2, 3, 4, 5, and 6 respectively

for convenience.

BC1F2:3 progeny rows were planted in 2013, and plants from

each population were selfed and harvested in bulk as the full plots or

progeny rows. During the next year (2014), BC1F2:4 progeny rows

were again planted at the University of Georgia’s Plant Science

Farm. In all three years, the harvested lint was sent to Cotton

Incorporated (Cary, NC) to measure the fiber quality parameters

(MIC, UHM, ELO, UI, STR, and SFC) by the High-Volume

Instrument (HVI’) system.
2.2 Phenotypic data analysis

All phenotypic data analyses were carried out using the R

statistical tool (R core Team, 2024). Firstly, all populations were

confirmed for genotypic, family, and environmental effects using

the analysis of variance method.

For Broad Sense heritability estimation, a mixed linear model

was implemented with genotype and environment included as the

random effects (Equation 1). Variance components were extracted
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for all the above components along with the residual variance which

were used to calculate H2 or plot level heritability values as follows

 H2 = sG=(sG +  sR)

where sG represents the variance explained by genotypic or

genetic factors and sR by residual factors or unexplained variance.

Further, the Best Linear Unbiased Predictors (BLUPs) were

generated for each sample using 3 years of data for each trait using

the “lmer” function in the “lme4” package-

y = u + aGuG + aEuE + e (1)

y represents the phenotype of each individual with aG and uG
(uG ∼  N(0,s 2

uG )) representing the individual’s genotypic factor and

its corresponding random effect respectively (Equation 1).

S im i l a r l y , aE and uE (uE ∼  N(0,s 2
uE )) r e p r e s en t t h e

environmental factor and its corresponding random effect,

respectively (Equation 1). The symbol u denotes the fixed

intercept and e is the normally distributed residual or

unexplained variation (Equation 2). The final breeding values for

each individual were calculated as the sum of the fixed intercept (u)

and the BLUP values for the genotypic effect of that individual (uG)

which were used for the actual association analyses. For family and

population-specific analyses these models were fitted for each

individual population while for the joint analysis, the above

model was fitted jointly for all populations.

The predicted breeding values for all joint populations were

used for correlation analyses among the traits to extract the

Pearson’s correlation values mostly due to the genotypic effects,

minimizing random environmental effects. Statistical parameters

including mean, standard deviation and coefficient of variation were

also calculated for the predicted breeding values and for actual

phenotypic values for each population.
2.3 Genotyping and data analyses

Genomic DNA was extracted from freeze-dried leaves via a

modified CTAB (cetyl trimethyl ammonium bromide) protocol

(Paterson et al., 1993) and stored at -80°C. Genotyping by

sequencing (GBS) libraries were constructed for 96 samples/

library (Elshire et al., 2011). In brief, DNA samples were digested

with TfiI enzyme (High-Fidelity; New England Biolabs Inc.,

Ipswich, MA, USA), then ligated to a unique barcode adapter.

The pooled library containing 96 samples was subjected to

polymerase chain reaction using 2X GoTaq Colorless Master Mix

(Promega, Madison, WI, USA), and the amplified product was run

on 2% agarose gel after electrophoresis where the 200-500 bp

fragments were extracted and purified using a Qiagen Gel

Extraction Kit (Qiagen, Hilden, Germany). The prepared GBS

libraries were subjected to paired-end sequencing of 150 bp read

length using BGI’s DNA Nanoball sequencing technology

(DNBSEQ400-PE150).

The sequenced fastq files were confirmed for a minimum Phred

score of 30, then demultiplexed for each sample using the “process-

radtags” command in Stacks (Catchen et al., 2013) software,
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followed by the trimming of adapter sequences. The trimmed fastq

files were aligned to the cotton reference genome “v3.1”

(Sreedasyam et al., 2024) using the Burrows-Wheeler Alignment

(BWA) tool.

GATK’s “HaplotypeCaller” plugin was used to call the variants

on the sorted and indexed BAM files from the previous step and the

raw VCF file was filtered for only biallelic SNPs. After performing

the thinning operations, the resulting VCF file was used in

“TASSELv5.2” (Bradbury et al., 2007) software to remove sites

having greater than 30% missing data and progenies with >10%

missing sites. Further, the sites were filtered for a minor allele

frequency (MAF) of 0.10 (If a single family is segregating 1:2:1, the

MAF across all populations comes out to 0.12, hence the 0.10

cutoff). The final VCF file was imputed to fill the remaining missing

sites using “BEAGLE haplotype phasing” (Browning et al., 2021).

Final populations deviated from the expected segregation ratios

significantly, obstructing the construction of robust genetic maps.

To overcome this limitation, high-density physical maps were

utilized with manual elimination of any smaller sites showing

inconsistency with adjacent sites. The total number of SNP

markers retained after these filtering operations ranged between

2500 and 5100 distributed across the genome for each population

and about 43000 for the joint population.

For association analyses of each population, three models were

implemented – nested joint linkage association (nested JLM)

(markers nested within family factor to identify the QTL

significant within the families), non-nested joint linkage

association (identifies the QTL significant across the families)

(non-nested JLM), and multi-locus mixed model (MLMM) using

a kinship matrix. The first two models were implemented in

TASSELv5.2 (Bradbury et al., 2007) software using the stepwise

plugin with an entry p-value of 0.01 and exit p-value of 0.02 along

with 1000 permutations (Churchill and Doerge, 1994) to determine

statistical significance thresholds appropriate for multiple

comparisons. The marker R2 or percentage phenotypic variation

(PVE) explained was calculated as the (sum of squares (actual

marker association)/Total sum of squares) *100. The additive effects

for each marker were calculated as the difference between the means

of homozygous classes divided by two. In addition to that, the

family factor was included in both models to remove any spurious

associations arising due to general background effects rather than

specific marker-trait associations.

