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The germination potential of corn seeds, a key index for assessing their quality

and directly associated with the ultimate corn yield, is currently defined in a way

that cannot effectively portray the seed germination rate, and the prevalent

measurement methods are traditional, consuming substantial process resources.

To tackle these issues, this paper employs a public corn seed germination

dataset, adds noise to it to simulate real - world production conditions, and

ultimately acquires a dataset comprising 8148 images. It then proposes an

enhanced YOLOv8 target detection model, EBS - YOLOv8, for detecting corn

seed germination. Specifically, the ECA lightweight attention mechanism is

introduced to decrease small - target feature loss, assist in accurate target

recognition, and remove redundant features; simultaneously, the P2BiFPN

multiscale feature fusion technique is utilized to boost the detection ability for

small targets; furthermore, the ScConv convolution is adopted to enhance the

feature - extraction capacity and improve detection accuracy. Combined with

the improved model, this paper also proposed a mathematical modeling

algorithmnew method for measuring seed germination potential and observing

seed germination rate. The results indicate that the proposed model attains a

mean average precision at 50% Intersection over Union (mAP50) value of 98.9%,

a mean average precision in the range of 50% - 95% Intersection over Union

(mAP50 - 95) value of 95.8%, an accuracy of 96.7%, and a recall of 96.3%. In

comparison with the original model, the mAP50 has increased by 0.9% and the

mAP50 - 95 value has witnessed a 3.7% increment. The experiments have

demonstrated that the research method for germination potential put forward

in this paper can effectively depict the rate variation of seeds during the

germination process, thus offering a novel perspective for future research on

seed germination potential.
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1 Introduction

Corn is one of the most important food crops in the world,

widely grown all over the world, i.e. it is the main source of food for

human beings and is also widely used in animal feed and industrial

raw materials. The quality of corn seed is directly related to the yield

of corn, and seed germination rate and germination potential an

important indexes for evaluating the quality of corn seed, which is

directly related to the germination ability of the seed and the

beginning of growth and development (seed germination rate

refers to the percentage of the seed that germinates and forms a

normal seedling under certain conditions. Germination potential,

on the other hand, refers to the speed and intensity of seed

germination in a certain period, which is one of the

manifestations of seed vitality), it can be said that the two are

based on germination rate, while the concept of germination

potential is further extended from the basis of germination rate.

Seed germination status testing is important in the process of plant

growth (Yuting and Yuji, 2021; Šerá and Hnilička, 2023), and an in-

depth understanding of the germination rate and germination

potential of maize seeds is an important guide for growers to

select high-quality seeds, increase yields, and improve the quality

of their products (Yang et al., 2017; He et al., 2022; Divya Venkata

et al., 2023; Zhang et al., 2023).

Seeds with high germination rates show rapid germination in the

field and possess greater resistance to adversity; on the contrary, seeds

with low germination rates usually germinate slowly in the field,

emerge irregularly, and are susceptible to the growing environment,

which may lead to lower yields of agricultural products (Reed et al.,

2022). Traditional methods of seed germination detection usually rely

on experienced personnel who mark seed categories by observing seed

radicle and germ length (Yang et al., 2013). In this process, germination

detection is carried out by human observation and counting to

determine the number of seeds that have germinated within 7 days.

However, this method requires a high level of experience on the part of

the inspector, and the process of repeating the germination rate test is

cumbersome, time-consuming, and laborious, and is prone to

introduce subjective errors, resulting in inconsistent and poorly

reproducible results between different inspectors. With the

development of smart agriculture, germination tests are gradually

transforming into intelligence (Zhang et al., 2017; Zhang et al., 2018;

Party Satisfaction et al., 2020). However, traditional testing methods

rely heavily on finely controlled conditions, which are difficult to

realize. The strict experimental conditions and long testing time

(usually 7 days) as well as many methods using chemical

measurements may cause potential damage to the seeds, resulting in

non-reusability (Filho, 2015). Therefore, the limitations of traditional

germination rate and germination potential assays highlight the

urgency of developing a rapid, nondestructive, and accurate assay

that reduces the cost of the assay while increasing the speed and

accuracy of the assay.

In recent years, deep learning has developed rapidly and has

been widely used in agriculture, especially in seed germination

detection, and many researchers have begun to explore its potential

(Party Satisfaction et al., 2020; Zhang et al., 2021). Joosen et al.
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(2010) proposed a semi-automatic method to design a germination

instrument that determines whether a seed has germinated or not

using a high-throughput score. The instrument can handle many

samples that may germinate under different environmental

conditions. However, the method requires good contrast between

the radicle and the seed coat, a requirement that may limit its

application in some crops. Zhao et al. (2022) utilized techniques

such as image segmentation, transform encoder, small target

detection layer, and CDIOU loss to improve the accuracy of

detection. They developed a convolutional neural network

(YOLO-r) that can effectively detect the germination status of rice

seeds and automatically evaluate the total number of germination

with an average accuracy of 0.9539 and an average absolute error of

predicting germination rate mainly within 0.1. Bai et al. (2023)

