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Identification of yellow vein
clearing disease in lemons based
on hyperspectral imaging and
deep learning
Xunlan Li, Fangfang Peng, Zhaoxin Wei and Guohui Han*

Research Institute of Pomology, Chongqing Academy of Agricultural Sciences, Chongqing, China
Hyperspectral imaging (HSI) technology has great potential for the efficient and

accurate detection of plant diseases. To date, no studies have reported the

identification of yellow vein clearing disease (YVCD) in lemon plants by using

hyperspectral imaging. A major challenge in leveraging HSI for rapid disease

diagnosis lies in efficiently processing high-dimensional data without

compromising classification accuracy. In this study, hyperspectral feature

extraction is optimized by introducing a novel hybrid 3D-2D-LcNet

architecture combined with three-dimensional (3D) and two-dimensional (2D)

convolutional layers—a methodological advancement over conventional single-

mode CNNs. The competitive adaptive reweighted sampling (CARS) and

successive projection algorithm (SPA) were utilized to reduce the

dimensionality of hyperspectral images and select the feature wavelengths for

YVCD diagnosis. The spectra and hyperspectral images retrieved through feature

wavelength selection were separately employed for the modeling process by

using machine learning algorithms and convolutional neural network algorithms

(CNN). Machine learning algorithms (such as support vector machine and partial

least squares discriminant analysis) and convolutional neural network algorithms

(CNN) (including 3D-ShuffleNetV2, 2D-LcNet and 2D-ShuffleNetV2) were

utilized for comparison analysis. The results showed that CNN-based models

have achieved an accuracy ranging from 93.90% to 97.35%, significantly

outperforming machine learning approaches (ranging from 68.83% to 93.52%).

Notably, the hybrid 3D-2D-LcNet has achieved the highest accuracy of 97.35%

(CARS) and 96.86% (SPA), while reducing computational costs compared to 3D-

CNNs. These findings suggest that hybrid 3D-2D-LcNet effectively balances

computational complexity with feature extraction efficacy and robustness

when handling spectral data of different wavelengths. Overall, this study offers

insights into the rapidly processing hyperspectral images, thus presenting a

promising method.
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1 Introduction

Lemon (C. limon), a widely cultivated popular fruit, faces a

significant threat from the citrus yellow vein clearing virus

(CYVCV), which has caused substantial losses to the lemon

industry, particularly in China and other major production

countries (Liu et al., 2020). This disease severely affects the health

and yield of lemon trees, often leading to orchard destruction. The

affected areas are gradually expanding in major production regions

such as China, India, and Pakistan (Liu et al., 2020). Moreover, no

effective pesticides have been found to combat this viral disease

once the trees become infected. The primary method for controlling

the yellow vein clearing disease (YVCD) in lemons involves

identification, quarantine and eradication of diseased trees.

Currently, the traditional manual survey method and polymerase

chain reaction (PCR)-based molecular technique (Chen et al., 2016;

Afloukou and Önelge, 2021) are the main methods for identifying

YVCD in lemons. Current methods such as manual survey and

PCR-based detection have their limitations in light of time and cost

invested, and environmental concerns, which has reduced their

practical applicability for large-scale early diagnosis (Martinelli

et al., 2015). Furthermore, multiple diseases often co-occur on a

single lemon tree, of which the leaves exhibit the complex

symptoms of YVCD and other diseases, thus making it more

difficult to identify YVCD. Rapidly and accurately identifying a

disease from leaves exhibiting complex symptoms is essential for

effective disease control, which provides valuable guidance for

orchard field management. There is an urgent need to develop

more effective methods for YVCD detection when it comes to

supporting the sustainable development of the lemon industry.

In recent years, optical and imaging techniques have been

widely applied to the rapid identification of plant diseases

(Pereira et al., 2011; Calderón et al., 2013; Poblete et al., 2021;

Vallejo-Pérez et al., 2021). Hyperspectral imaging (HSI) technology

surpasses the traditional imaging and spectroscopy techniques

owing to its superior spectral resolution and broader wavelength

ranges. HSI can acquire both spatial and spectral information of the

plant tissue (Thomas et al., 2018). These advantages allow HSI to

capture spectral changes caused by subtle alterations in plant

physiological and metabolic status, which is conducive to more

accurate and earlier detection of plant diseases (Mishra et al., 2017).

HSI has been proven effective in identifying citrus diseases. For

example, Weng et al. (2018) had achieved an accuracy of 93% in

detecting Huanglongbing using HSI. In laboratory settings,

Abdulridha et al. (2019) achieved accuracies of 94%, 96%, and

100% in detecting asymptomatic, early, and late symptom stages of

citrus canker, respectively. Additionally, Guo et al. (2015) had

achieved an accuracy of over 97% in detecting citrus tristeza

virus. Satisfactory identification results have also been obtained in

detecting other crop diseases. For instance, Lu et al. (2018) reported

100% accuracy in detecting yellow leaf curl disease in tomato leaves,

and Liu et al. (2024) achieved 99.38% accuracy in identifying apple

mosaic virus. Therefore, HSI has the potential to be applied in

developing effective and accurate techniques for identifying YVCD

in lemons. Despite the advantages, HSI involves complex data
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processing and calibration, which must be addressed for field-

level deployment.