For the third model, the “GAPIT” (Lipka et al., 2012) package in

R (R core Team, 2024) was implemented where forward and

backward regression was used as in the above two models. For

controlling the population structure, instead of including the family

factor, the kinship matrix was utilized here. The final p-value

threshold was set to 0.00001 in this case which approximates the

value (Haynes, 2013) obtained via Bonferroni correction (P-value <

0.05) for multi-testing in each population.

For joint analysis of all 6 populations, the non-nested JLM

model was implemented in TASSEL v5.2 by using the stepwise

plugin as follows-

y = XGBG + apup + af uf + e (2)
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where XG denotes the design matrix for SNP or marker effects,

BG denotes the corresponding fixed marker effects, ap and af signify

the population and family of each individual respectively with the

corresponding effects of up and uf, and e denotes the residual or

unexplained variation (Equation 2). In the case of population-

specific analyses, ap and up were excluded from the model.

QTL intervals were defined by implementing the original

models without stepwise regression and extracting the physical

positions upstream and downstream of the original associations

where p-value <0.001 in the case of population-specific analyses and

p-value < 0.0001 in the case of joint analysis. Intervals add extra

confidence to significant QTL as compared to single marker

associations which could be artifacts sometimes.
3 Results

3.1 Genetic diversity among the parental
lines

Principal component analysis (PCA) plots were based on

140564 SNP markers representing the variants detected among

genomic sequences of the 6 parental lines, for which at least one of

the six parental lines had a different allele (Figure 1). The PCA plot

indicated elite ‘DES56’ to be clearly differentiated from all exotic

lines (Figure 1). T257 and T063 were relatively close to each other

and DES56, while T281 and T326 were comparatively far from

DES56. The pairwise genetic distances (1-p(IBS)) (p(IBS) = the

probability that alleles drawn at random from two individuals at the

same locus are the same) among DES56 and the other 5 exotic

parents calculated using these 140564 SNPs (Table 1) are consistent

with PCA analysis suggesting two lines (T257 and T063) to be

relatively closer than the remaining 3. Interestingly, for almost all

the exotic lines, the relative genetic distance between DES56 and the

exotic line was smaller than the pairwise distance between any two

exotic lines (Table 1).
3.2 Phenotypic data analyses

The parental phenotypic values for 6 fiber quality traits are

provided in Supplementary Table S1B. Significant differences were

observed among the 6 parental lines including DES56 and 5 exotic

lines for all traits (p-value<0.01) (Supplementary Table S1C),

however for the pairwise comparison Tukey’s HSD test (not

shown) didn’t show a significant difference among DES56 and the

other lines for most traits. To further confirm the genotypic and

environmental effects, ANOVA analysis was carried out for each

population (Supplementary Table S2). The ANOVA results showed

both environmental and genotypic effects to be highly significant

(p-value < 0.01) for most traits in all populations, except for UI in

populations 1 and 6 (Supplementary Table S2).

For MIC, population 1 consistently showed lower mean values

in all years overall (Figure 2A). Population 6 performed the best for

UHM in all environments while population 5 had the lowest mean
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value for this trait in almost all years (Figure 2B). Populations 4 and

6 possessed maximum mean values for UI and STR in different

years (Figures 2C, D). Population 1 had exceptionally low mean

values for ELO in all years compared to other populations while 2

and 4 had the maximum mean values overall in all years

(Figure 2E). Populations 3, 4, 5 and 6 consistently showed lower

values for SFC in all environments (Figure 2F).

Most of the traits included in this study showed a continuous

distribution approximating normality for each individual

population and the joint population. The mean phenotypic

breeding values for each population had a smaller range for most

traits (Table 2A). The coefficient of variation was the highest for

ELO followed by MIC and STR while UI showed the lowest

coefficient of variation values within the range (Table 2A). The

predicted breeding values for the joint population also showed

similar trends among all traits (Table 2A). Statistical parameters for

the actual phenotypic values closely resembled those for the

predicted breeding values. However, a large difference between

actual phenotypes and the predicted breeding values for standard

deviations and coefficients of variation values indicated a higher

proportion of environmental and residual variances (Table 2B).
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The median broad sense heritability (H2) or plot level

heritability values are low to moderate for all traits across all 6

populations (Figure 3, Supplementary Table S6). UHM and ELO

showed the highest values while UI had the lowest median H2

values, consistent with the ANOVA and coefficient of

variation results.

Pearson’s correlation values between the traits are based on the

breeding values predicted jointly for all the individuals across 6

populations (Figure 4). There was a significant positive correlation

(p-value < 0.001) between MIC and ELO (Figure 4). UHM had a

significant positive correlation with STR and UI but a significant

negative correlation with SFC, ELO and MIC (Figure 4). Similarly,

UI and STR had a significant positive correlation with each other

but a negative correlation with SFC (Figure 4). Overall, UHM, STR,

and UI showed a significant positive correlation with each other but

significant negative correlations with the other 3 traits in most

cases (Figure 4).

We also calculated the number of families out of 24 (4 families

in each of the 6 populations) showing superior transgressive mean

breeding values for all the traits compared to the parental values

(Supplementary Table S7). Overall, population 1 had the highest

number of families showing positive mean transgression, followed

by population 5 while population 6 had no family showing positive

mean transgressive values (Supplementary Table S7). Among the

six traits, UI and SFC showed the greatest number of families

showing superior mean transgressive values among all populations

while ELO showed the least (Supplementary Table S7).
3.3 Within families and across families or
population-specific QTL analysis

QTL were designated as q{trait name}_{population name}_

{chromosome}_{QTL number on that chromosome (in case of

two or more QTL on the same chromosome for the same trait)}.

A total of 52 QTL were identified collectively using 3 methods for all

6 populations, out of which 34 were ‘unique’ (inferred to be the
FIGURE 1

Principal Component Analysis of the 5 exotic lines and DES56 based on 140564 SNP marker sites distributed across the genome, PC- Principal
Components, PC1 (x-axis) explained about 29% of the variation while PC2 (y-axis) explained about 22%. DES56 denotes the common parent while
the T prefix indicates the converted forms of the exotic lines used in this study.
TABLE 1 Genetic distance among 6 Parental lines used in this study
calculated based on 140564 SNPs or variant sites among the 6 parents
and using 1-p(IBS) formula, where p(IBS) stands for the probability that
alleles drawn at random from two individuals at the same locus are
the same.