constructed a seed germination discrimination model named DB-

YOLOv5 by combining machine vision technology and deep

learning methods to rapidly detect the germination rate,

germination potential, germination index, and average

germination days of wheat seeds, and verified in experiments that

the accuracy of the model for wheat seed germination

discrimination was as high as 98.5%. Zheng et al. (Yao et al.,

2023) designed a semi-automatic germinator through the YOLO

algorithm, which successfully realized the detection of the

germination rate of rice seeds in the field and assessed the seed

germination rate through image analysis. Liu et al. (2023) tried to

improve the local linear embedding with different distance metrics

and proposed a fast detection method for corn seed germination

based on improved local linear embedding and near-infrared

spectroscopy. Aiming at the physiological and physical differences

of rice seeds at different aging times, Fang et al. (2016) proposed a

fast and nondestructive detection method for rice seed germination

based on infrared thermography and a generalized regression

neural network. Mark et al. (Iradukunda et al., 2024) explored

cost-effective imaging techniques for rapid assessment of seedling

vigor, providing practical solutions to common problems in

agricultural research. Zhang et al. (2025) proposed an improved

safflower detection model namedWED-YOLO based on YOLOv8n,

which enables accurate identification of safflowers in complex

environments and has made outstanding contributions to the

automated harvesting of safflowers. All indicators of the new

model have been improved compared with those of the baseline

model. In order to accurately detect safflower filaments under

different lighting conditions, with foliage obstruction and various

weather conditions, Shi Ruiming et al (Zhang et al., 2023) proposed

an improved Fast R-CNN filament model. This model enables

accurate and rapid identification of safflower filaments on sunny,

cloudy, and overcast days, as well as under conditions of sunlight,

backlight, foliage obstruction, and dense occlusion. It provides

technical support for the identification of small-scale crops.

Although the above studies achieved good accuracy in

germination rate detection, their definitions of germination

potential are still relatively simple and based mainly on the

consideration of germination time, while failing to delve into

more complex metrics such as germination rate and germination

germination trend.
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To address the shortcomings of existing studies in the detection

of germination rate and germination potential of maize seeds, this

paper proposes an improved model based on YOLOv8n for fast,

accurate, and non-destructive detection. First, the diversity of the

dataset was enhanced by data enhancement techniques to enhance

the learning ability of the model. Second, the structure of the model

was innovated by adding three new modules to improve the

accuracy of detecting small target corn seeds while effectively

controlling the number of parameters of the model. To further

analyze the characteristics of germinating seeds, this paper uses

traditional algorithms to measure the germinating seed portion of

the image, combines statistical methods to process the data, and fits

regression equations through mathematical modeling methods to

depict the trend of seed germination. Finally, the equation was

derived and the curve obtained was able to effectively represent the

germination potential of corn seeds within a specified period. The

experimental results show that the model has high robustness and

generalization performance in detecting maize seed germination,

possessing the potential for practical application in mobile

applications, and the proposed method of fitting the equation

provides a new idea for accurately depicting the seed germination

potential. The contributions are summarized as follows:
Fron
(1) Dataset construction: A specialized dataset for corn seed

germination detection was constructed using data

enhancement based on the existing public dataset to

improve the diversity of the data;

(2) Lightweight Attention Mechanism: A lightweight ECA

attention mechanism is introduced to discard redundant

features such as noise - interfering points in the background

of seed images, focus on effective features related to the

germination rate, and simultaneously avoid increasing the

number of model parameters;

(3) Small-target detection and feature fusion: adding a small-

target detection layer and BiFPN structure to increase the

multi-scale feature fusion capability and improve the

detection accuracy of small-target corn seeds;

(4) Improvement of convolutional layer: add a layer of ScConv

convolution to increase the depth of the network and

strengthen the feature extraction ability, and at the same
tiers in Plant Science 03
time reduce the redundant parameters in the upper layer, to

improve the overall performance of the model;

(5) Redefinition of germination potential: by combining deep

learning techniques with mathematical modeling,

germination potential has been redefined to depict the

germination potential of seeds.
2 Materials and methods

2.1 Dataset construction

2.1.1 Image acquisition
This experiment utilizes a publicly accessible dataset, which

employs digital imaging techniques to capture images of seeds in

three distinct germination states. In the experimental setup, seeds

were carefully placed in Petri dishes and then positioned on a black

cloth. This was done to guarantee a high contrast between the

emerging radicle and the background, facilitating clear image

capture.During the experiment, the seeds were irrigated with tap

water. To minimize water evaporation, the Petri dish was covered

with a lid, as depicted in Figure 1. All images were captured under

the same artificial light source over a period of 48 hours, with

intervals of 30 minutes between each shot. This systematic

approach ensured comprehensive documentation of the entire

germination process.The dataset used in this experiment can be

accessed at ‘http://dx.doi.org/10.17332/4wkt6thgp6.2’. In this study,

the part of the maize seeds in the dataset was used. There are a total

of 84 culture dishes in this part, and a total of 8,148 images were

taken, covering the entire germination process of maize seeds from

the initial stage to 48 hours, as shown in Figure 2.
2.1.2 Data augmentation
In this study, the original dataset is expanded using image

enhancement techniques. Adding noise is a commonly used

method for image enhancement, such as Gaussian noise, salt and

pepper noise, Poisson noise, and uniform noise. The purpose in this

paper is to increase the richness and interference of the images, and

further improve the detection performance of the model. Poisson
FIGURE 1

Image acquisition device.
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noise is more suitable for medical imaging, and the interference

effect added by uniform noise has relatively low randomness.

Gaussian noise and salt and pepper noise perform better in terms

of the degree of interference. However, the principle of salt and

pepper noise is to change some pixel points to white or black, which

is obviously more suitable for the actual situation of corn seed

germination and conforms to our research. Therefore, salt and

pepper noise is chosen for data augmentation. A portion of the data

from the 8,148 original images underwent processing by applying

the sp_noise function, with the noise factor configured as 0.2.

Subsequently, the dataset was partitioned into a training set, a test

set, and a validation set according to a ratio of 7:2:1. Post -

processing, a total of 5,703 training - set images, 1,630 test - set

images, and 815 validation - set images were ultimately acquired, as

illustrated in Figure 3. The enhanced dataset is only used for model

training to improve the model’s comprehensive performance and

enhance its detection ability. In the subsequent experiments on

germination rate and germination potential, we used the original

dataset without noise enhancement. The reason for this is that the

focus of this part of the research is to evaluate the germination

potential of seeds, which requires high precision. Using the model

trained with the enhanced dataset to identify the original image data

can better assist us in our research.
2.2 Selection of models

Deep - learning - based target detection networks play a vital

role in detecting seed germination. At present, numerous networks

exhibit excellent performance in the field of target detection,

including RCNN, SSD, CenterNet, and the YOLO series. The
Frontiers in Plant Science 04
YOLO series of algorithms adopts an end - to - end approach.

