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Robust soybean seed yield
estimation using high-
throughput ground robot videos
Jiale Feng1†, Samuel W. Blair2†, Timilehin T. Ayanlade3,
Aditya Balu3, Baskar Ganapathysubramanian3, Arti Singh2,
Soumik Sarkar1,3* and Asheesh K. Singh2*

1Department of Computer Science, Iowa State University, Ames, IA, United States, 2Department of
Agronomy, Iowa State University, Ames, IA, United States, 3Department of Mechanical Engineering,
Iowa State University, Ames, IA, United States
We present a novel method for soybean [Glycine max (L.) Merr.] yield estimation

leveraging high-throughput seed counting via computer vision and deep

learning techniques. Traditional methods for collecting yield data are labor-

intensive, costly, and prone to equipment failures at critical data collection times

and require transportation of equipment across field sites. Computer vision, the

field of teaching computers to interpret visual data, allows us to extract detailed

yield information directly from images. By treating it as a computer vision task, we

report a more efficient alternative, employing a ground robot equipped with

fisheye cameras to capture comprehensive videos of soybean plots from which

images are extracted in a variety of development programs. These images are

processed through the P2PNet-Yield model, a deep learning framework, where

we combined a feature extractionmodule (the backbone of the P2PNet-Soy) and

a yield regression module to estimate seed yields of soybean plots. Our results

are built on 2 years of yield testing plot data—8,500 plots in 2021 and 650 plots in

2023. With these datasets, our approach incorporates several innovations to

further improve the accuracy and generalizability of the seed counting and yield

estimation architecture, such as the fisheye image correction and data

augmentation with random sensor effects. The P2PNet-Yield model achieved a

genotype ranking accuracy score of up to 83%. It demonstrates up to a 32%

reduction in time to collect yield data as well as costs associated with traditional

yield estimation, offering a scalable solution for breeding programs and

agricultural productivity enhancement.
KEYWORDS

yield estimation, soybean seed counting, plant phenotyping, deep learning,
computer vision
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1 Introduction

Soybean [Glycine max (L.) Merr.] is one of the most important

crops in the world. It is a legume that serves as an excellent source of

high protein and oil for both humans and livestock (Medic et al.,

2014). For soybean cultivar development by breeders, seed yield is

one of the most critical traits for making selections and cultivar

release decisions. Current methods for gathering yield data on

experimental lines and candidate varieties require expensive

machinery, extensive travel, and prolonged equipment operation.

These are all prone to equipment breakdowns and incur high

maintenance costs (Singh et al., 2021a). The data collection

procedure involves harvesting thousands, and potentially hundreds

of thousands, of plots across multiple locations. These economic and

time burdens have motivated researchers to explore new techniques,

such as remote sensing and ground robot systems, as well as machine

learning (ML) and computer vision (CV) methods, to estimate yield

in a more efficient and cost-effective manner.

Significant improvements in machine learning and computer

vision have given breeders new approaches for cultivar

development using remote sensing platforms and ground robot

systems (Singh et al., 2021b; Ma et al., 2023; Chen et al., 2023; Sarkar

et al., 2024). On the one hand, remote sensing platforms such as

uncrewed aerial systems (UAS) offer data collection and

phenotyping tools that can be used to estimate yield (Herr et al.,

2023). On the other hand, ground robot systems utilize ground data

like field images or LiDAR data for yield prediction. This paper

focuses on using ground data to estimate yield. For the ground

robot systems, the detection and quantification of plant organs can

serve as a proxy for crop yield. Recent developments in plant organ

detection have been applied successfully in various crops, such as

apple orchards for fruit detection (Bargoti and Underwood, 2017;

Kang and Chen, 2020), grape vineyards for grape and shoot

detection (Grimm et al., 2019; Guadagna et al., 2023), sweet

pepper fruits (Sa et al., 2016), and peanuts (Puhl et al., 2021).

Applying similar detection techniques to soybean pods offers

noteworthy value to soybean breeders for soybean yield estimation.

Soybean pod count has been shown to strongly correlate with yield

(McGuire et al., 2021). However, unlike other crops, soybean pods

present unique challenges due to their smaller size and the

occlusion caused by dense foliage. As sensor technology and ML

tools advance, methods for estimating soybean pod counts as yield

are continually emerging. There have been several studies using

deep learning models and computer vision approaches to detect and

quantify soybean pods. Some used RGB imagery with a black or

white background to image pods from mature soybean plants

(Xiang et al., 2023; Zhang et al., 2023; Yu et al., 2024), while

others used similar background techniques but with potted plants

(Lu et al., 2022; He et al., 2023). Notably, Riera et al. (2021)

proposed a deep multiview image fusion architecture that

minimizes human intervention and enhances yield estimation

accuracy. This method uses a deep learning (DL) framework to

detect soybean pods and estimate yield from RGB images collected

by a mobile ground phenotyping unit. It improves the efficiency of

yield testing trials and facilitates timely data collection for breeding
Frontiers in Plant Science 02
decisions. Additionally, this approach can be integrated with drone-

based phenotyping to further reduce labor and time in breeding

programs (Li et al., 2024). Besides this, soybean researchers used

three-dimensional imaging technologies such as LiDAR to create

new phenotyping tools for soybean breeding purposes (Young et al.,

2023, 2024). A similar technique was used for soybean pod

detection by employing a depth camera to render a three-

dimensional view of an entire soybean plant (Mathew et al.,

2023). This method uses imagery to detect the distance from the

plant to the camera, creating a three-dimensional heat map that is

then used to estimate pod count. The methods mentioned above are

all based on soybean pod detection or pod counting and use that as

a proxy for yield. They have demonstrated significant potential for

accurately estimating pod count and, in some cases, providing yield

ranking estimates.

Nevertheless, a better seed yield estimate will be seed count on

standing plants. A stronger correlation between soybean yield and

the number of seeds (r = 0.92) was reported (Wei and Molin, 2020).