Taxa DES56 T063 T1046 T257 T281 T326

DES56 0 0.286443 0.405886 0.366139 0.466471 0.414505

T063 0.286443 0 0.417102 0.384298 0.477878 0.395773

T1046 0.405886 0.417102 0 0.458553 0.481773 0.457521

T257 0.366139 0.384298 0.458553 0 0.504735 0.444363

T281 0.466471 0.477878 0.481773 0.504735 0 0.481973

T326 0.414505 0.395773 0.457521 0.444363 0.481973 0
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same QTL detected by two or more methods) (Supplementary

Table S4). Out of the 52 QTL, 32 were detected by non-nested JLM

(significant across the families), 12 by nested JLM (significant

within the family), and 8 by MLMM (Multi-locus Mixed Linear

Model) (Supplementary Table S4). In addition, the QTL detected by

non-nested JLM had smaller PVE values compared to the nested

JLM (Supplementary Table S4 & Supplementary Figure S2B), since

in the nested JLM, marker*family interaction factor causes the

inflation of variance component estimation for markers (Schielzeth

and Nakagawa, 2013).
3.4 Joint linkage analysis for all
populations (QTL significant across the
populations)

A total of 992 individual samples were retained after the

filtration process (missing sites and outliers) and were used for

joint linkage association analysis of all populations. The

nomenclature used for QTL detected by joint analysis differed
Frontiers in Plant Science 06
from population-specific analysis only for the removal of

population names (Table 3 & Supplementary Table S5). The

family factor was highly significant for all 6 traits (Supplementary

Table S3). Again, 1000 permutations were utilized for each trait to

correct for multiple testing errors, with final significance thresholds

ranging from 2.25E-6 to 1.16E-8. Each identified QTL explained

less than 10% of phenotypic variance, further indicating the genetic

complexity of these fiber quality traits. Also consistent with single

population analysis (Supplementary Table S4), the respective

subgenomes contributed similar numbers of QTL (8 from the At

subgenome, 11 from the Dt) (Supplementary Table S5).
3.5 Quantitative trait variation of individual
fiber quality traits

Most QTL identified by joint analysis and population-specific

analyses (Supplementary Tables S4, S5) had overlapping likelihood

intervals, thus only increasing the total number of unique QTL from

34 to 38 (Table 3).
A B

D

E F

C

FIGURE 2

(A-F) – Boxplots depicting the median and interquartile range for each trait in three different years, the “+” sign indicates the mean value for each
population (x-axis). Each subplot represents the phenotypic values (y-axis) for one of the six traits – (A) MIC (B) UHM (C) UI (D) STR (E) ELO (F) SFC.
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3.5.1 Micronaire
Among 5 unique QTL for MIC, one or more exotics could

improve on the DES56 allele for three. Two QTL (qMIC_A11 and

qMIC_A08) were significant within families, across families and

populations with cross-population PVE of 5.35% and 2.10%

respectively (Table 3); and favorable alleles originating from

exotic lines (T1046 and T326 respectively) with additive effects

(calculated from joint analysis) of 0.112 units and 0.069 units

respectively. Another QTL- qMIC_D03, was significant across

families in population 4 and across populations with a PVE of

2.40%, the exotic T1046 allele contributing an estimated negative

(favorable for MIC usually) additive effect of 0.08 units across

populations (Table 3). The remaining 2 QTL were significant across

families within populations 2 (qMIC_pop2_D01) and 5

(qMIC_pop5_D02), superior alleles originating from DES56 with

PVE of 0.12% and 1.5% respectively; and additive effects of 0.035

units and 0.069 units respectively (Table 3).

3.5.2 Upper half mean length
Among 12 unique QTL detected for UHM, DES56 improved

upon the exotic alleles for 3. Among these 3 QTL- qUHM_D09,

qUHM_pop5_A08 and qUHM_pop4_A13, only the first was

significant across populations with a PVE of 1.96% (Table 3), while

the other two QTL were significant across families with PVE values of

0.6% and 1.64% respectively (Supplementary Table S4).

Two QTL had multiple sources of favorable exotic alleles,

qUHM_D02_1 with two favorable allele sources - T1046 and T063;

and qUHM_D02_2 with superior alleles from T1046, T063 and T257

(Table 3). The PVE values for these 2 QTL were about 1.59% across
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the populations with a physical distance of about 27 Mbp between

actual associations and non-overlapping intervals (Table 3).

A total of 2 QTL- qUHM_pop1_A08 and qUHM_pop5_A08

(mentioned above), were significant in populations 1 and 5

respectively, both located in the A08 chromosome but with non-

overlapping genetic regions and a large physical distance between

actual associations (about 73 million bps). T326 improved upon the

DES56 allele for qUHM_pop1_A08 with a PVE value of 0.78%

(Table 3). qUHM_pop1_A03 and qUHM_pop1_D06 were

significant across the families detected by non-nested JLM and

MLMM respectively in population 1. T326 contributed the

favorable allele for both QTL (Table 3).

Another QTL, qUHM_pop2_D01 was significant both within

and across families in population 2 with a PVE value of 0.29%

estimated across families and the T257 allele estimated to be

superior. Population 4 showed 3 QTL- qUHM_pop4_A12_1,

qUHM_pop4_A12_2 and qUHM_pop4_D03, to be significant

across families, with favorable alleles for all from T1046 with PVE

values of 1.27, 1.09 and 0.91% respectively (Table 3).

3.5.3 Uniformity index
As anticipated by the low broad sense heritability in all

populations, no QTL was identified for UI by population-specific

analysis for any of the 6 populations (Supplementary Table S4).