This not only remarkably enhances the detection speed but also

allows for the direct acquisition of the target’s positional

coordinates and classification labels, which is of great significance

for our subsequent research on germination potential.YOLOv8, as a

more recent iteration of the YOLO series of algorithms,

demonstrates a substantial improvement in performance

compared to its predecessors. Its advantages such as easy

deployment, rapid detection, and high accuracy rate make it a

crucial tool for detecting corn seed germination. In this paper,

YOLOv8n is compared with Rcnn, SSD, and CenterNet - ResNet50,

as presented in Table 1.
2.3 EBS-YOLOv8 construction

The YOLOv8n model consists of a Backbone, Neck, and Head.

Among them, the Backbone serves as the backbone network, which

mainly consists of Conv module and C2f(Cross Stage Partial - 2

with Fused Shortcut) and SPPF(Spatial Pyramid Pooling - Fast)

modules for feature extraction; the Neck fuses features at different

scales; and the Head network is used for final target prediction. The

model performs well in the task of germination detection of corn

seeds. To further improve its performance this paper improves

YOLOv8n and names it EBS-YOLOv8 as shown in Figure 4. In

Backbone, the ECA(Efficient Channel Attention) lightweight

attention mechanism (a) is introduced to enhance the attention to

useful information features during feature extraction to optimize

resource allocation. This improvement not only enhances the model

performance but also alleviates the conflict between performance

and complexity, with a small number of additional parameters. The
FIGURE 3

Seed germination image after adding noise.
FIGURE 2

Seed germination images.
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next layer of ECA incorporates the ScConv(Spatial and Channel

Reconstruction Convolution) module (b), which utilizes spatial and

channel redundancy in features for compression, reducing

redundant computation and enhancing feature learning. In

addition, a small target detection layer is added to the Neck

network, and the traditional FPN(Feature Pyramid Network) is

upgraded to a P2BiFPN(Bidirectional Feature Pyramid Network

based on P2 layer) for efficient fusion of features to further improve

the detection accuracy.

2.3.1 ECA attention mechanism
In the dataset of germinated seeds with added noise, the

characteristics of seeds in the early germination stage were not

distinct. When detecting newly germinated seeds, the model faced

challenges in accurately identifying whether they had germinated,

particularly when noise points partially overlapped with the seed

buds and the similarity between the noise and the buds was high.
Frontiers in Plant Science 05
To address this issue, eliminate redundant features, and prevent

overfitting, this paper incorporates the ECA (Efficient Channel

Attention) attention mechanism into the Backbone network, as

depicted in Figure 5. The ECA attention mechanism processes the

input feature maps through global average pooling. This operation

transforms the feature maps from the initial [h, w, c] matrix into a

[1, 1, c] vector. Subsequently, an adaptive 1D convolution kernel

size is calculated based on the number of channels in the feature

map. This kernel is then utilized for 1D convolution to obtain the

weight values for each channel of the feature map. Finally, the

normalized weights are multiplied channel - by - channel with the

original input feature maps to generate weighted feature maps.

In this process, the ECA mechanism directly applies a 1x1

convolution after the global average pooling layer. By doing so, it

circumvents the use of a fully connected layer, thereby preventing

dimensionality reduction and effectively capturing cross - channel

interaction information. This design significantly enhances the
FIGURE 4

EBS-YOLOv8 network structure.
TABLE 1 Model selection comparison.

Model Precision(%) Recall(%) mAP50(%) mAP50-95(%) Params(M)

YOLOv8n 95.1 94.0 98.0 92.1 3.00

Faster Rcnn-ResNet50 92.9 91.6 89.9 55.5 137.10

SSD-VGG 93.6 89.9 90.1 81.9 26.29

CenterNet-ResNet50 96.5 90.8 92.6 88.7 32.67
Key metrics with outstanding performance are highlighted in bold.
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model’s detection performance while only slightly increasing the

number of parameters.

2.3.2 Fusion of small target layer and BiFPN
structure

Figure 6a illustrates the traditional Feature Pyramid Network

(FPN) structure. It achieves multi - scale feature fusion of P3 - P7 by

introducing a top - down path. Nevertheless, this method might

result in less comprehensive utilization of feature information.

Consequently, PANet incorporates a bottom - up path into the

FPN, as presented in Figure 6b. Although this improvement

enhances the information features to a certain extent, there is still

room for further improvement.

In this research, a small - target detection layer P2 is introduced

in EBS - YOLOv8. This enables the fusion of tiny features and their

combination with Bi - FPN (Bidirectional Feature Pyramid

Network). The Bi - FPN structure, depicted in Figure 6c,

introduces bidirectional feature propagation, involving both top -
Frontiers in Plant Science 06
down and bottom - up feature flows. This mechanism facilitates

more comprehensive and rich information transfer and feature

fusion among different layers.

Furthermore, Bi - FPN incorporates the operations of feature

adjustment and feature selection. Feature tuning optimizes the

feature weights to enhance the overall fusion results, thereby

improving the fusion performance. Meanwhile, during the feature

selection stage, useful features are dynamically selected based on

different importance and confidence levels. This design not only

enables higher accuracy in the detection process but also strikes a

balance between efficiency and accuracy. It reduces the

computational load while enhancing the model’s performance.

2.3.3 Space and channel reconstruction
convolution

Convolution holds an irreplaceable position and plays a pivotal

role in deep - learning architectures. Appropriately augmenting the

network depth can enhance its performance. However, when
FIGURE 6

(a) conventional FPN structure, (b) PANet structure, (c) BiFPN structure.
FIGURE 5

ECA attention mechanism.
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adding convolutional layers, it is essential to prevent resource waste

caused by the extraction of redundant features.