Researchers have developed some soybean seed detection models

(Uzal et al., 2018; Li et al., 2019). A significant limitation of these

works is their reliance on imagery of pods with either black or white

backgrounds. They have yet to be implemented in a high-

throughput data collection manner in a breeding plot field

environment. In these works, they consider seed detection as a

common object detection problem that involves locating and

identifying each individual separately. Unlike object detection,

however, a more specific task called crowd counting aims to

directly locate target objects and estimate their count in one shot.

Crowd counting approaches often perform much better in densely

populated scenes than regular object detection methods.

Considering that a soybean field is a crowded scene, researchers

from the University of Tokyo treated the seed yield estimation as a

crowd-counting problem (Zhao et al., 2023). They proposed the

P2PNet-Soy model, which was extended from P2PNet (Song et al.,

2021), for soybean seed counting. Key improvements in this model

include the integration of k-d tree postprocessing, multiscale

multireception field feature extraction, and attention mechanisms,

significantly reducing the mean absolute error (MAE). The study

underscores the importance of considering high-level and low-level

features to enhance model accuracy, demonstrating substantial

improvements in seed counting and localization performance.

However, it is yet needed to address the scale of phenotyping and

decision-making in a breeding program that requires high accuracy.

Overall, the main gaps to address in the development of a

seamless phenotyping method for seed yield estimation in a

breeding program are a) a large number of plots across different

tests, b) varying genetic variation among plant materials, c) a field

environment that is impacted by multiple weather elements

complicating data collection, and d) DL models with improved

accuracy and generalizability. Challenges exist in soybean seed

detection and quantification with computer vision and machine

learning methods. Errors in computer vision tasks can be

compounded by background noise, object occlusion, cluttered

image environments, variable lighting, and weather conditions,

among other factors. In this paper, we propose a method for
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non-destructively estimating soybean seed yield using computer

vision and deep learning. We first capture video data from a ground

robot, which will be segmented into individual video frames, i.e.,

images. We then train a DL model that detects and quantifies seeds

captured in these images and uses the estimated seed count to rank

plots for breeding decisions. Yield ranking, as opposed to direct

computation, provides breeders with an efficient way to compare

different experimental lines and candidate varieties, including their

relative performance to established checks. Our proposed approach

is a great alternative solution to combine yield. It is especially

practical and efficient when ground-robot-based imaging with our

yield estimation model (P2PNet-Yield) can be used to save time and

resources, or when absolute yield measurements are not feasible due

to time constraints or machine breakdowns.

Here are some highlights of our work. First of all, we conducted

a 3-year field experiment for data collection, which covers varying

genetic variation and field environment. During data collection, we

ensured that every side of every detected plant was imaged so seeds

occluded by plants or other pods from one side were still captured

on the opposite side. Secondly, as for the design of our deep learning

architecture, we proposed a yield estimation framework called

P2PNet-Yield, which is based on P2PNet-Soy (Zhao et al., 2023)

and the two-stage architecture of Riera et al. (2021). Thirdly, several

strategies were adopted in our model training. For example, to

enhance the generalizability of the seed detection model (P2PNet-

Soy), we trained it using image data captured under various imaging

conditions with different camera sensor effects applied. Last but not

least, our method combines high-throughput phenotyping using

ground-robot-based imaging for seed detection and quantification.

It can efficiently estimate and rank soybean yield for plant breeding

decisions to select varieties. The genotype ranking based on seed

counting and yield estimation results was conducted to evaluate the

performance of our work.

To summarize, the main contributions of our work are a) the

creation of a large-scale image dataset of soybean plants with

various genotypic traits collected over 3 years (2021 to 2023,

though the 2022 data were not used in this work); b) the

development of strategies to improve the accuracy of the seed-

counting model trained on fisheye data, including fisheye image

correction, data augmentation with random sensor effects, and a

spatial adjustment method to account for environmental variations;

and c) the creation of a yield estimation architecture (P2PNet-

Yield) that combines the backbone of the seed counting model

(P2PNet-Soy) with a custom yield estimation regressor.
2 Materials and methods

2.1 Field experiments and data collection

2.1.1 Field experiments
Field experiments consisted of plant breeding trials in the ISU

soybean breeding program. We collected data from F5 and F7 filial

generation yield plots (Singh et al., 2021a). Phenotyping was done
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in the advanced soybean yield trials near Boone, IA (42.020–93.773,

339 meters above sea level). Robot video data were captured from

two fields: a) in 2021—filial generation 5 (F5), number of yield trials

= 8,500; and b) in 2023—filial generation 7 (F7), number of yield

trials = 650. Data from the 2021 F5 field were used for the training

and testing of the seed detection model, while the 2023 F7 data were

used for yield prediction and ranking. In each year, yield trials were

in a two-row configuration with a row spacing of 0.76 m, a seed-to-

seed spacing of 3.68 cm, and 0.91-m alleyways. Plot lengths were

2.13 m in F5 and 5.18 m in the F7 generation. The plots in these

experiments represent a genetically diverse collection of breeding

populations representing elite and plant introduction parental

stocks (Singh et al., 2021c).

Each year, soybean plots were seeded on a field that had bulk

maize (Zea mays L.) the previous year. Standard ground

preparation methods were practiced. Each field was treated with a

post-planting herbicide a month after planting. In addition to

chemical weed control, manual weed control was done by

routinely visiting the plots to remove weeds.

2.1.2 Data spatial adjustment
Spatial adjustment techniques can be applied to breeding plots

to help account for environmental variations such as soil properties

and reduce non-genetic variability in our data (Carroll et al., 2024).

To account for environmental variation in our analysis, we

employed the moving grid adjustment method provided by the

mvngGrAd package (Technow, 2015). This adjustment was

performed on our ground truth plot yields, estimated total seed

counts, and estimated yields for each plot. Genotype ranking results

reported in this paper were conducted on spatially adjusted data.