However, joint analysis owing to higher statistical power offered by

a larger sample size identified qUI_A13, with a p-value of 4.12E-10

and PVE of 3.20% (Supplementary Table S5). DES56 improved

upon the exotic allele, discouraging introgression from any of the 5

exotic lines tested in this region.
TABLE 2 (A, B) Summary of the trait statistical parameters calculated for each population to depict the range, values in the bracket represent the
statistical parameters calculated for the joint population, and the upper table (2A) summarizes the parameters for calculated breeding values
excluding environmental effect while the lower table (2B) shows the parameters for actual trait values.

2A)

Trait Mean Range Standard Deviation Range Coefficient of Variation Range

MIC 4.725-5.029 (4.926) 0.077-0.269 (0.189) 0.016-0.055 (0.039)

UHM 0.994-1.092 (1.043) 0.014-0.039 (0.038) 0.014-0.038 (0.036)

UI 81.435-82.541 (82.071) 0.053-0.665 (0.384) 0.001-0.009 (0.005)

STR 25.447-28.232 (27.164) 0.471-1.231 (1.145) 0.017-0.049 (0.043)

ELO 4.913-6.156 (5.56) 0.164-0.49 (0.444) 0.034-0.086 (0.08)

SFC 8.195-8.729 (8.424) 0.124-0.381 (0.284) 0.015-0.046 (0.034)

2B)

Trait Mean Range Standard Deviation Range Coefficient of Variation Range

MIC 4.718-5.03(4.901) 0.448-0.589(0.532) 0.09-0.119(0.109)

UHM 1.029-1.093(1.046) 0.045-0.064(0.058) 0.043-0.061(0.056)

UI 81.886-82.541(82.102) 1.204-1.5(1.333) 0.015-0.019(0.017)

STR 26.713-28.214(27.278) 1.935-2.437(2.25) 0.073-0.088(0.083)

ELO 4.9-5.897(5.593) 0.653-0.992(0.924) 0.134-0.174(0.166)

SFC 8.189-8.703(8.402) 0.806-1.06(0.994) 0.098-0.128(0.119)
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FIGURE 3

Box plots for the broad sense heritability values (y-axis) calculated for all traits (x-axis) in 6 populations depicting the median and interquartile range.
FIGURE 4

Correlation and density plots for 6 fiber quality traits, Pearson’s correlation values were calculated from breeding values predicted for all individuals
jointly across the 6 populations, “*”, “**” and “***” denotes significance at p-value < 0.05, 0.01 and 0.001 respectively, “Corr” indicates the Pearson’s
correlation coefficient value.
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TABLE 3 Summary of all unique QTL (additive) detected by integrating the results from population-specific analysis and joint analysis of all
populations, PVE values were included from joint analysis of all populations except for QTL which were found to be significant only in population-
specific analysis where non-nested JLM method’s PVE is shown unless the other two population-specific methods (Non-nested JLM and MLMM)
detected the QTL only.

S.
No.

QTL_name Trait Chromosome
Interval
(Mbp)