Hyperspectral images encompass both spectral and spatial

information. In previous studies, spectral information was applied

in developing disease identification technology, with spatial

information neglected. Traditional processing of hyperspectral

images mainly involves spectral preprocessing, feature extraction

and model construction. Machine learning algorithms are widely

used and have achieved excellent performance in the field of

classification (Guo et al., 2015; Nagasubramanian et al., 2018;

Weng et al., 2018; Jiang et al., 2021; Chen et al., 2025). Partial

least squares and support vector machines (SVM) are two

commonly used methods, which have good performance in data

fitting and classification tasks (Xuan et al., 2022; Siripatrawan and

Makino, 2024). In recent years, convolutional neural networks

(CNNs), which can automatically extract and learn the most

significant features in an end-to-end manner, have been

extensively used in disease diagnosis and hyperspectral image

processing (Lu et al., 2021; Russel and Selvaraj, 2022; Kaya and

Gürsoy, 2023). Hyperspectral images can be considered as three-

dimensional hypercubes encompassing spectral and spatial

information. Both two-dimensional and three-dimensional CNNs

can extract and learn features of this three-dimensional cube data. A

three-dimensional convolutional neural network (3D-CNN) can

extract both spectral and spatial features simultaneously, whereas, a

two-dimensional neural network (2D-CNN) only captures spatial

features. As a result, the rich spectral information of hyperspectral

images is often compressed and not completely extracted (Jia et al.,

2023). Ortac and Ozcan (2021) compared the performance of one-

dimensional, two-dimensional, and three-dimensional CNNs in

hyperspectral image classification. They reported that the 3D-

CNN effectively integrated spectral and spatial information,

achieving a higher classification rate. Similarly, Nguyen et al.

(2021) used hyperspectral imaging and deep learning for early

detection of grapevine virus. They reported that 3D-CNNs were

more effective than 2D-CNNs in extracting features from

hyperspectral images. This trend of 3D-CNNs outperforming 1D-

CNN and 2D-CNN was further validated by Zhu et al. (2023), who

applied HSI and CNNs to identify slightly sprouted wheat kernels.

The above results indicate that 3D-CNNs have demonstrated

superior performance in HSI classification tasks, although their

advantages may depend on dataset characteristics and model

configuration. However, compared to 2D convolution, 3D

convolution requires computing an additional depth channel in

performing the convolution, which increases the number of

parameters, FLOPS, and training time in modeling. Therefore,

while 3D-CNNs have demonstrated better feature integration,

their scalability and field application are limited by high

computational cost. Hybrid CNNs combine the representational

power of 3D convolutions with the computational efficiency of 2D

convolutions, enabling better generalization with fewer parameters.

In recent years, studies have shown that hybrid CNNs combining

3D and 2D convolution could further improve classification

performance when hyperspectral images are employed. Roy et al.

(2020) proposed a hybrid 3D and 2D convolution spectral CNN
frontiersin.org
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(HybridSN) for HSI classification, achieving satisfactory

performance. Qi et al. (2023) proposed a deep learning

architecture (PLB-2D-3D-A) combining 2D and 3D convolutions

to identify potato late blight disease. With higher accuracy, this

architecture outperformed the random forest and the deep

learning-based methods 2D-CNN and 3D-CNN. Chen et al.

(2022) constructed three CNNs (2D-CNN, 3D-CNN, and 2D–

3D-merged CNN) for inspecting defects in green coffee beans,

resulting in the 2D-3D-merged CNN based on both full band and

PCA-3 bands achieving a higher accuracy.

Currently, there are no reports on the rapid detection of YVCD

in lemons with the use of HSI technology. The primary objective of

this study was to investigate how to efficiently process hyperspectral

images and achieve accurate identification of YVCD. The specific

objectives are: 1) to conduct YVCD identification by selecting

characteristic wavelengths; 2) to construct models based on

spectral information and traditional machine learning algorithms,

and evaluate the performance of traditional hyperspectral image

processing methods in identifying YVCD; 3) to construct models on

the basis of CNNs and evaluate their performance in identifying

YVCD; and 4) to perform a comprehensive comparison to select the

most efficient and accurate method for YVCD identification.

The key outcomes of this study represent three significant

advances. First, a HSI-based rapid detection method for YVCD

identification was developed, filling the gap of lacking effective and

accurate identification techniques for this disease. Meanwhile, the

characteristic wavelengths were screened on the same dataset by

using the CARS and SPA independently, which may support future

development of low-cost, portable detection tools. Furthermore, a

new 3D-2D-LcNet architecture has been proposed. This

architecture can effectively combine spatial and spectral feature

extraction, optimally balancing computational complexity and

feature extraction efficiency in hyperspectral image processing,

thus achieving high classification accuracy. These advancements

not only are able to tackle the dimensional challenges in

hyperspectral image processing but also help build a scalable

technical foundation for plant disease monitoring.

2 Materials and methods

2.1 Hyperspectral image acquisition

Totaling 522 4-month-old leaves were collected from lemon

trees grown in a lemon orchard in Tongnan District, Chongqing

City, China, in 2022. This orchard is a newly documented spread

area for CYVCV, with only a few plants infected. Plant protection

experts have identified the infected leaves and classified them into

six groups on the basis of the presence, absence, or combination of

disease symptoms (Figure 1): healthy (90 leaves, no symptoms of

disease, nutrient deficiency, or pesticide damage), CYVCV-infected

only (90 leaves, exhibiting specific symptoms of CYVCV with no

signs of nutrient deficiency or pesticide damage), nitrogen-deficient

(79 leaves, displaying nitrogen deficiency symptoms) without

CYVCV infection or pesticide damage, nitrogen-deficient +

CYVCV-infected (81 leaves, showing combined symptoms of
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nitrogen deficiency and CYVCV infection, including yellowing

leaves with viral vein clearing or distortion), pesticide-damaged

(90 leaves, With morphological signs of pesticide injury but no

CYVCV infection or nutrient deficiency), and pesticide-damaged +

CYVCV-infected (92 leaves, presenting mixed symptoms of

pesticide damage and CYVCV infection). This orchard is a newly

documented spread area for yellow vein disease, with only a few

plants infected. All CYVCV-infected-free plants are located outside

a range of 1000 m from the infected ones. The healthy, nitrogen-

deficient only, and pesticide-damaged only groups were collected

from the non-infected areas of the orchard. During sample

categorization, the leaves of all diseased groups showed mild,

early-stage, or indistinct symptoms.