Consequently, in this study, a ScConv convolutional layer is

incorporated into the Backbone network to boost both the network

depth and performance. As depicted in Figures 7, 8 respectively,

ScConv consists of two components: the Spatial Reconstruction

Unit (SRU) and the Channel Reconstruction Unit (CRU).

The SRU adopts a separation - reconstruction method to

effectively suppress spatially redundant features. Specifically, it

decomposes the input feature map into multiple sub - feature

maps, processes them separately, and then reconstructs the

output. This approach can capture local spatial information more

accurately and eliminate redundant spatial components.

The CRU, on the other hand, uses a segmentation -

transformation - fusion strategy. It first divides the input channels

into several groups, applies different transformations to each group,

and then fuses the transformed channels. This way, it can
Frontiers in Plant Science 07
successfully reduce channel redundancy and enhance the

representational power of the channels.

This design, which strategically introduces the ScConv

convolution at the bottom layer of the Backbone network, not

only deepens the network but also optimizes its performance while

keeping the number of parameters in check. As a result, it strikes a

balance between the model’s accuracy and complexity, enabling

more efficient and accurate processing in deep - learning tasks.
2.4 Method for measuring germination
potential

In this study, a novel method is proposed with the aim of

measuring the germination potential of seeds. The core concept of

this method is to utilize a trained model to identify germinating seeds

and then conduct research on their germination potential based on this
FIGURE 7

Space reconstruction unit.
FIGURE 8

Channel reconstruction unit.
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identification. In this paper, the germination potential is defined as the

germination rate, and the degree of change is characterized by the

deformation of the seed during the germination process.

In the implementation of this method, the first step involves

binarizing the images of germinating seeds into black - and - white

images, where black represents the background and white

represents the seed. Subsequently, the number of white pixel

points is counted. This count serves to approximate the

morphological changes that occur during seed germination. These

data are then fitted to an equation that depicts the curve of change

during germination. Through a process of derivation, a new

equation is obtained, which represents the rate of change, namely,

the germination potential as defined in this paper.

By employing this method, the germination potential of seeds

can be effectively quantified, thereby offering theoretical support for

subsequent research.

The specific operational steps are as follows: First, utilize a

labeled dataset file in XML format to identify the target labeled as a

germinating seed within it and extract its coordinates. Then, crop

the germinating seed according to these coordinates to acquire an

image containing only that particular seed.

Subsequently, perform black - and - white binarization on the

image. After parameterization, a threshold value of 120 is set. Pixels

with values less than 120 are classified as black, representing the

background, while pixels with values greater than 120 are classified

as white, representing the target seed, which includes the seed itself and

its outgrowth parts.

Next, traverse the binary image and count and record the

number of white pixel points. Finally, through mathematical

modeling, fit the obtained data to a regression equation. After

deriving this equation, a new equation is obtained for plotting a

curve, which is used to describe the germination potential of the

seeds. The pseudocode is presented as follows (i.e., Algorithm 1).
Fron
Input: XML file path xml_path

Output: White ratio and black ratio

1: Read XML file at path xml_path

2: Parse XML file to obtain DOM tree domTree

3: Get root node rootNode from DOM tree

4: Get object nodes object_node by tag name “object”

5: Get shape nodes shape_node by tag name “size”

6: Get image node image_node by tag name “filename”

7: Extract image name image_name from image_node

8: for each size in shape_node do

9: Get width and height from size nodes

10: width ← int(size.getElementsByTagName(‘width’)

[0].childNodes[0].data)

11: height ← int(size.getElementsByTagName

(‘height’)[0].childNodes[0].data)

12: end for

13: Initialize empty list boxes for bounding boxes

14: for each obj in object_node do

15: Get class name class_name from “name” node

16: if class_name equals “zm_el” then
tiers in Plant Science 08
17: Get bounding box nodes bbox from obj

18: for each bbox in bbox do

19: Extract coordinates x1, y1, x2, y2 from

bbox nodes

20: x1 ← int(float(bbox.getElementsByTagName

(‘xmin’)[0].childNodes[0].data))

21: y1 ← int(float(bbox.getElementsByTagName

(‘ymin’)[0].childNodes[0].data))

22: x2 ← int(float(bbox.getElementsByTagName

(‘xmax’)[0].childNodes[0].data))

23: y2 ← int(float(bbox.getElementsByTagName

(‘ymax’)[0].childNodes[0].data))

24: Read image img from path

25: Crop image to get cropped_image

26: Convert cropped_image to grayscale gray_image

27: Apply thresholding to get binary image thresh

28: white pixels ratio

29: Count white pixels white_pixels in thresh

30: Calculate total number of pixels total_pixels

31: Calculate white ratio white_ratio

32: Calculate white ratio white_ratio

33: end for

34: end if

35: end for
Algorithm 1. Algorithm for measuring germination potential.
2.5 Experiment environments

In this experiment, the server’s runtime environment consists of

the Pytorch deep - learning framework, operating on the Windows

10 Professional system. The system is equipped with an Intel(R)

Xeon(R) W - 2245 CPU running at 3.90GHz, an NVIDIA Quadro

RTX5000 GPU, and 64GB of RAM. It operates on CUDA 12.0 and

utilizes libraries such as OpenCV to implement model training and

subsequent measurements of the germination potential.
2.6 Evaluation indicators

In this experiment, when assessing the accuracy of the model

regarding the germination status of corn seeds, the primary metrics

employed are precision (Precision, Equation 1), recall (Recall,

Equation 2), and mean average precision (mAP, Equations 3, 4).