Position P-value PVE
Additive
effect

Favorable
allele source

1 qMIC_pop2_D01 MIC D01 29.02-60.17 36997917 1.44E-05 0.123 0.036 DES56

2 qMIC_pop5_D02 MIC D02 64.13-66.13 64131289 1.73E-05 1.500 0.07 DES56

3 qMIC_A11 MIC A11 119.07-121.79 120932319 6.17E-16 5.351 0.112 T1046

4 q_MIC_D03 MIC D03 7.39-41.93 8418950 4.44E-08 2.407 0.088 T1046

5 qMIC_A08 MIC A08 7.54-78.20 51868732 3.03E-07 2.104 0.069 T326

6 qUHM_D09 UHM D09 43.03-53.22 43030709 3.23E-08 1.963 0.018 DES56

7 qUHM_pop5_A08 UHM A08 123.82-125.46 124663792 6.54E-06 0.601 0.011 DES56

8 qUHM_pop4_A13 UHM A13 12.83-75.30 62146285 9.67E-09 1.643 0.017 DES56

9 qUHM_pop4_A12_1 UHM A12 107.17-107.57 107178868 3.33E-07 1.272 0.015 T1046

10 qUHM_pop4_A12_2 UHM A12 6.92-7.09 7094350 1.16E-05 0.919 0.01 T1046

11 qUHM_pop4_D03 UHM D03 47.99-50.04 49322147 1.85E-06 1.099 0.012 T1046

12 qUHM_D02_1 UHM D02 4.01-4.56 4526036 5.79E-07 1.599 0.009 T1046,T063

13 qUHM_D02_2 UHM D02 31.01-41.92 31017663 6.57E-07 1.583 0.007 T1046,T063,T257

14 qUHM_pop2_D01 UHM D01 58.27-63.18 63189430 3.05E-07 0.289 0.006 T257

15 qUHM_pop1_A08 UHM A08 25.41-94.14 51171534 1.10E-07 0.786 0.009 T326

16 qUHM_pop1_A03 UHM A03 52.51-103.71 91727570 8.27E-06 0.538 0.008 T326

17 qUHM_pop1_D06 UHM D06 6.95-6.95 6957599 1.07E-05 36.033 0.005 T326

18 qUI_A13 UI A13 12.35-46.67 13507504 4.12E-10 3.204 0.261 DES56

19 qSTR_D01 STR D01 44.29-61.36 48590025 5.72E-08 1.996 0.262 DES56

20 qSTR_D09 STR D09 43.03-45.55 45296673 1.32E-07 1.884 0.572 DES56

21 qSTR_pop4_A13 STR A13 14.69-76.26 48843925 6.71E-06 1.487 0.446 DES56

22 qSTR_pop4_D04 STR D04 13.78-35.08 13782765 9.50E-06 1.607 0.379 - 0.614 T1046

23 qSTR_D02 STR D02 31.01-41.92 41641056 1.02E-08 2.227 0.212 T1046, T063, T257

24 qSTR_A07 STR A07 40.18-44.72 41308176 4.90E-08 2.017 0.841 T326

25 qSTR_pop1_A03 STR A03 46.89-97.61 59311294 3.46E-06 1.084 0.304 T326

26 qELO_D01_1 ELO D01 0.44-1.52 1011588 2.96E-10 2.098 0.159 DES56

27 qELO_D11 ELO D11 64.42-72.91 68450513 6.87E-10 2.009 0.151 DES56

28 qELO_pop2_D08 ELO D08 56.94-59.47 59475594 4.20E-07 0.197 0.098 DES56

29 qELO_pop6_D05 ELO D05 32.64-58.06 46813712 2.38E-06 0.198 1.316 DES56

30 qELO_D04 ELO D04 48.46-53.74 53747393 4.36E-15 3.289 0.108 T1046, T063, T257

31 qELO_A05 ELO A05 42.37-103.01 71399886 7.27E-09 1.763 0.102 T1046, T063, T257

32 qELO_A01 ELO A01 25.82-108.47 87693325 4.65E-10 2.051 0.125 T1046, T257

33 qELO_D01_2 ELO D01 16.94-48.90 44290588 2.73E-10 2.106 0.091 T1046, T281, T063,T326

34 qSFC_A13 SFC A13 12.35-98.93 13507504 4.23E-11 3.425 0.196 DES56

35 qSFC._pop1_D12 SFC D12 41.99-48.41 43564507 1.34E-05 0.385 0.121 DES56

36 qSFC_pop4_D04 SFC D04 21.06-26.37 21067784 9.44E-08 4.283 0.13 - 0.229 T1046

(Continued)
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3.5.4 Fiber strength
The total number of unique QTL identified for fiber strength in

the present study was 7, with 2 QTL – qSTR_D02 and qSTR_A07,

significant within families and across families in populations 4 and 1

respectively. These QTL were also significant across the populations

where qSTR_D02 showed T1046, T063 and T257 possessing the

favorable allele with a PVE value of 2.01% (Table 3). qSTR_A07 was

the only QTL that possessed a favorable allele for this trait from T326

in the joint analysis of all populations. Another 2 QTL- qSTR_D01

and qSTR_D09, were significant across the populations with PVE

values of 1.99% and 1.88% respectively and discouraging

introgression at both loci as DES56 contributed the favorable allele

(Table 3). Two QTL were identified to be significant across families-

qSTR_pop1_A03 and qSTR_pop4_A13, where T326 allele improved

upon DES56 and the DES56 allele improved upon T1046 respectively

(Supplementary Table S4).

3.5.5 Fiber elongation
Owing to its highest broad-sense heritability values in most

individual populations and the joint population (Supplementary

Table S6), ELO yielded the greatest number of QTL both in

population-wise analysis and joint analysis, however, most of

these QTL were common or had overlapping intervals in both the

analyses resulting in total number of unique QTL as 8 (Table 3).

Introgression was discouraged at 4 out of these 8 regions-

q ELO_D01 _ 1 , q E LO_D11 , q ELO_p op 2 _D0 8 , a n d

qELO_pop6_D05, as the DES56 allele was estimated to be

contributing the positive additive effects of 0.159, 0.151, 0.098 and

1.316 units along with PVE values of 2.098%, 2.009%, 0.197% and

0.198% respectively (Table 3). qELO_D01_1 and qELO_D11 were

both significant across populations as well as across families in

populations 5 and 4 respectively while qELO_pop2_D08 and

qELO_pop6_D05 were significant across families only in

populations 2 and 6 respectively.

qELO_D04 was found to be significant across the populations

and families in population 2; within the families and across families

in population 3 and had overlapping intervals in both the

populations and joint analysis (Supplementary Tables S4, S5). The

PVE value across the populations was calculated as 3.289% and the

exotic lines- T1046, T257, and T063 contributed the incremental or

favorable allele with an estimated additive effect of 0.108 units

(Table 3). Another QTL – qELO_D01_2 was significant across the

populations and across families in populations 5 and 6

(Supplementary Tables S4, S5). The PVE value for this QTL

across the populations was 2.106% where the T281, T063, T326,

and T1046 allele improved upon that of DES56. Similarly,

qELO_A01 was significant across populations, within the families
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in 2 and 3 populations (Supplementary Tables S4, S5), where both

the exotic alleles- T1046 and T257 contributed an additive effect of

0.125 units and PVE value of 2.051% across populations (Table 3).

qELO_A05 was significant across the populations, within families,

and across families in population 6, with a PVE value of 1.76%

across the populations. T063, T1046 and T257 were estimated to

possess the favorable allele for this QTL.

3.5.6 SFC
The number of unique QTL identified was 5. qSFC_A13 was

significant across populations and families in population 4 with a

PVE value of 3.425%, discouraging introgression since DES56 was

estimated to be contributing the favorable allele (Table 3,

Supplementary Tables S4, S5). Another QTL- qSFC_A01 was

significant across populations with a PVE of 1.979% and a

negative or favorable additive effect of 0.065 units contributed by

T1046, T063, T257, and T281. qSFC_pop1_D06 was significant

across families in population 1 with a PVE value of 0.45% and a

favorable exotic allele contributed by T326. This marker was also

significant for UHM as mentioned above, possibly indicating the

pleiotropic mode of action for this association. qSFC_pop1_D12

was identified in population 1 with a PVE value of 0.38% and a

superior allele from DES56. qSFC_pop4_D04 was significant within

families with a PVE (inflation in nested design due to inclusion of

interaction factor) (Schielzeth and Nakagawa, 2013) of 4.28% and a

T1046 favorable allele (Supplementary Table S4).
3.6 Dominant QTL

The above analysis using stepwise regression was carried out

using the models limited to the additive mode of action. To capture

any genomic regions showing dominance effects, we implemented

the genotype model in TASSEL v5.2 (Bradbury et al., 2007) without

stepwise regression using the same models as for additive QTL

analysis. Within population-specific analysis, only a single QTL for

SFC was found to be significant in population 4 at a significance

threshold of 1E-05 on the D05 chromosome in an interval of 8.98

Mbp – 9.44 Mbp, a dominance effect of -0.304 units and PVE value

of 10%. Further, we implemented the same genotype model using

the joint analysis of all 6 populations to extract the dominant QTL

with a p-value threshold of 1E-07. Only a single association was

evident for ELO on chromosome D11, which lacked support as no

other markers in its vicinity were significant even at a p-value

threshold of 1E-04. The above association detected for SFC in

population-specific analysis indicated a p-value of 5.58E-07 in the

joint analysis however no adjacent markers were significant at a p-
TABLE 3 Continued