Methods for estimated total seed count and estimated yields are

explained in later sections. The spatial adjustment method involves

adjusting a plot’s value based on the values of its neighboring plots

within a defined grid. This grid can be adjusted relative to the plot of

interest in the 0°, 90°, 180°, and 270° directions based on user

definition and need. For our spatial adjustment pattern, we utilized

a 5 × 5 grid, excluding the corner plots and the center plot. This grid

configuration is depicted in Figure 1. The movingGrid() function,

part of the mvngGrAd package, performs the spatial adjustment by

calculating moving means for each plot based on this grid of

neighboring plots. The adjusted phenotypic value pi,adj is

calculated using Equation 1, which is shown below:

pi,adj = pi,obs − b(xi − �x) (1)

where:
• pi,adj is the adjusted phenotypic value for entry i.

• pi,obs is the observed phenotypic value for entry i.

• b is the coefficient representing the relationship between the

growing conditions and the observed phenotypic value.

• xi is the moving mean phenotypic value for entry i,

calculated as the mean of the cells within the grid around

entry i.

• �x is the overall mean of the moving means xi.
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2.1.3 Ground-robot-based image data collection
The robot used in this experiment was the TerraSentia,

developed by EarthSense (EarthSense, Champaign, USA)

(McGuire et al., 2021). This robotic platform is equipped with

two side-facing cameras, a forward-facing camera, an upward-

facing camera, vertical and horizontal LiDAR sensors, and an

RTK GPS. Figure 2 shows the robot operating in a field. The

video cameras on this robot were fitted with fisheye lenses,

ensuring comprehensive capture of the soybean plants from the

base to the top. For this experiment, the two side-facing cameras

were utilized. Data were collected as side-view videos of soybean

plots after the entire field had reached full physiological maturity

(stage R8) (Fehr et al., 1971). Video data were collected by manually

navigating the robot between each row of soybeans (Figure 3a).

Videos were recorded at a resolution of 1,920 × 1,080 pixels. Each

traverse of the robot through the field resulted in a continuous video

recording, which we will refer to henceforth as a “collection.”
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Each collection began at the start of a pass and ended once the

robot reached the end of that pass. The robot was maneuvered in a

serpentine pattern to ensure imaging of both sides of every row in

each plot. This approach aimed to capture pods that might have

been obstructed from one side but were visible from the other. The

dual side-mounted cameras on the TerraSentia allowed us to

achieve this with a minimum number of collections. Although a

single collection captures multiple plots, three collections were

needed to fully capture any one plot.

2.1.4 Data preprocessing
Following the collection of video data, individual frames were

extracted from each video using Python scripts. As previously

mentioned, these frames were captured using fisheye lenses, which

introduced distortion artifacts. To achieve accurate seed counts

and yield estimations, it was essential to remove these distortions.

An OpenCV (Bradski, 2020) tool was employed to calibrate the
FIGURE 2

This figure demonstrates the pipeline from in-field data collection and the postprocessing needed for use in our P2PNet-Yield model. The first figure
shows our TerraSentia robot operating in a mature soybean field. As the robot moves through the field, the two side-mounted cameras collect
fisheye video data. Individual frames are then extracted, corrected for fisheye distortion, and cropped to remove blurry edges.
FIGURE 1

Example of our spatial adjustment grid pattern. Highlighted cells represent plots used in the spatial adjustment. The center cell that is not highlighted
represents the cell being adjusted.
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images, correcting for fisheye lens distortion. Calibration was

conducted using a standard checkerboard pattern, with multiple

images captured from varying angles and distances to ensure

precise calibration. This was done in accordance with a pre-

existing method (Jiang, 2017). Through this calibration process,

the intrinsic camera parameters of the fisheye camera were

obtained: the focal length (fx, fy) in pixels is (410,410), and the

principal point (px, py) in pixels is (383,526). Using these

parameters, the fisheye distortion was effectively corrected (see

Figure 2). After correcting the fisheye distortion, the edges along

the sides, as well as the top and bottom of the images, were left

blurry and sometimes still distorted. A central area measuring

1,000 × 1,000 pixels was then cropped. It was later utilized for

image annotation, training, and total seed count (TSC)
Frontiers in Plant Science 05
estimations. This ensured that the outside blurred regions were

removed, mitigating the background noise (see Figure 2).

Each calibrated frame was then assigned to its respective plot

using the on-board vertical LiDAR sensor to detect the start and

stop points of each plot. These start and stop points were

generated by EarthSense’s proprietary data processing tools.

They were provided as a CSV file containing a series of time

points representing the start and stop times for each plot. Each

frame in the video was associated with a corresponding time point.

Python scripts were used to extract these time points and their

associated frames, organizing each set of images into their

respective plots. We manually proofed the accuracy of the plot

segmentation data provided by EarthSense by randomly checking

approximately 50% of the images, and no discrepancies

were found.
a

b

FIGURE 3

(a) The data collection process for a single plot. The yellow-highlighted cameras represent video sections belonging to the center plot. Gray-
highlighted cameras represent video of the other plots. Three collections in total are needed to fully capture a single plot. Automatic postprocessing
with Python scripts organized these videos into their respective plots. Arrows represent the direction of robot movement. (b) The image data
sampling process for a single plot. Each row was equidistantly divided into eight sections using seven splitters, with images from the middle five
splitters chosen for analysis. (The first and last splitters were excluded.) The two rows of the same plot were connected and treated as one single
row, resulting in 10 images per side and 20 images per plot.
frontiersin.org
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Once organized by plot, the images were further sorted by their

respective row and side assignments. Specifically, the plot images

were organized first by plot name (range, pass), then by row number

(1 or 2), and by row side (A or B). This resulted in four sets of

images, each set containing approximately 100 images, or

approximately 400 images per plot. In total, 338,793 images were

generated from the F7 generation material in 2023. Plots from 2023

were used to test the accuracy of the seed count and yield estimation

model in ranking genotype yield.