For the evaluation of the fitted regression equation, this paper

utilizes the coefficient of determination (R2, Equation 5) as the

assessment criterion. The relevant calculation formulas are

presented as follows:

Precision =
TP

TP + FP
� 100% (1)

Recall =
TP

TP + FN
� 100% (2)
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AP =
Z 1

0
P(r)dr � 100% (3)

mAP =
oN

1

Z 1

0
P(r)dr

N
� 100% (4)

R2 =
SSE
SST

= o
N
i=1(ŷ i − �y)2

oN
i=1(yi − �y)2

(5)

Where TP (True Positive) refers to the correct detection frame,

which means that the prediction frame matches the labeled frame

accurately. FP (False Positive) refers to the false detection frame, i.e.,

the background is incorrectly predicted to be an instance of the

target object. FN (False Negative) denotes the missed detection

frame, i.e., the model fails to detect a target object that should have

been recognized. mAP (mean Average Precision) is used to assess

the overall performance of the model, where AP refers to the

detection precision of a single category and mAP is the average

precision of multiple categories. SSE stands for explained sum of

squares, sst stands for total sum of squares, and r2 represents the

model’s ability to explain the dependent variable, with values

ranging from 0 to 1. The closer the value is to 1, the better the

model fits the data. The better the fit of the model to the data.
3 Results

3.1 Training process

In the experiments described in this paper, consistent initial

training parameter settings are applied for each individual

experiment. The input image size is set to 640x640. The number

of model training epochs is 100. The learning rate is configured as

0.01. The intersection - over - union (IoU) ratio is set at 0.7. The

momentum is set to 0.937, the weight decay is 0.0005, and the batch

size of the dataset used for each training iteration is 8. The detailed

parameter values are presented in Table 2.

Figure 9 illustrates that during the training process, the model’s

training loss value varies according to the number of iterations, with

the loss values gradually converging from the 30th iteration

onwards. Regarding detection accuracy, it witnessed a substantial

rise in the early stages, then started to improve slowly from the 10th

iteration and stabilized after the 50th iteration. This trend indicates

that the EBS - YOLOv8 model was trained without issues of

overfitting and gradient vanishing, suggesting its effectiveness for

the seed germination detection task.
3.2 Ablation experiment

In this study, mAP50 is defined as Mean Average Precision at

IoU = 0.50, and mAP50-95 is defined as Mean Average Precision at

IoU = 0.50:0.05:0.90.The first point of improvement was the

introduction of the ECA attention mechanism, which improved
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the model’s accuracy by 0.7, recall by 1.2, mAP50 by 0.4, and

mAP50-95 by 2.0 compared to the original model, while the

number of parameters increased by only 0.17%. The second

improvement point is the fusion of the small target detection

layer with BiFPN, and this improvement results in an increase of

0.4 in accuracy, 1.8 in recall, 0.5 in mAP50, and 1.5 in mAP50-95

compared to the original model, while the number of parameters is

reduced by 4.03%. The third point of improvement was the

introduction of ScConv convolution, which showed an

improvement of 0.2 in accuracy over the original model, 1.3 in

recall, 0.3 in mAP50, 1.3 in mAP50-95, and a 3.98% increase in the

number of parameters. Overall, all three improvement points

effectively improve the base performance of the model without

significantly increasing the number of parameters of the model,

especially the second improvement point also successfully reduces

the number of parameters of the base model. Next, we combine

these three improvement points two by two to observe their impact

on the results. The experimental results indicated that the mixing of

two and two improved all the metrics compared to the original

model. Finally, combining the three resulted in a 1.6 increase in

accuracy, 2.3 increase in recall, 0.9 and 3.7 increase in mAP50 and

mAP50-95, respectively, over the original model, while the number

of parameters was reduced by 0.2% compared to the original model.

This result indicated that the model performance was significantly

improved without increasing the model complexity. The specific

results are shown in Table 3.
3.3 Comparison experiments

To further demonstrate the superiority of the EBS - YOLOv8

model presented in this paper, we conducted a comparison between

the EBS - YOLOv8 model and several well - known counterparts,

including Faster RCNN - ResNet50, SSD - VGG, YOLOv5s,

CenterNet - ResNet50, and YOLOv7. The test results are detailed

in Table 4.

As shown in the table, the EBS - YOLOv8 model excels across

all evaluation metrics. Specifically, its mAP50 and mAP50 - 95

values reach 98.9 and 95.8 respectively, significantly outperforming

the other models. Moreover, the EBS - YOLOv8 model has the

lowest number of parameters (Params), with only 2.99. This

parameter count is the smallest among all the models involved in

the comparison.

These findings clearly indicate that the EBS - YOLOv8 model

manages to maintain high - level detection performance while

effectively reducing the model’s complexity.
3.4 Germination rate test results

To accurately evaluate the model’s performance, this paper

selects images from the later germination stages of corn seeds for

germination detection, with the relevant results presented in

Figure 10. In the petri dish, as the corn seeds germinate, the buds

exhibit overlapping and crossing, and their sizes vary significantly
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due to different growth rates. Despite these complex and diverse

states, the EBS - YOLOv8 model demonstrates strong analytical

capabilities, effectively identifying buds in various conditions.

In the experiment, a comparison was made between the results

of manual observation and those of the EBS - YOLOv8 model’s

detection on a test set consisting of 1223 sheets. Given that the

germination - rate experiment aims solely to test the model’s

effectiveness in detecting germinated seeds, in this experimental

segment, this paper disregards the fact that some Petri dishes in the

test set are duplicates and focuses on detecting the occurrence of

germination. The obtained germination rate merely reflects the

comparison between manual - observation and model - detection

effects and does not represent the actual germination rate of the

batch of seeds.

Manual observation was carried out throughout the

germination cycle. To guarantee the experiment’s accuracy, three

researchers independently observed the number of germinated

maize seeds in the test set. For a total of 11,858 seeds, they finally

recorded an average of 2,820 germinations, yielding a calculated

germination rate of 23.8%. In contrast, based on the same number
Frontiers in Plant Science 10
of seeds, the EBS - YOLOv8 model detected 3018 germinations,

achieving a germination rate of 25.5%.