S.
No.

QTL_name Trait Chromosome
Interval
(Mbp)

Position P-value PVE
Additive
effect

Favorable
allele source

37 qSFC_A01 SFC A01 69.36-97.18 77901774 4.74E-07 1.979 0.065 T1046, T063, T257, T281

38 qSFC_pop1_D06 SFC D06 6.95-6.95 6957599 2.74E-06 0.452 0.079 T326
PVE, Percent phenotypic variance explained; Mbp, Million base pairs.
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value threshold of 1E-04. Hence, the results from these analyses do

not provide strong evidence for genomic regions exhibiting

dominance effects for these 6 fiber quality traits.
3.7 Contribution of DES56 or elite line/
genomic regions need to be preserved

Overall, out of 38 unique QTL, 15 discourage introgression

from these exotic lines as DES56 confers favorable alleles, with 5

located in the At and 10 in the Dt subgenome (Figure 5). Of these 15

genomic regions, chromosome A13 harbors 4, affecting UHM, UI,

STR, and SFC. These genomic regions start at almost 12 Mbp and

end at about 98 Mbp for SFC while for other traits intervals are

relatively smaller ending almost at 75 Mbp (Table 3). Similarly, the

genomic region located on chromosome D09 from 43.03 Mbp

-53.22 Mbp harbors favorable DES56 alleles for UHM and STR,

with no favorable alleles from these exotic lines (Table 3; Figure 5).

Chromosome D01 presents a more complex pattern where 3 QTL

affecting 3 traits- MIC, STR and ELO (0.44 Mbp-61.36 Mbp) have

favorable DES56 alleles while 2 QTL affecting UHM and ELO

(16.94 Mbp -63.18 Mbp) had superior alleles originating from T257
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for UHM and from T1046, T281, T063 for ELO (Table 3, Figures 5,

6). Apart from these regions, there were other QTL regions listed in

Table 3 and Figure 5.
3.8 Contribution of exotic lines

For the other 23 QTL regions, exotic alleles improved upon

DES56 (Table 3, Figure 6). Out of these 23 QTL, T1046 (exotic

parent in populations 3 and 4) contributed the favorable alleles for

15 QTL (Table 3). Of these 15 genomic regions, 9 originated from

the Dt subgenome and UHM had the greatest number of QTL (5)

followed by ELO (4) and STR (2) respectively. D02 is of particular

importance as it possessed 3 QTL – two affecting UHM and one

affecting ELO (Table 3; Figure 6). Similarly, A12 possessed 2 QTL

regions that had positive estimated effects of the T1046 allele for

UHM. Chromosome D03 harbors two QTL regions possibly

contributing superior MIC and UHM values in T1046 as

compared to DES56. Moreover, another QTL region (119.07 Mbp

-121.79 Mbp) located on the A11 chromosome could potentially

contribute superior MIC values if introgressed with the T1046 allele.

Three QTL were identified on the D04 chromosome affecting ELO,
FIGURE 5

Manhattan plots depicting the location of QTL where DES56 or elite parent is contributing the favorable allele, Vertical red dotted lines indicate the
boundaries for each chromosome (x-axis), while horizontal solid red lines indicate the significance threshold ~ 1E-5, y-axis denotes the -log10(p-
value) of each association.
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STR, and SFC. However, the QTL- qELO_D04 (48.46 Mbp -53.74

Mbp) affecting ELO was the only QTL that was significant across

populations while the other two were significant only within the

families in population 4 (Supplementary Tables S3, S5).

Some regions indicated multiple exotic lines possessing the

same favorable allele (Table 3). Two QTL controlling SFC and

ELO had overlapping regions on chromosome A01 where both

T1046 and T257 improved upon the DES56 allele (Table 3). At least

two of three lines T1046, T063 and T257 possessed the same allele

that could be introgressed into the DES56 background for 8 QTL

regions affecting 4 fiber quality traits (Table 3). Two such regions

belong to D02 affecting the UHM as mentioned above. 2 QTL

regions – D01(16.94 Mbp -48.90 Mbp) and D04 (48.46 Mbp -53.74

Mbp) were affecting ELO where these three exotic lines share the

same favorable allele (Table 3). These QTL regions hold more

confidence along with the multiple options for introgression since

they share the same favorable allele among multiple populations.

T326 can potentially serve as the introgression line for 8

genomic regions where 2 QTL regions are located on the A08

chromosome with overlapping regions affecting MIC and UHM.

Two overlapping QTL regions on chromosome A03 improved upon

the DES56 allele for STR and UHM along with a QTL region on
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D01 for ELO, where 3 other lines also possessed the same positive

allele (Table 3).
4 Discussion

4.1 Use of diverse parents and their
contribution

If we consider all 5 exotic lines jointly representing the broad

spectrum of the exotic G. hirsutum gene pool, exotic alleles that

improve on those of DES56 are rare or absent at most loci. In

contrast, at a small minority of loci (8 in this study), the elite gene

pool may be inherently poor (where multiple exotic lines possess

favorable alleles). For 15 of the 38 QTL detected, none of the 5

exotic alleles improved on the DES56 allele while for another 15,

only one among the 5 exotic alleles improved on DES56 (3 unique

alleles from each exotic line for 30 comparisons with DES56). Thus

for 150 comparisons, we can speculate that up to 15 rare favorable

alleles may have been ‘left behind’ in domestication for each exotic

line, presumably not sampled in the potentially small number of

cottons from which the elite gene pool was formed (Lubbers and
FIGURE 6

Manhattan plots depicting the location of QTL where at least one of the exotic lines is contributing the favorable allele, Vertical red dotted lines
indicate the boundaries for each chromosome (y-axis), while horizontal solid red lines indicate the significance threshold ~1E-5, y-axis denotes the
-log10(p-value) of each association.
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Chee, 2009). For the remaining 8 QTL, we can speculate that in

about 13 out of 40 comparisons, multiple exotic alleles improved

upon the DES56 allele.