Given that the number of images per plot could be large, a

selection process was employed for seed counting and yield

estimation. As illustrated in Figure 3b, each row was equidistantly

divided into eight sections using seven splitters, with images from

the middle five splitters chosen for analysis. The two rows of the

same plot were treated as a single row, resulting in 10 images per

side and 20 images per plot. These 20 sample images were evenly

distributed across the plot, containing the most representative

information. The first and last splitters were excluded from the

analysis, as they were too close to the start or end of each row and

occasionally did not contain any plants.

2.1.5 Seed count annotations and ground truth
yield data collection

From the set of images captured from the F5 generation material

in 2021, a subset of 1,200 images was randomly selected for seed

annotation. Expert raters conducted these annotations, marking only

visible soybean seeds in each image using point annotations. The

annotations were facilitated by the Label Studio software

(HumanSignal, Inc, 2023). Only seeds that were clearly discernible

by human raters were annotated. Seeds that were too indistinct to

separate and the ones located in background plots were excluded (see

Figure 4). This subset of images was taken at any time of day from

8:00 a.m. to 6:00 p.m. It represents a range of weather and lighting

conditions, as well as varying levels of soybean lodging and occlusion.

The genotypes captured in these images exhibit diverse pubescence

and pod wall colors. The images were selected across the plot,

ensuring the inclusion of both seed-rich and seed-scarce images.

This strategy enhances the model’s ability to detect seeds under a

wide variety of conditions, thereby improving its generalizability.

A set of ground truth data was collected for yield. Ground truth

yield data for each plot were obtained using either a Zurn (Zürn

Harvesting, Schöntal-Westernhausen, Baden-Württemberg,

Germany) or Almaco (Almaco, Nevada, IA, USA) plot combine,

which provided seed yield measurements in kilograms for each plot.

Ground truth yield data were collected for all plots imaged by the

TerraSentia (see Section 2.1.3). To ensure consistency in yield

measurements across fields with varying plot sizes, yields were

adjusted to 13% moisture and converted to metric tons/hectare

(MT/ha) for each harvested plot.
2.2 Seed counting on fisheye data

The undistortion process applied to the fisheye images resulted

in more consistent patterns of soybean seeds. This consistency
Frontiers in Plant Science 06
made it easier to train the feature extraction backbone of the seed

counting model, P2PNet-Soy (Zhao et al., 2023). The model’s

pretrained weights were utilized to further enhance training

efficiency. We trained the P2PNet-Soy model on our corrected

image data to help it learn feature maps that contain relevant

information about the seeds.

To prepare the training datasets, we augmented our original

corrected image dataset by applying random camera sensor effects,

such as noise, blurring, chromatic aberration, and exposure

adjustment (Carlson et al., 2018). The purpose of this data

augmentation strategy was to reduce the differences between

images captured by different cameras in varying environments.

For instance, noise was added to simulate the common artifacts

found in low-quality images due to sensor limitations. Blurring

could reduce edge sharpness to account for motion or focus issues.

Chromatic aberration was introduced to replicate the color fringing

caused by lens imperfections, and exposure adjustments helped

simulate changes in lighting conditions or camera quality.

The data augmentation process started with our original dataset.

With data augmentation, we obtained the augmented datasets, which

include both the original images and those modified by these camera

sensor effects. Each original image has one augmented version with

various sensor effects applied. Instead of uniformly applying these

effects to all images, we introduced variability by randomly adjusting

the intensities of each effect. These augmentations were implemented

using a tool developed by Carlson et al. (2018), which can

automatically select random parameter settings for each effect. By

incorporating these augmentations, we aimed to make our model

more robust to variations in image quality across different cameras

and environments. The improvements brought about by this

augmentation technique are discussed in Section 3.1.
FIGURE 4

Example of an expertly annotated image. All seeds clearly
discernible to the naked eye were annotated using point
annotations. This image illustrates a calibrated and cropped frame
with soybean seeds annotated in red.
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With the augmented data, we prepared three datasets for

training: UTokyo, ISU2021, and ISU2021-Aug. The UTokyo

dataset includes 126 images for training and 27 for evaluation,

which was provided by the University of Tokyo team who

introduced P2PNet-Soy (Zhao et al., 2023). The ISU2021 dataset

comprises 1,200 annotated images from the 2021 F5 field, divided

into two subsets: 1,007 images for training and 193 for evaluation.

The ISU2021-Aug dataset was created by applying camera sensor

effects to our ISU2021 dataset and consisted of augmented versions

of the 1,007 training images from ISU2021.

We trained the seed counting model on four different

combinations of these three datasets to identify the best model for

seed detection and counting. These four combinations were

ISU_NO_AUG (using only the ISU2021 data), MIX_NO_AUG

(using ISU2021 and UTokyo), ISU_AUG (using ISU2021 and

ISU2021-Aug), and MIX_AUG (using ISU2021, ISU2021-Aug, and

UTokyo). During training, the weights from the original P2PNet-Soy

model were employed, and most hyperparameters were kept at their

default settings. For each combination, the model was trained for 100

epochs. The model was validated using the mean squared error

(MSE), mean absolute error (MAE), and mean absolute percentage

error (MAPE), which can be found in Section 3.1.
2.3 Yield estimation architecture

Inspired by previous works (Riera et al., 2021), our DL

architecture for yield estimation, named P2PNetYield, consists of

two modules: the feature extraction module and the yield regression

module. The architecture is depicted in Figure 5. The backbone of
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the seed counting model (P2PNet-Soy) serves as the feature

extraction module. The feature map extracted by this module

contains valuable information that can be used for seed detection.

For each plot, we applied our feature extraction module to the 20

sample images selected (as discussed in Section 2.1.4), obtaining 20

feature maps.