Regarding the detection of germination in each image, the

manual - observation time per image was approximately 2.5

seconds. The cumulative total observation time for 1223 images

was around 3057.5 s. When using the EBS - YOLOv8 model for seed

- germination detection, in marked contrast, it significantly cuts

down the time cost. With an average inference time of only 0.045 s

per image, the total time amounts to 55.03 s, thus remarkably

enhancing the detection efficiency. The detailed results are

presented in Table 5.
3.5 Germination test results

In this study, the germination potential is defined as the

germination rate, different from the traditional definition which is

the number of germinations within three days. In this paper, eight

Petri dishes were randomly chosen and labeled as 1 - 8. By analyzing

the bounding box coordinates output from the germinating seeds

detected by the model, the best - performing germinating seeds are

manually located through observation, and their time - series

germination images are obtained for subsequent relevant research.

After this series of binarization processes, the white portion in the

image represents the seeds, while the black portion represents the

background. Given that the main change in seeds during

germination is the growth of buds, in this experiment, the

number of white pixel points in the image was counted to

objectively mirror the dynamic changes of germination. It was

noted that the majority of seeds began to germinate 24 hours

after the commencement of the germination experiment. Thus, 24

hours was set as the starting point, and the values of white pixel
TABLE 2 Training parameter.

Parameter Value

Input size pixels 640*640

Epochs 100

Learning rate 0.01

Weight decay 0.0005

Momentum 0.937

Batch size 8
FIGURE 9

Model effect curve.
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points at each time point were counted at 1 - hour intervals,

followed by an analysis of the relationships among these data. In

mathematical modeling, there are many methods for data fitting.

Interpolation can be used to fit curves for function approximation,

and a curve that meets the requirements is determined through a

given set of data. However, the fitted curve will pass through all the

given points, which fails to achieve our goal of observing the

germination potential. This study aims to obtain a relatively

simple approximation of the function by reflecting the overall

changing dynamics of the data. Therefore, this study chose curve

fitting to fit the regression equation. Among various equations,

including exponential functions, linear functions, logarithmic

functions, power functions, and polynomial functions, it was

found that the polynomial function had the best fitting effect with

the highest R² coefficient, as shown in Table 6. During the

polynomial fitting process, based on the principles of

mathematical modeling, generally, the higher the polynomial

order, the higher the fitting accuracy tends to be initially, but it

will reach a plateau after attaining the maximum value. This study

revealed that the fitting accuracy of a third - order polynomial is

superior to that of a second - order polynomial. Although the

accuracy of a fourth - order polynomial is slightly higher than that

of a third - order polynomial, when attempting to plot the curves for

fourth - order and higher - order polynomials, it was observed that

the fitted curves exhibited a decreasing trend, which is inconsistent

with the experimental expectations. Therefore, in this experimental

segment, third - order polynomial regression equations among the
Frontiers in Plant Science 11
polynomials were selected for fitting, as depicted in Figures 11a-h,

corresponding to Petri dishes 1 - 8 respectively.

In this study, the independent variable x of the one-dimensional

cubic equation under consideration represents the change in time of

germination in hours, while the dependent variable Y represents the

increase in the number of white pixel dots of germinated seeds over

time. This equation describes the change in the number of white

pixel points of the seeds over time. To quantify the germination

rate, the first-order derivative of the independent variable x of this

equation was calculated to obtain a new equation whose derivative

curve represents the change in germination potential, as shown in

Figure 12a-h. In the figure, x is the time variation of germination,

and Y is the derivative value corresponding to the value of x at that

point, and the germination and derivative equations in each petri

dish are shown in Table 7.

In summary, Figure 11 depicts the temporal variation of seed

morphology during the germination process. From a macroscopic

perspective, by observing the curves, it is evident that the seed -

morphology variable steadily increases throughout the entire

germination process. Microscopically, the slopes of these curves

mirror the magnitude of change at different time points, and this

magnitude corresponds to the rate of change during various periods.

To conduct a more in - depth analysis of this process, the equation

curve in Figure 11 was differentiated, yielding a new equation curve

presented in Figure 12. Mathematically, the derivative represents the

slope. In this study, the graph of the derivative equation reflects the rate

of change of germinating seeds over different germination times.
TABLE 3 Ablation experiment.

ECA P2BiFPN ScConv Precision(%) Recall(%) mAP50(%) mAP50-95(%) Param(s/M)

95.1 94.0 98.0 92.1 3.01

✓ 95.8 95.2 98.4 94.1 3.01

✓ 95.5 95.8 98.5 93.6 2.88

✓ 95.3 95.3 98.3 93.4 3.12

✓ ✓ 95.5 96.0 98.7 94.6 2.88

✓ ✓ 96.4 94.9 98.6 94.4 3.12

✓ ✓ 95.7 94.8 98.4 94.1 3.00

✓ ✓ ✓ 96.7 96.3 98.9 95.8 2.99
Key metrics with outstanding performance are highlighted in bold.
TABLE 4 Model comparison.

Model Precision(%) Recall(%) mAP50(%) mAP50-95(%) Params(M)

YOLOv8n 95.1 94.0 98.0 92.1 3.0

Faster Rcnn-ResNet50 92.9 91.6 89.9 55.5 137.1

SSD-VGG 93.6 89.9 90.1 81.9 26.3

YOLOv5s 94.3 94.5 97.4 90.4 7.1

CenterNet-ResNet50 96.5 90.8 92.6 88.7 32.67

EBS-YOLOv8 96.7 96.3 98.9 95.8 2.99
Key metrics with outstanding performance are highlighted in bold.
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An analysis of Figure 12 leads to the following conclusions: In

Petri dish No. 1, the seed germination rate remained constant from

25 to 28 hours and then gradually rose after 28 hours. In Petri dish

No. 2, the seed germination rate continuously increased starting

from 25 hours. Petri dish No. 3 was similar to Petri dish No. 2, with

a gradual upward trend. In Petri dishes Nos. 4, 5, and 8, the

germination rates initially showed an increasing tendency,

reaching their peak values at 38, 37, and 39 hours respectively,

after which the rates began to decline gradually. Petri dish No. 6

exhibited a gradually increasing germination rate initially, which

leveled off at 42 hours and then slightly decreased towards the end.