We used clean water to wash the leaves, and subsequently

acquired the hyperspectral images with the HSI acquisition system

(Figure 2). The HSI acquisition system comprised a darkbox (a

light-tight enclosure), a hyperspectral imaging spectrometer

(ImSpector V10E, Spectral Imaging Oy Ltd, Finland), an electric

moving platform and controller (SC30021A, Zolix, China), two

halogen light sources (150 W/21 V halogen lamp, Illuminator

Technologies, Inc., USA) and a laptop. The spectrometer operated

over a spectral range of 305–1090 nm. The halogen lamps were

positioned at a 45°angle relative to the sample, with a fixed lens

distance of 45 cm. The motorized stage moved at a speed of 1.87

mm/s. Before image acquisition, the system was preheated for 20

minutes to ensure stability and all measurements were conducted at

an ambient temperature of 25°C to maintain consistent

environmental conditions.

To eliminate the effects of uneven illumination and dark current

noise, the white reference hyperspectral image was obtained by

scanning a standard white board with 99% reflectance and a dark

reference hyperspectral image was obtained by scanning with the

lens closed. The original hyperspectral image was corrected by using

the following Equation 1:

Ic =
Iraw − Idark
Iwhite − Idark

(1)

Where Iraw represents the raw hyperspectral image, Idark
represents the dark reference image, Iwhite represents the white

reference hyperspectral image and Ic represents the corrected

hyperspectral image.

Hyperspectral images datasets were randomly divided into

training, validation, and testing sets in a 60:20:20 ratio. The high

cost of obtaining hyperspectral images had limited the data set

available for this study, which is insufficient for deep learning. To

address this limitation, a whole leaf was divided into 2–4 sub-blocks

after the initial division into sample sets by referring to the methods

of Park et al. (2018) and Nagasubramanian et al. (2019). The

segmented whole leaves and their corresponding sub-blocks

hyperspectral images were subsequently utilized for subsequent

data analysis. The detailed segmentation method is illustrated in

Figure 3, where the overlap rate between every two sub-blocks is less

than 30%. To avoid data leakage, the segmentation was performed

after the datasets had been divided into training, validation, and

test sets.
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FIGURE 2

The hyperspectral image acquisition system.
FIGURE 1

Samples of lemon leaves.
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To ensure robustness and reduce variability in terms of CNNs

model performance, we implemented 5-time repeated random

splitting on the combined training and validation set (80% total

data). In each repetition, 60% of the total data was randomly

selected as training set with preserved class distribution, while

20% of total data served for validation. The independent testing

set (20%) remained strictly isolated for final evaluation. Dunn’s

test with Bonferroni correction was used to analyze the

significant differences.
2.2 Traditional processing of hyperspectral
images

2.2.1 ROI segmentation and spectra extraction
At 800 nm, the spectral reflectance of the background and that

of the leaf exhibited significant differences, which represents a

characteristic facilitating the accurate separation of leaves from

the background. Specifically, The grayscale image obtained at 800

nm was processed by using Otsu’s method (Yin et al., 2022). With

the optimal segmentation threshold automatically determined, the

grayscale images were partitioned into two classes: leaves

(foreground) and background. This process generated a binary

mask where pixel values of zero and one respectively denote the

background and leaves. Then mask was applied to the full-band

hyperspectral data cube, retaining only the spectral information of

the leaf region while excluding background noise, thus achieving

precise segmentation of leaves from the background. Finally, the
Frontiers in Plant Science 05
spectral data of all pixels within the ROI of the leaf were averaged,

and the mean spectrum was used for subsequent feature wavelength

extraction and modeling.
2.2.2 Characteristic wavelength extraction and
modeling

To eliminate noise at the extremes of the spectrum and facilitate

subsequent analysis, we used spectral bands ranging from 400 nm to

1000 nm, which encompassed 761 wavelengths. Standard normal

variate (SNV) (Barnes et al., 1989) was used to mitigate the effects of

diffuse reflection, which is induced by uneven particle distributions,

varying particle sizes, and differences in path length. This method

was chosen over others (e.g., multiplicative scatter correction, MSC)

due to its superior performance in preliminary tests. Given the high

correlation among adjacent spectral bands, the Successive

Projections Algorithm (SPA) (Ye et al., 2008) and Competitive

Adaptive Reweighted Sampling (CARS) (Li et al., 2009) were

applied for characteristic wavelengths extraction. This approach

aimed to reduce redundancy and interference, thus alleviating the

computational load on the hardware. Support Vector Machine

(SVM) (Boser et al., 1992) and Partial Least Squares Discriminant

Analysis (PLS-DA) are well -known traditional supervised learning

algorithms. In this study, both SVM and PLS-DA were employed

for YVCD identification. During the modeling process, the grid

search algorithm was carried out to optimize the kernel function

parameters for SVM and the number of principal components for

PLS-DA.
FIGURE 3

Hyperspectral images for machine learning and deep learning modeling.
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2.3 Processing of hyperspectral images via
CNNs

2.3.1 Dataset preparation
To standardize input dimensions and preserve central features,

zero-value centered padding was applied to resize the ROIs to

112×112 pixels, as this size balances spatial resolution with GPU

memory constraints. Subsequently, data augmentation was

performed by using flip, rotation, and mirror techniques. Finally,

the number of samples per type expanded to approximately 2000.

The quality of the dataset significantly affects the training. Directly

utilizing high-dimensional hyperspectral data for modeling not only

strains computational resources but also degrades prediction

accuracy due to the curse of dimensionality and redundant

spectral features (Ram et al., 2024). Although CNNs can

automatically extract features, it is essential to reduce the

dimensionality of hyperspectral images to lower the training cost

and enhance the prediction accuracy, especially when high spatial

resolution or large spatial dimensions are used. In this study,
Frontiers in Plant Science 06
hyperspectral images composed of extracted feature wavelengths

were used for subsequent deep learning processes.