These 8 QTL reveal much about the elite gene pool and

opportunities for its improvement. At five of these loci, T1046,

T063, and T257 all contributed alleles that improved on the DES56

allele, consistent with the genome-wide patterns of relatedness

shown by the PCA plot (Figure 1). Collectively, T1046

contributed favorable alleles for 15 QTL regions which was the

highest among 5 exotic lines used in the present study. While the

estimated genetic effects for this line were unfavorable for fiber

length and elongation in a previous study (McCarty et al., 2007),

five and four QTL regions detected in the present study suggested

this line to possess favorable alleles for these traits respectively.

T281 was found to have the highest pairwise genetic distance with

DES56. However, only two QTL were identified where this line

improved over the DES56 allele. This suggests that the most

promising exotic sources of beneficial diversity for fiber quality

traits in the current study could be T1046, T063, and T326.
4.2 Similarity among the lines

The principal component analysis (Figure 1) and the pairwise

genetic distance calculations (Table 1) revealed that two of the five

lines are relatively closely related to DES56. Additionally, each

exotic line exhibited a higher genetic similarity to the common

line DES56 compared to the other exotic lines, a finding consistent

with previous studies (Liu et al., 2000). Although, this high relative

relatedness could be attributed to the possible evolutionary or

domestication events that may have caused the elite gene pool to

accumulate the beneficial alleles from all of these exotic lines,

however, it could also possibly be the result of the retention of

extra chromatin in these race stocks during the repeated

backcrossing or conversion process (McCarty et al., 1979). This

highlights the significance of using DNA marker-assisted

introgression to recover a maximum of the recurrent genetic

background (Liu et al., 2000). Moreover, we advocate comparative

genomic analysis of the original primitive accessions with the

converted ones to identify and measure the actual gap.
4.3 Number of QTL detected and benefit
of using multiple approaches

Looking at the large proportion of variance due to the

environment, we predicted the breeding values constituting

mostly genetic effects. This helps to detect QTL which perform

stably in the face of extremely different environments.

Population-specific analysis identified 34 unique QTL for 6 fiber

quality traits while the joint analysis identified 19 QTL, where most

of the QTL (15) were common across the methods making it to the

final number of unique QTL (QTL common to both approaches are

counted once) identified in this study to 38. Population-specific

analyses help to extract the QTL significant within a population
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since the joint analysis does not target the sites where exotic lines

introduce more than one type of allele (restricting to only biallelic

sites) opposite to the reference or DES56 allele. On the other hand,

joint analysis of all populations, owing to the increased sample sizes

helps with the dissection of associations that can’t be extracted with

smaller sample sizes along with more precise estimations of QTL

parameters. In the present study, 4 such associations were extracted

by joint analysis which were not significant in population-specific

analyses. In addition to that, UI, owing to its lower genetic variation

yielded only a single QTL significant across populations contrary to

no QTL being capable of surpassing the permutation-based

significance threshold in the population-specific analysis, possibly

indicating the higher power of these joint linkage association

analysis models (Myles et al., 2009).
4.4 Subgenomic distribution of QTL

Interestingly, 16 QTL out of 38 were located in the At

subgenome while 22 originated from the Dt subgenome, as has

been evident in various other QTL mapping studies (Adhikari et al.,

2017; Kumar et al., 2019) and meta-QTL studies (Rong et al., 2007;

Xu et al., 2020). Since diploid cotton species with the D genome

such as G. raimondii and G. gossypioides do not produce spinnable

fiber, these findings suggest the possibility of some evolutionary

mechanisms like subgenomic exchange or possibly the activation of

certain genomic regions after polyploidization (Jiang et al., 1998;

Paterson et al., 2012). Another possible explanation could be the

lack of certain genomic regions in diploid D genome species which

are crucial for the complete development of fiber cells, while the

variation within the other regions involved in various stages of fiber

development process could contribute to the QTL being identified

in the Dt subgenome in allotetraploid cotton. Future, comparative

genomics and evolutionary studies might provide more clear

insights into these possibilities.

Moreover, A02, A04, A06, A09, and A10 stayed QTL-less in the

At subgenome while in the Dt subgenome, D07, D10, and D13

didn’t show any genomic region affecting any of these 6 fiber quality

traits. A recent meta-analysis also suggested A04 and D13 to be

mostly devoid of major meta-QTL regions for these fiber quality

traits (Xu et al., 2020).
4.5 Small-effect QTL in majority

Nested JLM and MLMM were included in the study to confirm

the QTL regions which are significantly identified by multiple

methods to generate more confidence, however, PVE and QTL

effects from non-nested JLM and joint analysis of all populations

were considered mostly, because the nested JLM model yields

inflated PVE values due to the confounding of family*marker

interaction variance components with the marker variance

component (Schielzeth and Nakagawa, 2013), and MLMM

performs too conservatively in the populations with controlled

mating designs, allocating most of the genetic background effects
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to the kinship elements (Hoffman, 2013), and inflating the

estimated variance for detected QTL due to the differences in

handling of background variance as compared to the stepwise

regression in TASSELv5.2 (Bradbury et al., 2007).