Once these feature maps were obtained, the next task was to

predict yield using these feature maps. To fuse information from

these feature maps, we summed the 10 feature maps from the same

side and then concatenated them. The fused feature map was then

fed into the yield regression module. The yield regression module

consists of one convolution layer (conv) followed by a max-pooling

layer, which is then flattened and followed by three fully connected

layers (fc1, fc2, and fc3). The output of the yield regression module

is the yield (in MT/ha) for the plot. During training, the layers in the

feature extraction module were frozen. The batch size was set to 8,

and the models were trained for 50 epochs. We adopted the Adam

optimizer (Kingma and Ba, 2014) and used element-wise mean

squared error as our loss function.

As described above, seed counts do not serve as a direct

intermediate parameter in our yield estimation architecture. Our

approach begins by fine-tuning P2PNet-Soy to accurately detect

and count soybean seeds, ensuring that its backbone effectively

extracts meaningful features (as discussed in Section 2.2). We then

freeze the backbone’s weights and introduce our yield regression

module, forming the P2PNet-Yield architecture. This regression

module directly utilizes the extracted feature map, rather than seed

counts, to predict yield. Therefore, while seed counts are the output

of P2PNet-Soy, they are neither our final nor intermediate output of

P2PNet-Yield.
FIGURE 5

Our architecture, P2PNet-Yield, for soybean yield estimation. Training consists of two phases: first, training the P2PNet-Soy model so that its
backbone (used as our feature extraction module) can extract useful information related to soybean seeds in the foreground; second, training our
yield regression module to estimate yield values from the output feature maps of the feature extraction module.
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The primary goal of this work is to provide an accurate yield

ranking for guiding crop breeding programs, rather than chasing

very precise seed count or yield values. Therefore, using only 20

images per plot may be insufficient for precisely estimating the total

seed count and yield but should be enough for yield ranking

prediction. The final yield ranking performance of P2PNet-Yield

depends more on the feature extraction capability than on absolute

seed counts. In other words, it is about how well the model (i.e., the

backbone of P2PNet-Soy) can extract meaningful features that

correlate with yield ranking (such as the distribution and size of

the seeds, rather than only the absolute counts).
3 Results

The training and testing experiments of our deep learning

architecture utilized the PyTorch library version 1.8.0 with CUDA

11.1 support for an NVIDIA GPU. For all the results presented in

this section, we used an NVIDIA A100 GPU with 80 GB VRAM

running on a CPU with Intel Skylake Xeon processors with 512

GB RAM.

To evaluate our approach and explore possible improvement,

we conducted a multistage experiment: 1) fine-tuning P2PNet-Soy

(Section 3.1), 2) evaluating yield ranking accuracy (Section 3.2), and

3) investigating performance improvement (Section 3.3).
3.1 Seed counting

We first assessed the performance of the seed counting model

(P2PNet-Soy) on our data in seed detection and counting, ensuring

its backbone was suitable for our yield prediction architecture. In

this stage, annotated seed counts in 1,200 images randomly selected

from the 2021 F5 data were considered ground truth (Section 2.1.5).

Our test set consists of 100 mixed images, with a 5:1 ratio of

ISU2021 to UTokyo images, ensuring diverse evaluation conditions.

All test images were manually annotated and counted. No

augmented images were included in this test dataset. The goal of

the evaluation in this stage was to see if the model’s ability to

generalize real-world data is improved.

In our experiments, we noticed that the P2PNet-Soy model

trained on our corrected fisheye images without any data

augmentation did not generalize well and showed overcounting

issues during testing (as shown in Figure 6A). Specifically, the

P2PNet-Soy model struggled to distinguish between foreground

and background soybean plants, leading to persistent seed detection

in the background. This was likely due to differences in cameras and

imaging conditions across the test datasets, which included images

randomly selected from both our datasets and the one from the

P2PNet-Soy team.

With data augmentation utilizing camera sensor effects, the

performance of the seed counting model was improved. As

discussed in Section 2.2, MSE, MAE, and MAPE were calculated

to evaluate the fine-tuned P2PNet-Soy model trained on different

combinations of the training datasets. For all three metrics,
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augmentation improved the model performance, i.e., ISU_AUG

was better than ISU_NO_AUG, and MIX_AUG was better than

MIX_NO_AUG (Table 1). Larger datasets with more

environmental variations performed better than smaller data, i.e.,

MIX_NO_AUG was better than ISU_NO_AUG, and MIX_AUG

was better than ISU_AUG (Table 1). The MSE, MAE, and MAPE

were lowest for MIX_AUG. Meanwhile, MIX_NO_AUG and

ISU_AUG had similar performance with slightly better MSE and

MAE for ISU_NO_AUG (Table 1).

These results were visualized through correlation plots that plot

the ground truth and estimated counts for each of the four dataset

combinations (Figure 6). The correlations from ISU_NO_AUG

showed an upward bias in the estimated counts, particularly at

higher seed count values (R2 value of 0.80, Figure 6a). The

ISU_AUG had less bias, although still trending of overestimating

at higher seed count values, but did not show a tighter fit to the

regression line (R2 value of 0.87, Figure 6c). The MIX_NO_AUG

tended to overestimate at lower values (R2 value of 0.77, Figure 6b).

The best fit was noted for the MIX_AUG dataset combination with

the highest R2 (R2 value of 0.87, Figure 6d). The p-values of these

four combinations were all smaller than 0.001. This confirms that

there is a significant linear relationship between the ground truth

and predicted seed counts. The plots of residuals with ground truth

seed counts, which can be found in the Supplementary Materials,

showed that the model trained on MIX_AUG, i.e., mixed datasets

with data augmentation, performed the best.

The results indicated that the model trained on mixed datasets

with data augmentation performed best as per MSE, MAE, and

MAPE; correlations; and residual plots. Data augmentation using

camera sensor effects effectively reduced overcounting. Errors were

further minimized by combining data from different sources.
3.2 Applications in plant breeding
and selection

The application of P2PNet-Soy (Zhao et al., 2023) and our

P2PNet-Yield model was tested in two scenarios to demonstrate

their usefulness in a variety of development plant breeding

programs. Our evaluation focused on yield ranking accuracy, not

absolute yield estimation. Both models’ backbones used the weights

trained on the MIX_AUG dataset combination.