2.3.2 CNN framework
ShuffleNetV2 (Ma et al., 2018) is a lightweight CNN that adopts

grouped convolutions grouped convolution, depthwise separable

convolution, and channel shuffle techniques to guarantee both its

speed and accuracy. In ShuffleNetV2, the basic and down sampling

units are the primary building blocks of the network (Figure 4). The

basic unit introduces channel splitting, pointwise convolution, deep

convolution, and channel shuffling to effectively balance the

number of channels and spatial information processing, and

enable the network to maintain high accuracy with low

computational complexity. The down sampling unit splits the

input into two parts, effectively reducing the feature map size

while increasing the number of channels, thereby enhancing

feature extraction.

This study presents 3D-2D-LcNet, a lightweight hybrid CNN

architecture. Unlike conventional hybrid CNNs that employ
FIGURE 4

Building blocks of ShuffleNetV2.
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standard 2D convolution blocks, our design integrates optimized

ShuffleNetV2 basic units and downsampling units in the post-3D

processing stage. Compared with the original ShuffleNetV2

architecture, these units are adapted by reducing layer repetitions

and lowering channel dimensions to strike a balance between

computational efficiency and feature extraction capability.

Specifically, the channel shuffle mechanism in ShuffleNetV2 basic

units enables cross-group feature channel mixing to enhance inter-

channel information interaction, while its downsampling units

minimize information loss during spatial dimension reduction.

These improvements maintain the 3D to 2D sequential

processing pipeline consistent with traditional models, and enable

direct processing of large-scale hyperspectral images (112×112

pixels), effectively addressing the application limitation of

conventional models that can only handle small-sized inputs (e.g.,

≤15×15 pixels). The network processes input hyperspectral cubes

(112×112×N, where N=15 or 30 spectral bands) through two initial

3×3×3 3D convolutional layers, with each followed by batch

normalization and ReLU activation function for effective feature

extraction and training stabilization. Subsequently, a 3D adaptive

average pooling layer is employed to reduce the spectral dimension

from 8 (or 4, depending on the preceding convolutional stage) to 2.

The output is then reshaped into a 28×28×64 tensor, enabling a

seamless transition to 2D convolutional processing for spatial

feature extraction. The reshaped feature maps contain an

excessive number of channels. Modified ShuffleNetV2 units are

introduced for these reshaped features: (1) a downsampling unit

(stride=2) to shrink spatial resolution to 14×14 and enlarge the
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channels to 128; (2) a basic unit (stride=1) to keep the 14×14×128

resolution through channel shuffling and pointwise convolutions;

(3) a second downsampling unit (stride=2) to further decrease

resolution to 7×7 and raise the channels to 256; and (4) a final basic

unit (stride=1) to retain the 7×7×256 features. Finally, the network

concludes with a 1×1 convolution expanding channels to 512,

global average pooling, dropout (p=0.2) for regularization, and a

softmax classifier, enabling efficient hyperspectral image analysis

through this optimized 3D-2D hybrid architecture.

To evaluate the performance of 3D-2D-LcNet in processing

hyperspectral images for identifying YVCD, a comparative analysis

was performed on the results generated by 3D-2D-LcNet, 3D-

LcNet, 3D-ShuffleNetV2, 2D-LcNet, and 2D-ShuffleNetV2. Here

LcNet refers to a lightweight convolutional network designed for

efficient spatial-spectral feature fusion. For both 3D-ShuffleNetV2

and 2D-ShuffleNetV2, the width_mult was set to 0.25. Specifically,

the output channels of the first and last convolutions were

configured as 24 and 1024, respectively. The output channels of

Stage 2, Stage 3, and Stage 4 were set to 32, 64, and 128, with

repetition counts of 4, 8, and 4, respectively. The detailed

architectures of the CNNs are shown in the Figure 5.
2.4 Experimental environment and
evaluation

MATLAB R2020a was utilized for ROI segmentation, spectral

extraction, and feature wavelength extraction. The training of the
FIGURE 5

Architecture of CNNs.
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CNN models was carried out in the Anaconda environment via

Python 3.9.13, PyTorch 1.11, and CUDA 11.3. The computer

configuration comprised an ubuntu 20.04 system equipped with a

16-core Intel(R) Xeon(R) Gold 6430 CPU, an NVIDIA RTX 4090

GPU (24 GB VRAM), 120 GB RAM, and 1 TB storage.

In the CNN model training, the StepLR learning rate decay

strategy was implemented to adjust the learning rate in order to

enhance convergence and performance. The initial learning rate

was set to 0.001, decaying to 50% of its previous value every 20

epochs. The total number of epochs was set to 200. The cross-

entropy loss function was used. The optimizer used was the

adaptive moment estimation (Adam) optimizer with its default

parameters. The batch size was set to 64.

The confusion matrix along with precision, recall, F1-score,

accuracy, and Matthews Correlation Coefficient (MCC) were used

to evaluate the model performance. The calculation equations are

presented in the following Equations 2-6:

Accuracy =
TP + TN

TP + FN + FP + TN
(2)

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F1 − Score =
2 ∗ Precision ∗Recall
Precision + Recall

(5)

MCC =
TP ∗TN − FP ∗ FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(TP + FP) ∗ (TP + FN) ∗ (TN + FP) ∗ (TN + FN)
p (6)

Where TP, TN, FP, and FN respectively denote true positive,

true negative, false positive and false negative.