All QTL detected were small effects or minor QTL with PVE

values of less than 10%. The prevalence of these small-effect QTL

strengthens the concept of the genetic complexity of inheritance for

these fiber quality traits as reported in previous studies (Chandnani

et al., 2018). However, QTL with >1.5% PVE value for joint analysis

of all populations (~1000 sample size) should be of high importance

since this parameter is greatly inflated by a decrease in sample size

from thousands to hundreds (Beavis, 1995). In particular, a QTL

detected for MIC on chromosome A11 had a PVE value of 5.3%

with a negative additive effect of 0.112 units for T1046 (Table 3),

which could significantly improve this trait if employed in

introgressive breeding, controlling for linkage drag effects if any.
4.6 Pleiotropic or multi-trait QTL-

There were several associations common or with overlapping

QTL intervals among the 6 fiber quality traits reflecting the possible

pleiotropic mode of action for a single QTL region (Scholl andMiller,

1976) or tightly linked multiple QTL (Meredith, 1977). In particular,

UHM and STR have shown 5 such potential QTL intervals on A03,

A13, D01, D02, and D03 (Table 4), the correlation analysis among

these two traits suggests a strong positive correlation (Figure 4) which

is also reported in other QTL mapping studies (Ademe et al., 2017;

Adhikari et al., 2017; Kumar et al., 2019). ChromosomeD01 had such

a QTL region possibly affecting STR and ELO, along with a significant

negative correlation among these two traits indicating the possible

action of two linked QTL such that an incremental allele for one trait

will decrease the phenotypic value of another trait. This region is

particularly important since UHM and MIC also share an

overlapping region in which a significant negative correlation

indicates a similar dual mode of action. Similarly, A08 possessed

two significant associations for MIC and UHM within 1 Mbp of

physical distance along with overlapping intervals where a significant

negative correlation indicates the possible pleiotropic mode of action.

The only QTL identified for UI also affected SFC. Such a genomic

region affecting two traits – STR and SFC, found significant

associations about 8 Mbps apart on the D04 chromosome. These

genetic regions could be of great significance, commercially assisting

with the improvement of multiple traits at the same time.
4.7 Congruence with previous studies and
novel QTL

Since we utilized the TM-1 reference genome sequence, we

referred to meta-QTL analysis performed on studies that used the

same genotype as the reference (Xu et al., 2020). An important QTL

found on the lower end of chromosome A11 (119.07-121.79 Mbp)

(Table 4) is close to a meta-QTL identified for MIC (Xu et al., 2020).

Similarly, a QTL interval identified on chromosome D03 coincides
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with a meta-QTL (meta-QTL-68 in Xu et al., 2020). Chromosome

D09 and D02 harbored two QTL (qUHM_D09 and qUHM_D02_1

respectively) which coincides largely with the only meta-QTL

identified for UHM or fiber length in these chromosomes

(Table 4) (Xu et al., 2020). An association found on D06 for

UHM at 6957599 falls within the only meta-QTL identified on

this chromosome (5.35-17.71 Mbp in XU et al., 2020). Interestingly

this association was also found to be significant for STR (Table 4).

qSTR_pop1_A03 had the overlapping interval with the only meta-

QTL identified on A03 for fiber strength. qELO_D04 was identified

close to the only meta-QTL identified on this chromosome (40.11-

48.77 Mbp in Xu et al., 2020) for ELO. Another QTL- qELO_D01_2

coincided with one of the meta-QTL identified on the D01

chromosome for ELO (Xu et al., 2020). Along with these QTL

which coincide or are located close to the verified meta-QTL, the

other novel QTL generate opportunities for future meta-analysis

studies, where the regions that are not yet confirmed to acquire the

meta-QTL status could possibly gain more confidence to emerge as

the new important consensus regions for these fiber quality traits.
4.8 Lower genetic variation for uniformity
index

As has been reported in various other studies, heritability values

for the uniformity index are comparatively lower than for other

fiber quality traits (Ademe et al., 2017; Adhikari et al., 2017; Kumar

et al., 2019), which suggests using powerful association techniques

and large sample sizes (preferably 1000 or more) along with multi-

environmental phenotyping to extract these genetic regions

precisely. This is evident in the present study where population-

specific analysis could not identify any genomic regions due to its

lower sample size (less than 200), while joint analysis identified a

QTL on the A13 chromosome with a PVE value of 3.20% across the

populations. However, there were about 11 families across 24

studied that showed superior transgressive mean values for the

predicted breeding values, indicating the possibility of multiple

small effect allelic combinations complementing each other’s effect,

as is generally considered in the case of complex quantitative traits

(Mackay et al., 2009; Paterson et al., 2012). Hence, particularly for

this trait, genomic selection techniques could potentially

complement marker-assisted selection techniques in the breeding

operations, where the former takes into account the total genetic

variation at the whole genome level rather than targeting a certain

genetic region as in the latter (Islam et al., 2020; Li et al., 2022).
4.9 Implications in cotton breeding

The results from the present study and previous studies

(McCarty et al., 1996, 2007) motivate the utilization of these

exotic lines, especially T1046, T063 and T326, in various fiber

quality improvement breeding programs. Moreover, the results

indicated these lines particularly contribute alleles that could

target multiple traits simultaneously. In addition to that, UHM
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and STR have shown a strong positive correlation among each other

and multiple QTL affecting both traits, motivating the utilization of

such QTL regions. Although the uniformity index had lower genetic

variation, the positive transgressive values indicate these lines’

potential for improving this trait. ELO had the highest proportion

of genetic variation, along with half of the total QTL detected for

this trait indicating multiple exotic alleles as the favorable ones.

Hence, this particular trait also presents a high opportunity for

improvement by the utilization of this exotic gene pool. The QTL

identified within the established meta-QTL regions strengthen their

credibility in marker-assisted selection. The results from our study

and numerous previous studies (Ademe et al., 2017; Adhikari et al.,

2017; Chandnani et al., 2018; Chee P. et al., 2005; Draye et al., 2005)

have generated enough evidence about the complexity of these fiber

quality traits such that multiple genomic regions with small effects

complement each other’s effects or regulate coordinately to

contribute to the total genetic variation (Paterson et al., 2012).

This motivates the implementation of genomic selection techniques

which will help with the utilization of cumulative effects of most of

these QTL distributed genome-wide (Islam et al., 2020; Li

et al., 2022).
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