In the first scenario, we used the P2PNet-Soy model for seed

counting to assign ranks for experimental lines, followed by

breeding selection decisions. The TSC of each plot here is not the

actual seed count of the whole plot. We summed the seed counts

detected by P2PNet-Soy across 20 images as a proxy for yield for

each plot and evaluated yield ranking performance.

In the second scenario, we used the P2PNet-Yield model to

estimate seed yield (MT/ha) and assigned ranks for the

experimental lines to make breeding selection decisions. In other

words, we directly fed the 20 sample images of each plot into our

P2PNet-Yield model, which predicted a single estimated yield value

for yield ranking.
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We report an R2 value of 0.02 between estimated values of total

seed counts from P2PNet-Soy and estimated yield from P2PNet-

Yield (Figure 7). We evaluated three essential selection metrics—

accuracy, sensitivity, and specificity—using selection thresholds of

30%, 20%, and 10%. To clarify how we define true positives (TP),

false positives (FP), true negatives (TN), and false negatives (FN) in

this context, here is an example. For a given selection threshold (e.g.,

10%), the ground truth is the correct classification of top-

performing vs. lower-performing genotypes/genetic materials: 1)

TP: correctly identified top 10% genotypes; 2) FP: poor-performing

genotypes incorrectly classified as top 10%; 3) TN: correctly
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identified lower 90% genotypes; an 4) FN: top-performing

genotypes incorrectly classified as lower 90%. These metrics were

calculated using spatially adjusted ground truth plot yields and

spatially adjusted TSC from the 2023 F7 material, as these advanced

yield tests were grown with two replications.

3.2.1 Variety ranking and selections based on
seed counting using P2PNet-Soy

Accuracy and specificity scores were relatively high across all

three selection thresholds. We note that when the selection threshold

becomes more stringent, accuracy and specificity scores increase,

while the inverse is true for sensitivity. At 10%, 20%, and 30%

selection cutoff, the accuracy values were 0.86, 0.76, and 0.70,

respectively. Similarly, the specificity values were highest at a more

stringent cutoff (0.92 at 10%, 0.85 at 20%, and 0.78 at 30%). In

contrast, sensitivity scores progressively increased as the selection

cutoffs were increased, i.e., 0.31 at 10%, 0.40 at 20%, and 0.50 at 30%

(Figure 8a). The number of observations for TP and TN was the

highest at the 10% cutoff, and the total number of correct classes (i.e.,

TP and TN) reduced at 20% and were the lowest at the 30% cutoff

(Table 2; Figure 9). The FP and FN values were nearly identical within

each selection threshold and increased from 10% to 30%.
TABLE 1 Testing results (MSE, MAE and MAPE) of the models trained on
different combinations of the datasets.

Combination MSE MAE MAPE (%)

ISU_NO_AUG 4,277.83 54.93 41.26

MIX_NO_AUG 1,734.11 34.89 28.72

ISU_AUG 1,858.16 36.26 28.64

MIX_AUG 596.94 20.54 15.50
a b

c d

FIGURE 6

Correlations between ground truth and estimated seed counts of models trained on different combinations of the datasets. The combination details
can be found in Section 2.2. Results show that the model trained on mixed datasets with data augmentation performs the best. (a) ISU_NO_AUG; (b)
MIX_NO_AUG; (c) ISU_AUG; (d) MIX_AUG.
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3.2.2 Variety ranking and selections based on
yield estimation using P2PNet-Yield

In addition to the analysis based on estimated TSC, we also

evaluated genotype ranking based on estimated yield. When using

our proposed P2PNet-Yield model, we note that as the selection

threshold becomes more stringent, accuracy and specificity scores

increase while the inverse is true for sensitivity. Accuracy and

specificity scores were high across all three selection thresholds.

At 10%, 20%, and 30% selection cutoff, the accuracy values were

0.83, 0.70, and 0.60, respectively. Similarly, the specificity values

were the highest at a more stringent cutoff (0.91 at 10%, 0.81 at 20%,

and 0.71 at 30%). In contrast, sensitivity scores progressively

increased as the selection cutoffs were increased, i.e., 0.17 at 10%,

0.25 at 20%, and 0.33 at 30% (Figure 8b). The number of

observations for TP and TN was the highest at the 10% cutoff,

and the total number of correct classes (i.e., TP and TN) reduced at

20% and were the lowest at the 30% cutoff (Table 2). The FP and FN

values were nearly identical within each selection threshold and

increased from 10% to 30%. Overall, the trends from the P2PNet-

Yield results were similar to P2PNet-Soy.
3.3 P2PNet-Yield performance under
optimal conditions

To assess the P2PNet-Yield model’s performance, we manually

curated a subset of 200 plots from the 2023 F7 dataset which

included 650 plots, i.e., we used 30% plots for this analysis. These

plots did not have any anomalies, such as severe lodging and severe

disease. During planting, harvest, and intermediate periods, notes

were recorded for the plots exhibiting unique issues or
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characteristics, such as disease, lodging, or large gaps (>0.5 m

gaps) of missing plants in the harvested rows. We also excluded

plots with bad imaging caused by overexposure or camera

misplacement. This resulted in a refined dataset comprising 100

plots for training and 100 plots for testing for our P2PNet-Yield

model. The R2 value was 0.38 between the estimated yield and

ground truth yield for these plots and the MSE was 6.53. The p-

value was smaller than 0.001, indicating that the relationship is

highly statistically significant. No correlation was noted in the

uncurated dataset (Figure 10). Although a manual selection was

made to select high-quality plots from the dataset, these results

demonstrated the potential efficacy of this architecture in yield

estimation in high-quality field experiments.
4 Discussion

Much of the related research in yield or yield-related trait

estimation relies on controlled imaging environments to estimate

pod or seed counts (Li et al., 2019; Uzal et al., 2018; Zhang et al.,

2023). These studies typically use imagery of harvested soybean

pods against a uniform white or black background to train detection

and quantification models. This approach simplifies seed detection

by eliminating background noise and ensuring high-quality image.