To assess practical deployability, we quantified model efficiency

using PyTorch’s built-in utilities: parameter count was obtained by

torchinfo.summary(), FLOPS were calculated with the flops-counter

package for a typical input size of 112×112×bands (bands =30 or

15), training time was logged by using NVIDIA CUDA events on an

RTX 4090 GPU, and testing time represented the total inference

duration for all independent samples in the test set (3,304 samples).

Units were reported as millions of parameters (M), giga-floating-

point operations (G-FLOPS), seconds (s) for training and testing.

The workflow is shown in Figure 6.
3 Results and analyses

3.1 Spectral analysis and wavelength
selection

A lemon tree can often be infected with multiple diseases at the

same time. In this study, we analyzed the types of lemon leaves

infected with composite diseases, including YVCD, in field

environments. Figure 7 shows the average spectral reflectance of

different types of lemon leaves. The average spectral curves of lemon
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leaves of different types are generally similar and exhibit the typical

spectral reflection characteristics of green plants (Gates et al., 1965;

Gitelson and Merzlyak, 1996). Within the 500–680 nm range, we

found that the spectral reflectance of healthy leaves and that of those

infected only with CYVCV are significantly lower than that of other

leaf types. This phenomenon is associated with differences in the

chlorophyll content of these leaves (Gitelson et al., 2003) Within the

750–1000 nm range, uninfected leaves show significantly higher

reflectance than that of CYVCV-infected leaves, which result from

leaf-cell-structure changes and water content caused by CYVCV

(PeÑUelas et al., 1993; Wang et al., 2022). Within full bands, the

spectral reflectance curves of some leaf types are similar and even

overlap at certain wavelengths. These findings indicate differences

in terms of the average spectral reflectance among different types of

lemon leaves. Therefore, identifying YVCD using leaf spectral

information is feasible. However, to achieve higher identification

accuracy, it is necessary to further extract and effectively utilize

spectral features.

The processes and results of selecting characteristic wavelengths

for distinguishing different types of lemon leaves by using the SPA

and CARS are shown in Figure 8. In process of CARS (Figure 8a), as

the sampling time increases, the selected wavelength number

gradually decreases. The lowest root-mean-square-error-of-cross-

validation (RMSECV) value was obtained at the 2708th sampling.

CARS selected 30 characteristic wavelengths (441, 442, 483, 501,

539, 540, 562, 598, 599, 600, 601, 620, 665, 813, 814, 866, 867, 872,

875, 877, 902, 904, 959, 963, 985, 986, 987, 988, 996, and 1001 nm),

primarily distributed in the 441–665 nm and 813–1001 nm ranges

(Figure 8c). In process of SPA (Figure 8b), it is evident that as the

number of selected variables increases, the root mean square error

of prediction (RMSEP) decreases. When 15 wavelengths were

chosen, the RMSEP showed no significant decrease. The SPA

selected 15 characteristic wavelengths (402, 404, 408, 414, 423,

529, 548, 572, 681, 696, 740, 866, 958, 976, and 992 nm), distributed

in the “green peak” (550 nm), “red edge,” (680–750 nm) and “high

reflection platform” (750–1000 nm) (Figure 8c). The results indicate

that due to the different characteristic wavelength selection

algorithms used, there were inconsistencies in the numbers and

positions of the characteristic wavelengths for identifying various

types of lemon leaves.
3.2 Results of SVM and PLS-DA

The prediction results of SVM and PLS-DA for identifying

YVCD by using full-wavelength and characteristic wavelength

spectral information are shown in Table 1 and Figure 9. The

SVM and PLS-DA models using the full-band spectral

information of 761 wavelengths achieved better prediction results,

with accuracies of 93.52% and 87.45%, respectively, and exhibited

high precision (93.57% and 87.13%), recall (93.53% and 87.25%),

and F1-scores (93.54% and 87.10%), indicating balanced

classification performance. The SPA-SVM and SPA-PLS-DA

models built using the spectral data at the 15 characteristic

wavelengths extracted by the SPA achieved the worst prediction

results, having accuracies of only 85.43% and 69.83%, respectively.
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Their precision (85.27% and 70.17%), recall (85.32% and 68.86%),

and F1-scores (85.23% and 68.64%) also demonstrated notable

declines, suggesting poor generalization ability for these simplified

models. Extraction of characteristic wavelengths by CARS and the

SPA did not improve the identification performance. This may be

the result of selecting only part of the wavelengths, with some

spectral information relevant to disease identification potentially

lost, thus leading to a decrease in model performance (Qiao et al.,
Frontiers in Plant Science 09
2022). The CARS-SVM model built with the 30 wavelengths

selected by CARS achieved a prediction accuracy of 91.90%,

which is relatively close to the full-band SVM prediction

accuracy. CARS selected 30 variables from 761 wavelengths,

greatly reducing the complexity of inputs and computations,

which is significant for reducing computational costs in practical

applications. Therefore, the CARS-SVM model is the optimal

spectral-data model.
FIGURE 6

Research workflow. (a) Hyperspectral image acquisition; (b) ROI segmentation and spectra extraction; (c) characteristic wavelength extraction and
modeling; (d) processing of hyperspectral images via CNNs.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1554514
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Li et al. 10.3389/fpls.2025.1554514
FIGURE 7

The average lemon-leaf spectra of different types.
FIGURE 8

The process and results of feature wavelength extraction. (a) The process of CARS; (b) The process of SPA; (c) The selected wavelengths.
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The confusion matrix showed that the models based on full-

bands and CARS achieved the highest accuracy in identifying

healthy and only CYVCV-infected leaves in the test set. All

models exhibited misclassifications among nitrogen-deficient,

nitrogen-deficient + CYVCV-infected, pesticide-damaged, and

pes t i c ide -damaged + CYVCV- in f ec t ed l eave s . Th i s

misclassification is linked to the chlorophyll content of the

samples. Studies have demonstrated that the chlorophyll content

of healthy and that of only CYVCV-infected leaves are significantly

higher than that of other categories, whereas the difference in

chlorophyll content among other categories is less pronounced

(Wang et al., 2022; Li et al., 2022). As shown by the spectral
Frontiers in Plant Science 11
curves in Figure 7, the spectral reflectance of healthy and only

CYVCV-infected leaves within the 400–700 nm wavelength range—

closely associated with chlorophyll content—is significantly lower

than that of other leaves. In contrast, the differences in spectral

reflectance between the other types were not significant within 400–

700 nm range. In SPA-SVM, healthy leaves were often confused

with only CYVCV-infected leaves. This is attributed to the minimal

difference in the chlorophyll content of these two types.