Petri dish No. 7 had a relatively slow germination rate at the start,

reaching its lowest point at 33 hours, after which the germination

rate gradually increased.
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4 Discussion

In summary, the EBS - YOLOv8 detection model put forward in

this study demonstrated remarkable accuracy in detecting seed

germination. The algorithm proposed for researching germination

potential exhibits excellent feasibility and is capable of effectively

characterizing the germination rate of seeds during the germination

process. Consequently, this research furnishes a certain theoretical

foundation and technical support for the issue of corn seed

germination. Moreover, it offers novel perspectives for the study of

the growth potential of other types of crop fruits. This is of substantial

practical significance for the advancement of smart agriculture.

The dataset utilized in this study is composed of corn seed

germination images captured over a 48 - hour span. This approach
FIGURE 10

EBS-YOLOv8 model inspection chart.
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TABLE 5 Statistical table of manual and modeled tests for germination.

Name Number of germination Germination rate(% ) Detection time(s)

Artificial observation 2820 23.8 3057.5

Model detection 3018 25.5 30.8
F
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Key metrics with outstanding performance are highlighted in bold.
TABLE 6 Comparison results of data fitting equations.

Number Equation type R2 Expression

1

Exponential equation 0.91 3886.e0.0099x

linear equation 0.90 41.265x+3556.8

Logarithmic equation 0.65 309.17ln(x)+3375.9

Power equation 0.67 -3428.4x0.0752

Third-order polynomial equation 0.97 0.062x3-4.9082x2+147.9527x+2144.1588

2

Exponential equation 0.88 2704.9e0.0186x

linear equation 0.84 67.196x + 2606.2

Logarithmic equation 0.54 473.88ln(x) + 2380.3

Power equation 0.59 2530.7x0.1327

Third-order polynomial equation 0.98 0.0603x3-2.2675x2-9.5724x+3729.579

3

Exponential equation 0.91 3258.8e0.0089x

linear equation 0.90 33.052x + 3236.5

Logarithmic equation 0.62 242.29ln(x) + 3104

Power equation 0.65 3141.3x0.0656

Third-order polynomial equation 0.97 0.0046x3+1.0051x2-57.4411x+4141.1599

4

Exponential equation 0.98 3535.7e0.0094x

linear equation 0.97 37.843x + 3513.4

Logarithmic equation 0.76 294.47ln(x) + 3322.1

Power equation 0.79 3366.4x0.0739

Third-order polynomial equation 0.99 -0.0712x3+8.3181x2-
277.671x+6509.3051

5

Exponential equation 0.97 4155e0.0071x

linear equation 0.97 32.312x + 4141.9

Logarithmic equation 0.80 259.44ln(x) + 3960

Power equation 0.82 3988.7x0.0573

Third-order polynomial equation 0.98 -0.0886x3+9.7247x2-
314.9538x+7424.7836

6

Exponential equation 0.97 4061.1e0.0204x

linear equation 0.96 110.65x + 3917.6

Logarithmic equation 0.70 836.56ln(x) + 3415.2

Power equation 0.76 3677.7x0.1572

Third-order polynomial equation 0.99 -0.1153x3+15.6859x2-
559.5365x+10383.6654

(Continued)
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significantly cuts down the time cost in comparison to traditional 7 -

day experiments. Although it deviates from the traditional 7 - day

germination definition requirement, the changes in the seeds are highly

conspicuous, and the emergence of germination is more pronounced.

As a result, it offers abundant data support for training deep - learning

models to detect seed germination.

After training, the proposed EBS - YOLOv8 detection model

shows excellent performance on the test set, with an error rate of

only 7% compared to actual manual observations. Through model

improvement, the model’s adaptability in seed germination

detection has been enhanced, demonstrating a substantial

improvement over the original model. It can effectively identify

germinated seeds. In contrast to traditional germination

experiments, this method not only conserves human and material

resources, reducing costs, but also enables non - destructive seed

detection, thus increasing the reuse rate of experimental seeds.

The algorithm proposed in this paper for measuring germination

potential uniformly classifies the seed itself and its germinating part as

white pixel points. By analyzing the changes in these white pixel points

and fitting the equation curve, it describes the deformation process of

seed germination. Further derivation of the equation yields a new

equation curve that can be used to depict the rate of seed germination

deformation. Experimental results have proven the theoretical

feasibility of this method, and the germination rate of seeds at

different stages has been observed through curve analysis.

Compared with traditional germination potential studies, this

research is more sensitive to seed quality. It is no longer restricted to

simply counting the number of germinations but instead delves

deeply into describing the germination trend and rate, which are

more representative indicators. This study not only enables the

measurement of the seed germination rate but also allows for the

observation of seed germination potential, thereby providing

theoretical support for seed selection and breeding.

However, this study has certain problems and limitations. The

research on germination potential, which was based on the

germination rate, revealed that some seeds were misclassified
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during germination detection, as illustrated in Figure 13. Analysis

of the confusion matrix (Figure 14) showed that 11279 seeds were

correctly classified during training, while 544 were misclassified.

This phenomenon might be due to the dataset’s resolution issues

and the fact that some non - germinated seeds at the time of

detection had noise points misidentified as buds by the model,

leading to misclassification as germinated seeds. Future research

should further enhance the model’s ability to detect minute features

to minimize the occurrence of false - detection phenomena.

When conducting germination potential measurements, we

noticed that for certain individual images, during the process of

counting the white pixel points, a downward trend emerged. This

led to negative values when calculating the derivative curve, a

situation that runs counter to the actual biological principles.