Other research expands on this by imaging entire soybean plants

post-maturity (Xiang et al., 2023; Yu et al., 2024). In these cases, the

entire plant is captured against a black background, allowing for

pod detection across the whole plant.

Field-based studies often utilize small plots and relatively small

datasets. Researchers have employed ground robots to extend this

approach to larger plots (Riera et al., 2021; McGuire et al., 2021).

These experiments focused on detecting soybean pods. Our research

builds upon these efforts by introducing a novel pipeline for seed

detection in a variety of development programs with field-based

experiments, moving beyond controlled environment settings. While

research has been done to present seed counting methods for yield

estimation in a field environment, it was built on a small dataset (24

accessions; 374 images of individual plants) and lacked a high-

throughput data collection method (Zhao et al., 2023). Our work is

the first to implement seed counting as a high-throughput method for

yield estimation in non-controlled environments and to analyze

full-sized breeding plots for cultivar development purposes.

Utilizing small ground robots, our research presents a method

of yield data collection that is approximately 50% faster than

traditional two-row plot combine harvesting methods. These time

savings can be multiplied by the number of robots deployed.

Another benefit of operating small ground robots is the ease of

operation versus traditional plot combines, which require much

more intensive training to operate accurately and safely. The

operation of these small robots is also much safer as injuries and

fatalities caused by blind-spot accidents is a great concern in

traditional plot combines (Ehlers and Field, 2017). These robots

are also much cheaper to purchase and are easier and less costly to

maintain and repair.
FIGURE 7

Correlation between estimated TSC and estimated yield (metric tons
per hectare) for the 650 plots from the 2023 F7 field with a
correlation coefficient of 0.14.
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a

b

FIGURE 8

Ranking scores for 10%, 20%, and 30% selection thresholds using (a) TSC and (b) estimated yield. Scores are computed using spatially adjusted
ground truth yields, TSC, and estimated yields.
TABLE 2 True-positive (TP), true-negative (TN), false-positive (FP), and false-negative (FN) values were calculated using a 10%, 20%, and 30% selection
threshold based on estimated TSC and estimated yield ranking.

10% Threshold 20% Threshold 30% Threshold

Estimated TSC

TP
TN
FP
FN

20
540
45
45

52
441
78
79

97
357
98
98

Estimated yield

TP
TN
FP
FN

11
531
54
54

33
423
97
97

65
325
130
130
F
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We proposed an innovative approach for estimating soybean

seed yield using fisheye imagery data to detect seeds and estimate

yield. Fisheye images, while providing comprehensive plant

information, pose significant challenges due to distortion. To

overcome this, we calibrated the fisheye camera to correct the

images. Besides this, we improved the diversity of imaging

conditions through data augmentation with camera sensor effects

to enhance the generalization of the seed counting model. Our

experiments with various dataset combinations revealed that

models trained on mixed datasets with data augmentation yielded

the best performance.
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We designed an architecture integrating a feature extraction

module and a yield regression module, demonstrating satisfactory

yield estimation. Our results on seed counts and seed yield per

area are similar to those previously achieved with pod counting

using a ground robot (Riera et al., 2021). Our genotype ranking

analysis indicates that both estimated TSC and estimated yield are

effective for down-selecting poorly performing lines, which is

similar to what was previously reported with image-based pod

counting (Riera et al., 2021). Although both P2PNet-Soy and

P2PNet-Yield methods exhibit low sensitivity scores—suggesting

that both methods are suboptimal for identifying top-performing

lines—high specificity scores confirm their utility in eliminating

the poor-performing lines. This is particularly useful in early-stage

yield trials. While TSC as a selection method performs marginally
a

b

c

FIGURE 9

Venn diagrams showing actual versus estimated highest yielding
lines using (a) 10%, (b) 20%, and (c) 30% selection threshold using
TSC as an estimate for yield ranking.
a

b

FIGURE 10

Yield estimation results on (a) all and (b) 100 selected plots from the
2023 dataset, which demonstrate the potential effectiveness of our
P2PNet-Yield architecture in yield estimation under
optimal conditions.
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better in all three selection metrics than estimated yield (MT/ha)

using the same dataset, our P2PNet-Yield model, when trained

and tested on high-quality plots, exhibits a higher correlation

between estimated and actual yields. We report the reasonable

capability of our P2PNet-Yield model to estimate yield similar to

the plot combine yield, at least in ranks, which is useful for a plant

breeder to make selection decisions. These results also highlight

the importance of high-quality data for optimal performance.

However, our work has several limitations and areas for

improvement. First of all, the seed detection and counting model

is highly dependent on image quality. The accuracy of seed counting

deteriorates when parts of the soybean plants are obscured due to

poor lighting or occlusion. This is because the feature extraction

module may struggle to extract good feature maps with seed

information in these challenging areas. Additionally, our use of

fisheye lenses for comprehensive plant capture introduces

challenges. The use of fisheye lenses, even after correction, leaves

our images with distorted and blurry edges, requiring cropping to

remove these regions. This process results in data loss from the very

top and bottom of the images, limiting the model’s ability to detect

seeds in these regions. Using a higher-resolution fisheye camera

system would eliminate these blurry edges and would no longer

require cropping and, therefore, no data loss. This could increase

estimated TSC and yield (MT/ha) accuracy, improving

yield ranking.

Another limitation arises during the seed annotation process,

which was the inability to annotate every seed. Annotators were

instructed to only make point annotations on seeds that were clearly

discernible from other seeds. Due to an insufficient camera

resolution, there were cases in which pods were clearly present in

the plot of interest but seeds within those plots were not discernible.

In other words, a pod may be visible in the image but the shapes and

shadows that would indicate one seed from another may not have

been detectable. In these cases, the seeds were not annotated. This

likely is leading to a certain amount of seeds not being detected by

our model and lowering the yield ranking accuracies. With a better

camera system, these cases of undetectable seeds can be eliminated

or at least minimized.