Furthermore, the SPA only selected four wavelengths (866, 958,

976, and 992 nm) within the 800–1000 nm range, which is related to

the leaf tissue structure. These four wavelengths may be insufficient

to fully distinguish between all healthy and only CYVCV-infected
FIGURE 9

Confusion matrixes of SVM and PLS-DA models. (1:healthy; 2:CYVCV-infected only; 3: nitrogen-deficient; 4: nitrogen-deficient + CYVCV-infected;
5:pesticide-damaged; 6: pesticide-damaged + CYVCV-infected).
TABLE 1 The prediction results of SVM and PLS-DA models.

Models Input Numbers of input Accuracy (%) Precision (%) Recall (%) F1 (%)

SVM

Full bands 761 93.52 93.57 93.53 93.54

CARS 30 91.90 92.17 91.71 91.69

SPA 15 85.43 85.27 85.32 85.23

PLS-DA

Full bands 30 87.45 87.13 87.25 87.10

CARS 10 78.54 78.57 78.38 78.01

SPA 11 68.83 70.17 68.86 68.64
Bold entries highlight the Full bands-SVM model’s overall best performance across key metrics (accuracy, precision, recall, F1-score) among all compared models.
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leaves. These results suggest that spectral information-based

classification models can achieve high accuracy in identifying

plant leaves with significantly reduced chlorophyll contents, but

are less effective in distinguishing complex diseases.
3.3 Results of CNNs

In this study, hyperspectral images composed of gray images at

SPA and CARS feature wavelengths were used as the dataset to train

CNN models. As shown in Tables 2, 3, and Figure 10, the

performance evaluation metrics of the CNN models in testing set

are presented. The mean accuracy, precision, recall, F1 score and

MCC values of all CNN-based models exceeded 91.72%, with the

3D-2D-LcNet model demonstrating the highest overall

performance. Specifically, for CARS input, 3D-2D-LcNet achieved

97.35 ± 0.21% accuracy, 97.48 ± 0.22% precision, 97.36 ± 0.20%

recall, 97.37 ± 0.21% F1-score, and 96.84 ± 0.25% MCC. These

values significantly surpass both 2D counterparts (2D-LcNet: 95.97

± 0.15% accuracy; 2D-ShuffleNetV2: 93.90 ± 0.42% accuracy) and

other 3D models (3D-ShuffleNetV2:95.91 ± 0.20% accuracy). For

SPA input, the 3D-2D-LcNet outperformed all 2D and most 3D

architectures across metrics, with 96.86 ± 0.06% accuracy, 96.99 ±

0.08% precision, 96.89 ± 0.06% recall, 96.90 ± 0.06% F1-score, and

96.14 ± 0.15% MCC. The performance differences among the

models are also evident in their ROC curves (Figure 10). The area

under the curve (AUC) is a key metric for evaluating the

performance of binary classification models based on ROC

curves. As shown in the ROC curves of CNN models, the 3D-2D-

LcNet models demonstrated remarkable superiority in classification

performance. Specifically, the CARS-3D-2D-LcNet model achieved

the highest AUC of 99.77 ± 0.07%, significantly outperforming its

2D counterpart (CARS-2D-LcNet, 99.52 ± 0.08%) and other 3D

models such as CARS-3D-ShuffleNetV2 (99.76 ± 0.04%). The SPA-

3D-2D-LcNet model also excelled with an AUC of 99.69 ± 0.05%,

surpassing SPA-2D models (e.g., SPA-2D-ShuffleNetV2, 99.43 ±
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0.09%) and highlighting the robustness of the 3D-2D-LcNet

architecture across different input modalities. This performance

advantage is attributed to the model’s ability to integrate 3D

convolution for capturing spatial-temporal features, enhancing

discriminative power between positive and negative classes

compared to traditional 2D models. Collectively, the ROC curve

analysis further validates that the 3D-2D-LcNet model outperforms

other architectures, consistent with the superior metrics observed in

accuracy, precision, F1-score and MCC analyses. These results

demonstrate that the hybrid 3D-2D-LcNet effectively extract both

spectral and spatial features from hyperspectral images, thereby

leveraging the advantages of hyperspectral imaging more effectively.

In terms of model complexity, the parameter counts of the 3D

convolution models (3D-2D-LcNet, 3D-LcNet, and 3D-

ShuffleNetV2) were not significantly higher than those of their 2D

counterparts. For instance, the 3D-2D-LcNet and 3D-LcNet both

have 0.26 million and 0.27 million parameters, respectively, which is

comparable to the 0.25 million parameters of 2D-LcNet. Regarding

training cost, the 3D convolution models (3D-LcNet and 3D-

ShuffleNetV2) exhibited higher FLOPs, training time, and testing

time than 2D models (2D-LcNet and 2D-ShuffleNetV2).

Specifically, the 3D-LcNet required 1,793.97 seconds of training

time on the CARS dataset, which is 6.2% longer than the CARS-2D-

LcNet (1,688.02 seconds). However, the hybrid 3D-2D-LcNet

demonstrated a unique advantage in that its training time and

test time on both CARS and SPA datasets were shorter than that of

pure 3D models. The hybrid 3D-2D-LcNet mitigated this trade-off

by reducing FLOPs by 5.5% (8.42G vs. 8.91G) compared to 3D-

LcNet while maintaining comparable accuracy.