Through further in-depth investigation, we have identified that

there are two primary causes contributing to this phenomenon:

One of the reasons is that the volume of individual seeds is likely to

undergo changes during the germination process. Such changes may

stem from the occurrence of drying out during germination, which in

turn influences the statistical count of white pixel points. In the

subsequent verification process, this assumption was corroborated by

analyzing the image data, as depicted in Figure 15. The cropping

dimensions utilized in the figure are uniform across all cases. It is

evident that as time progresses, while the shoot part of the seed gradually

grows, there is a concurrent tendency for the seed itself to shrink. This

observed phenomenon indicates that fluctuations in seed volume can

have a substantial impact on the measurement of germination potential,

thereby affecting the accuracy of the model. Through an in-depth

analysis of this phenomenon, we are of the opinion that future

research endeavors should incorporate a quantitative analysis of seed

volume variations. This approach is expected to enhance the accuracy

and reliability of germination potential measurements.

Secondly, upon binarizing the images, we noticed that the

morphology of certain seeds in consecutive germination images

was inconsistent. This inconsistency might be attributed to the

image’s own resolution and the conditions within the Petri dish.
TABLE 6 Continued

Number Equation type R2 Expression

7

Exponential equation 0.95 3767.2e0.0086x

linear equation 0.94 36.468x + 3746.1

Logarithmic equation 0.73 284ln(x) + 3561.2

Power equation 0.76 3601x0.0675

Third-order polynomial equation 0.98 0.1096x3-10.9386x2+387.634x-719.1204

8

Exponential equation 0.96 2699.6e0.016x

linear equation 0.95 53.944x + 2647.1

Logarithmic equation 0.70 410.57ln(x) + 2395.8

Power equation 0.75 2497.7x0.1233

Third-order polynomial equation 0.99 -0.2138x3+24.1921x2-
836.4996x+12029.3196
Key metrics with outstanding performance are highlighted in bold.
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These factors can lead to edge defocusing and poor contour

definition after binarization. Moreover, there are interference

points surrounding the seeds that are imperceptible to the naked

eye. These interference points may originate from impurities in the

culture solution or dust particles that enter when the Petri dish lid is

opened, ultimately influencing the experimental results.
Frontiers in Plant Science 15
We carried out experimental adjustments on multiple

binarization methods and discovered that these issues were

widespread, and they also had an impact on the fitting curves of

our statistical data, as presented in Figure 16. This phenomenon

indicates that optimizing the image - processing algorithm to

enhance the capacity to detect the minute features of seeds will be
FIGURE 11

Numbers a-h represent the fitted equation curves for Petri dishes 1-8, respectively.
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beneficial in reducing errors and, consequently, improving the

model’s ability to identify the germination status.

Therefore, the experimental results of germination potential in

this study primarily provide an approximate depiction of the seed

germination process, and in future research, the key problem to be

resolved is how to describe the seed germination rate more precisely

and rigorously on the existing foundation; the root cause of this
Frontiers in Plant Science 16
problem is that in the current study, the seed body and the shoot

body are regarded as an entirety, which can characterize the seed

germination potential yet still has a certain error, so future research

efforts should center on separating the seed body from the shoot

body to carry out more accurate subsequent calculations, and with

this enhancement, it is expected that the accuracy of germination

potential measurements will be improved, thereby offering more
FIGURE 12

Numbers a-h correspond to Petri dish equation derivative curves 1-8, respectively.
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FIGURE 13

Model misdetection situation.
TABLE 7 Germination equation and derivative equation results.

Name Curvilinear equation R2 Derivative equation

1 0.062x3-4.9082x2+147.9527x+2144.1588 0.97 0.186x2-9.8164x+147.9527

2 0.0603x3-2.2675x2-9.5724x+3729.579 0.98 0.1809x2-4.535x-9.5724

3 0.0046x3+1.0051x2-57.4411x+4141.1599 0.97 0.0138x2+2.0102x-57.4411

4 -0.0712x3+8.3181x2-277.671x+6509.3051 0.99 -0.2136x2+16.6362x-277.671

5 -0.0886x3+9.7247x2-314.9538x+7424.7836 0.98 -0.2658x2+19.4494x-314.9538

6 -0.1153x3+15.6859x2-559.5365x+10383.6654 0.99 -0.3459x2+31.38x-559.5

7 0.1096x3-10.9386x2+387.634x-719.1204 0.98 0.3288x2-21.8801x+387.601

8 -0.2138x3+24.1921x2-836.4996x+12029.3196 0.99 -0.6414x2+48.3769x-836.4475
F
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reliable data support for the study of mechanisms related to

plant growth.
5 Conclusion

Based on the YOLOv8n model, this paper presents an enhanced

target - detection model, EBS - YOLOv8. This model is capable of

effectively detecting germinating seeds, thereby providing crucial

technical support for calculating seed germination rates in

agricultural production and demonstrating great potential for real

- time applications.

To achieve this, the ECA attention mechanism is incorporated

to boost feature - extraction capabilities while maintaining the

model’s lightweight nature. A small - target detection layer is

added and upgraded to a BiFPN network, which significantly

improves the detection accuracy of seed buds in the early

germination stage. The ScConv convolution is applied to increase
Frontiers in Plant Science 18
network depth, enhancing feature - extraction capabilities and

optimizing model complexity. Moreover, the concept of

“germination potential” is redefined and integrated with

algorithms and mathematical - modeling techniques to enable

visual measurement of the seed germination rate. These

innovative measures substantially enhance the model ’s

performance and practical application value in seed -

germination testing.

Through experimental verification, the EBS - YOLOv8 model

exhibits excellent performance in seed - germination detection and

can fully meet the requirements for measuring germination rates in

agricultural production. This study holds significant application

value in improving labor cost - effectiveness, production quality,

and agricultural productivity. Additionally, by reducing

computational resources and time consumption, it enhances the

efficiency of practical applications, thus being of great practical

significance for the promotion and utilization of target -

detection technology.
FIGURE 14

Confusion matrix.
FIGURE 15

Seed time series germination images.
FIGURE 16

Binarised time series germination images.
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