The data augmentation techniques through integrating random

sensor effects are designed to enhance model robustness against

common distortions observed in our dataset; however, they may not

capture the full complexity of real-world variations. Our approach

primarily focuses on replicating the key sensor artifacts present in

our data, such as noise, blur, and exposure variations. Nevertheless,

unforeseen scenarios may still pose challenges. Future work could

explore more advanced augmentation strategies, such as physics-

based simulations (Ma and Liu, 2020) or generative models, to

further improve model generalization.

The current methods for sampling and feature fusion are based

on experience and could be optimized. To be more specific, the

number of splitters in data sampling (currently 20 per plot) and

how we combine the 20 feature maps of sample images for each plot

is worth further exploration and may provide an improved method

for sample collection. The use of the 20 feature maps was done to

avoid overcounting of seeds and was calculated based on the
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coverage of the camera and speed of the robot. This is an

imperfect system due to the rugged terrain the robot operated in.

While operating the robot, wet soil conditions may have caused

slippage or accidental crashes into plots that would impact the

average speed through any given plot and affect the accuracy of

alignment of these 20 feature maps for certain plots. One benefit of

using this system is that it allows each plot to be seen from every

angle. In other words, we have four sets of feature maps. In our two-

row plot configuration, each side of each row is imaged. This was

done to ensure that every seed on the plot is viewed from at least

one angle, as seeds only viewed from one angle may not be visible

due to occlusion from other plant features such as stems or pods.

While this reduces the chance for undercounting, it may lead to

overcounting issues in cases where seeds are imaged from

both angles.

To improve our approach, additional factors such as seed size and

weight could be incorporated. Researchers have developed a transfer

learning approach to automatically detect seed size in controlled

imaging environments (Yang et al., 2021). Other researchers have

expanded on this research by using imagery of soybean pods to detect

pod width and length (Yang et al., 2022; Ning et al., 2022). Including

these additional data points would provide amore comprehensive yield

estimation model, improving the accuracy of selection decisions by

capturing key phenotypic traits that influence overall yield. Utilizing

additional data points, such as vegetative indices from hyperspectral

imagery and soil conditions, could also provide additional

improvements in a yield estimation model (Gupta and Singh, 2023;

Chattopadhyay et al., 2023).

Unmanned aerial vehicles (UAVs) also play a vital role in

modern yield prediction for breeding plots. Due to their rapid

field-sensing capabilities, UAVs can survey numerous plots within

minutes, making them an efficient tool for in-season data

collection. Previous studies have demonstrated the effectiveness

of using vegetative indices (Maimaitijiang et al., 2020), canopy

texture data (Alabi et al., 2022), and canopy area (Yu et al., 2016)

as inputs for machine learning-based soybean seed yield

prediction models. Integrating in-season UAV scouting with our

late-season seed detection and yield estimation model could

potentially enhance yield prediction accuracy. However, UAVs

often operate at heights over 30 m, which limits the visibility of

lower plant regions and lacks the ability to sense fine details, such

as individual seeds within pods, due to canopy overlap. Recent

advancements, using UAV imagery angled at 53°–58°from

approximately 4 m, have shown promise in detecting soybean

pods (Li et al., 2024). This suggests that future improvements in

camera technology could make UAV platforms compatible with

high-resolution models like P2PNet-Yield, thereby decreasing the

time needed to scout a field.

Operating at a speed of 4 kph, the TerraSentia robot has a

battery life of approximately 2.5 to 3 h. With a 2-TB onboard

storage capacity, the robot is capable of storing approximately 12 h

of collected data before requiring offloading to an external storage

device. Tasks such as recharging, battery swapping, and data

offloading add time to the data collection process and limit the

number of plots an operator can image per session. To streamline
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and integrate these processes, our proposed data collection pipeline

could be embedded within a farm-wide data network, utilizing edge

and cloud computing to automate data offloading and potentially

enable real-time yield estimation (Singh et al., 2024). Citizen science

networks have already shown the effectiveness of collaborative

efforts in enhancing crop management and plant health

(Chiranjeevi et al., 2023). Establishing farm networks can provide

farmers with comprehensive information on optimal crop

management practices. Deploying our model in a networked

setting would allow it to be trained across more diverse genetic

material, thus enhancing both the generalizability and accuracy of

our model. By incorporating a wide range of genetic diversity and

deploying our model across multiple environments, our yield

estimation framework could significantly contribute to increased

genetic gain (Krause et al., 2023).

Previous research has utilized depth cameras to detect soybean

pods (Mathew et al., 2023). A promising direction for future work

would be to implement this approach as part of a two-stage

system: the depth camera could first locate pods, and then our

P2PNet-Yield model could focus specifically on these areas to

identify seeds within the pods more accurately. Similar 3D

imaging techniques, such as LiDAR, have been used to create

full 3D reconstructions of soybean plants (Young et al., 2024,

2023). Integrating our yield estimation model with these 3D plant

structures could support breeders in developing enhanced

soybean varieties, enabling the creation of an optimized crop

ideotype for breeding (Singh et al., 2021d).
5 Conclusion

Traditional yield data collection methods are often costly, time-

consuming, and susceptible to equipment malfunctions and

maintenance issues. Our research introduces an innovative

pipeline that streamlines the yield collection process, offering a

more efficient and cost-effective solution for yield estimation and

analysis. Specifically, we propose the P2PNet-Yield for seed yield

estimation in soybean plots. We developed an end-to-end pipeline

that demonstrates the effectiveness of ground robots for high-

throughput soybean imaging, seed counting, and yield estimation.

Additionally, we illustrated the application of seed counts and yield

estimation for effective variety selection, particularly in discarding

poor-performing varieties. In the future, as these ground-robot-

based imaging platforms and DL methods continually improve,

plant breeders will be able to forego combine harvesting at some

locations and instead use P2PNet-Yield or related systems to obtain

seed yield data.
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