The different dimension sizes in hyperspectral images result in

differences in terms of the computational load and recognition

accuracy. In this study, we compared the effects of hyperspectral

image datasets at different characteristic wavelengths on CNN

model training and performance. In terms of complexity, CNN

models based on CARS clearly required significantly more

computational resources than those based on SPA—particularly
TABLE 2 Accuracy, precision, recall, F1 score and MCC achieved of CNN models.

Models Input Accuracy (%) Precision (%) Recall (%) F1 (%) MCC (%)

3D-2D-LcNet
CARS 97.35 ± 0.21a 97.48 ± 0.22 a 97.36 ± 0.20 a 97.37 ± 0.21a 96.84 ± 0.25a

SPA 96.86 ± 0.06 ab 96.99 ± 0.08 ab 96.89 ± 0.06 ab 96.90 ± 0.06ab 96.14 ± 0.15ab

3D-LcNet
CARS 97.14 ± 0.21 a 97.27 ± 0.20 a 97.15 ± 0.21a 97.16 ± 0.2 ab 96.59 ± 0.26a

SPA 96.65 ± 0.23abc 96.77 ± 0.21abc 96.68 ± 0.23ab 96.67 ± 0.23abc 96.10 ± 0.31ab

3D-ShuffleNetV2
CARS 95.91 ± 0.2abc 96.03 ± 0.23abc 95.93 ± 0.21abc 95.94 ± 0.21abc 95.10 ± 0.26abc

SPA 94.58 ± 0.34bc 94.68 ± 0.3bc 94.66 ± 0.34bc 94.63 ± 0.34bc 93.50 ± 0.40bc

2D-LcNet
CARS 95.97 ± 0.15abc 96.11 ± 0.15abc 96.00 ± 0.14abc 95.99 ± 0.14abc 95.19 ± 0.18abc

SPA 95.81 ± 0.31abc 95.92 ± 0.29abc 95.85 ± 0.31abc 95.84 ± 0.31abc 94.99 ± 0.36abc

2D-ShuffleNetV2
CARS 93.90 ± 0.42c 94.04 ± 0.44c 93.97 ± 0.40bc 93.96 ± 0.4c 92.70 ± 0.50bc

SPA 93.09 ± 0.54c 93.19 ± 0.53c 93.19 ± 0.5c 93.15 ± 0.53c 91.72 ± 0.65c
Superscript letters indicate statistically significant differences between models (p< 0.05); MCC, Matthews Correlation Coefficient. Bold entries highlight the 3D-2D-LcNet model’s overall best
performance across key metrics (accuracy, precision, recall, F1-score, MCC) among models with the same input.
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for CNNs incorporating 3D convolution modules. Regarding

predictive performance, the evaluation metrics revealed no

significant differences between the models with the same CNN

architecture but different training datasets. These results

demonstrate that hybrid 3D-2D-LcNet effectively balances

computational complexity with feature extraction efficacy. Its

robustness to spectral data of different wavelengths and efficient

inference capabilities make it a versatile solution for hyperspectral

images analysis.
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The confusion matrix (Figure 11) shows that all the models

achieved classification accuracies ranging from 93.07% to 100% of the

five sample categories: healthy, only CYVCV-infected, nitrogen-

deficient, nitrogen-deficient+ CYVCV-infected, and pesticide-

damaged. However, the classification accuracy of pesticide-

damaged+CYVCV-infected samples ranged from 77.17% to

89.86%, with misclassifications into only diseased, nitrogen-

deficient+ CYVCV-infected, and pesticide-damaged categories.

Overall, both traditional hyperspectral image classification methods
FIGURE 10

ROC curves of CNN models.
TABLE 3 Train time, test time, param and FLOPs of CNN models.

Models Input Train time (s) Test time (s) Params (M) FLOPs (G)

3D-2D-LcNet
CARS 1716.62 ± 119.85ab 10.46 ± 0.31de 0.26 8.42

SPA 940.70 ± 23.67abc 9.23 ± 0.33f 0.26 4.92

3D-LcNet
CARS 1793.97 ± 148.83a 11.07 ± 0.47d 0.27 8.91

SPA 943.66 ± 22.19abc 10.04 ± 0.11ef 0.27 5.41

3D-ShuffleNetV2
CARS 1831.15 ± 104.35a 19.66 ± 0.67a 0.22 8.94

SPA 1052.1 ± 20.01abc 18.75 ± 0.98ab 0.22 4.59

2D-LcNet
CARS 1688.02 ± 160.65abc 10.21 ± 0.24def 0.25 2.22

SPA 889.03 ± 43.89c 9.30 ± 0.25f 0.25 1.79

2D-ShuffleNetV2
CARS 1716.48 ± 33.6abc 18.12 ± 0.57bc 0.21 2.54

SPA 916.64 ± 16.3bc 17.26 ± 0.27c 0.21 1.89
Superscript letters indicate statistically significant differences between models (p< 0.05); Param (M), Number of parameters in millions; FLOPs (G), Floating point operations in giga. Bold entries
highlight the SPA-3D-2D-LcNet model’s overall best performance across efficiency metrics (Train/Test time, Params, FFLOPs) among all compared models.
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and CNNs showed low accuracy in identifying pesticide-damaged

+CYVCV-infected samples, and these samples were easily confused

with only diseased, nitrogen-deficient+CYVCV-infected, and

pesticide-damaged samples. This may be due to overlapping

spectral features and insufficient sensitivity to subtle biochemical
Frontiers in Plant Science 14
and structural variations. When the pesticide-damaged

characteristics of a sample are not obvious, it is misclassified as

CYVCV-infected, specifically as only diseased or nitrogen-deficient +

CYVCV-infected. When the CYVCV-infected characteristics are not

obvious, it was misclassified as pesticide-damaged. Only when both
FIGURE 11

Confusion matrix of CNN models. (The confusion matrix is generated by averaging the results of five repeated. (1: healthy; 2: CYVCV-infected only;
3: nitrogen-deficient; 4: nitrogen-deficient + CYVCV-infected; 5: pesticide-damaged; 6: pesticide-damaged + CYVCV-infected).
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the pesticide-damaged and CYVCV-infected characteristics were

prominent is it correctly classified as pesticide-damaged

+CYVCV-infected.

In summary, among all CNN models, the CARS-3D-2D-LcNet

has consistently achieved the highest accuracy of 97.35 ± 0.21%,

with no statistically significant difference from the SPA-3D-2D-

LcNet. In contrast, the SPA-3D-2D-LcNet achieved an optimal

balance between accuracy and efficiency by reducing computational

resource consumption by 41.6% (4.92G vs. 8.42G FLOPs) and

accelerating inference speed by 11.8%. Acquiring and transmitting

high-dimensional hyperspectral images in practical deployment

imposes higher demands on device storage, transmission, and

computational capabilities. In resource-constrained scenarios, the

SPA-3D-2D-LcNet significantly reduces deployment complexity

and costs while maintaining nearly equivalent accuracy. Although

the CARS-3D-2D-LcNet demonstrated peak performance under

laboratory conditions, the SPA-3D-2D-LcNet better aligns with

real-world requirements for limited resources and high real-time

demands, offering a triple optimal solution in terms of accuracy,

efficiency, and cost for practical implementation.
3.4 Comparison between deep learning
and machine learning

Traditional hyperspectral image classification methods that use

spectral information and machine learning are still widely utilized

(Abdulridha et al., 2019; Qiao et al., 2022). Our results indicated a

notable performance gap between CNN-based models and

traditional machine learning models. The CNN-based models

demonstrated accuracies ranging from 93.90% to 97.35%. Among

CNN-based models, the CARS-3D-2D-LcNet model showed high

accuracy across various classes, with most samples in each class

being correctly classified. It achieved accuracies above 98.13% for

healthy, only CYVCV-infected, nitrogen-deficient, nitrogen-

deficient+CYVCV-infected, and pesticide-damaged samples, and

maintaining 89.67% accuracy for pesticide-damaged+ CYVCV-

infected samples. In contrast, the accuracies of machine learning-

based models spanned from 68.83% to 93.52%. Among machine

learning-based models, the fullbands-SVM outperformed best,

while it achieved 87.18-97.78% accuracies for healthy, only

CYVCV-infected, nitrogen-deficient, nitrogen-deficient +

CYVCV-infected, and pesticide-damaged samples, only 85.29% of

pesticide-damaged samples were correctly classified. This highlights

that CNNs, with their ability to automatically extract hierarchical

spatial-spectral features, outperform traditional methods in

classifying complex composite diseases based on hyperspectral

images. Meanwhile, traditional methods, which rely mainly on

hand-engineered spectral features, can still deliver acceptable

results for single-disease identification.

Although these CNN models have achieved good performance

in the identification of YVCD based on hyperspectral images,

hyperspectral data of high dimensionality requires substantial

computational power for training. In particular, in 3D-CNN, the

computational complexity increases exponentially. The high
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memory consumption and slow computational speed of CNN

models during training and inference also make it difficult to

deploy them on portable devices or edge devices (such as field

monitoring devices). The proposed 3D-2D-LcNet, which combines

lightweight modules and hybrid 3D-2D convolutions, alleviates the

computational burden of traditional 3D-CNNs to some extent.

However, the computational cost of 3D-2D-LcNet is still

relatively high, and there is still a gap before it can be deployed

on-site. In contrast, machine learning models exhibit unique

advantages in field application due to their low computational

complexity, low memory usage, and fast computation speed. They

do not require large amounts of labeled data and can complete

classification through artificially designed spectral features (such as

spectral indices and band combinations), making them suitable for

rapid deployment in resource-limited environments. This might

account for why traditional hyperspectral image classification

methods are still widely employed. However, the traditional

methods fail to fully explore the subtle spectral-spatial

information associations in hyperspectral data and cannot achieve

satisfactory classification accuracy for complex composite diseases.

Moreover, the performance of machine learning models can drop

significantly when spectral data distribution shifts due to changes

in environmental conditions. In contrast, although CNNs are

limited in computational resources, their end-to-end learning

mechanism can automatically adapt to data changes, giving them

unique competitiveness in disease identification based on

hyperspectral images.
4 Conclusion

In this study, we explored efficient and accurate methods for

identifying YVCD in lemons using hyperspectral images. The

results indicate that the four CNN architectures used in this study

significantly outperformed traditional machine learning methods

for YVCD identification. Among them, the innovative 3D-2D-

LcNet stands out. By effectively integrating spatial and spectral

feature extraction, it optimally balances computational complexity

and feature extraction efficiency, significantly reducing

computational load while maintaining high accuracy in extracting

both spectral and spatial features from hyperspectral images. The

CARS-3D-2D-LcNet model demonstrated best performance in

identifying YVCD but faced challenges in practical deployment

due to substantial computational demands and high-dimensional

data requirements. In contrast, the SPA-3D-2D-LcNet achieves

comparable performance with 41.6% lower FLOPs and 50%

reduced data dimensionality, bringing hope for the field

application of this hyperspectral image-based disease detection

method. In conclusion, leveraging advanced CNN architectures

can enhance the performance of hyperspectral imaging-based

disease detection models. The 3D-2D-LcNet offers a highly

effective and accurate approach for identification of YVCD in

lemons, demonstrating its potential for practical applications in

agricultural disease detection.
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