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An accurate and easy-to-use gross primary productivity (GPP) model is essential

for studying the spatial and temporal dynamics of the terrestrial carbon cycle on a

global scale. Light use efficiency (LUE) models and process-basedmodels are the

two most commonly used approaches for GPP modeling. While LUE models are

simpler and more user-friendly, process-based models often achieve higher

accuracy due to their detailed structure. In this study, we introduce a new two-

leaf GPP model (TL-RHM) with two expression forms at a daily temporal

resolution. The TL-RHM is developed by temporally integrating a modified

rectangular hyperbolic model that incorporates the effects of temperature

variations on GPP across various vegetation types. The performance of the TL-

RHM is evaluated using data from 21 CO2 eddy-covariance flux sites, covering

four vegetation types: evergreen needleleaf forest, deciduous broadleaf forest,

grassland, and evergreen broadleaf forest. The results demonstrate that the daily

GPP simulated by the TL-RHM agrees well with the measured GPP for both

calibration and validation datasets across all four vegetation types. These findings

highlight the potential of the TL-RHM to accurately simulate daily GPP with a

relatively simple model structure, offering a valuable tool for long time-series

GPP simulations at regional or global scales.
KEYWORDS

gross primary productivity, two-leaf, modeling, rectangular hyperbolic model, light use
efficiency, enzyme kinetic model
1 Introduction

Gross primary productivity (GPP) is a key component of the terrestrial carbon cycle

(Sarkar et al., 2024; Marsh et al., 2025; Cheng et al., 2022; Mäkelä et al., 2008), and it is

usually modeled using light use efficiency (LUE) models and process-based models at time

steps of ranging from half hour, an hour, a day, 8 days, and a month. LUE models are
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2025.1555482/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1555482/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1555482/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1555482/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2025.1555482&domain=pdf&date_stamp=2025-03-11
mailto:wfm@zju.edu.cn
https://doi.org/10.3389/fpls.2025.1555482
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2025.1555482
https://www.frontiersin.org/journals/plant-science


Yi and Wang 10.3389/fpls.2025.1555482
commonly used for time steps of a day, 8 days, and a month (Law

and Waring, 1994; Running et al., 2004; Yuan et al., 2014). These

models have the advantages of simple model structure and high

computation efficiency, which can be combined with remotely

sensed data to perform large-scale GPP modeling. However, LUE

models are insufficient in mechanism descriptions of biophysical

and biological processes involved in photosynthesis because they

are highly integrated in terms of time and space. From the

perspective of time, these LUE models do not consider the effects

of diurnal variations of meteorological variables to photosynthesis,

and also they do not consider the effects of day-to-day variations of

meteorological variables when multiday composites of GPP are

computed. From the perspective of space, they are usually based on

the big-leaf model, which does not separate canopy leaves into

sunlit and shaded leaves. So these spatiotemporal characteristics of

LUE models result in their limitations in GPP computation,

especially for daily GPP modeling (Raczka et al., 2013;

Wang et al., 2013).

Process-based models (PBMs) are considered to have the ability

for accurate simulation of GPP. Most of them are based on

Farquhar’s enzyme kinetic (EK) photosynthesis model (Farquhar

et al., 1980) or its variants such as Baldocchi’s model (Baldocchi,

1994), which couples Farquhar’s model with the Ball–Woodrow–

Berry (BWB) stomatal conductance model (Ball et al., 1987) to

derive an instantaneous leaf-scale photosynthesis model. Although

both Farquhar’s and Baldocchi’s models are instantaneous models,

they are never run at a second time step but are often run at half-

hourly or hourly time steps (Wang et al., 2001; Ju et al., 2006). In

each step, the half-hourly or hourly averaged values of

meteorological variables are inputted for GPP computation. The

advantage of PBMs is that they are developed based on the

mechanism of biophysical and biological processes. Therefore,

simulation accuracies of GPP by PBMs are considered to be

better than those by LUE models. However, the use of PBMs may

be limited in large-scale and long time-series GPP simulations with

high spatial resolution due to the complex model structures and

small time steps. This is because measured half-hourly or hourly

input data are unavailable at a global scale and interpolated data

may result in some uncertainties.

In fact, there is another type of GPP model, the rectangular

hyperbolic model (RHM), which is usually applied in temperature-

controlled experiments (Pachepsky et al., 1996; Saito et al., 2005).

Compared to the two groups of GPP models mentioned above,

RHM is rarely used for long-term large-scale GPP modeling

because its two parameters—quantum yield and maximum

photosynthetic rate—vary temporally for different vegetation

types. The use of fixed parameters of RHM under variable natural

conditions can lead to errors in GPP calculations.

Above all, the commonly used models have some shortcomings

in efficient and accurate GPP computation. But when studying the

global terrestrial ecosystem carbon cycle, we often need to calculate

GPP at large scales (regional or global), over long time series, and

with high spatial resolution. Therefore, we urgently need an easy-to-

use and efficient GPP model with high simulation accuracy. One

possible way to solve the problem is temporal integration of
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instantaneous Baldocchi’s photosynthesis model with respect to

time and space as Baldocchi’s model is based on Farquhar’s

photosynthesis model and takes only meteorological data as

inputs. The integration can be performed because most

meteorological variables follow predictable diurnal courses over

the course of a day. For example, radiation usually follows a sine

function with a peak at solar noon (Kimball and Bellamy, 1986).

However, an analytical solution for the integration of Baldocchi’s

model with respect to time is difficult to accomplish due to the

complexity of the equations (Wang et al., 2014a). In order to

overcome this problem, we present an alternative way to integrate

Baldocchi’s model by establishing a relationship between

Baldocchi’s model and the rectangular hyperbolic model. First, we

develop a temperature- and vegetation type-adapted rectangular

hyperbolic model by linking it to Baldocchi’s photosynthesis model

with high fidelity. Then, we integrate the modified rectangular

hyperbolic model with respect to time to obtain a leaf-scale daily

GPP model. Finally, we couple the daily GPP model with a two-leaf

upscaling strategy to get a two-leaf daily GPP model with two

expression forms, namely, TL-RHM_sine and TL-RHM_sinesine.

Therefore, the objective of this study is to develop a new daily

canopy-scale model for accurate and efficient GPP calculation. The

model is of both photosynthesis mechanism and simple model

structure, and it is expected to provide support for large-scale, long

time-series, and high spatial resolution GPP simulation.
2 Materials and methods

2.1 Flux tower sites and data

The flux tower datasets used to calibrate and validate the new

proposed model are acquired from the AmeriFlux website (http://

ameriflux.ornl.gov) and the Canadian Carbon Program (CCP)

website (http://fluxnet.ccrp.ec.gc.ca). Twenty-one sites covering

evergreen needle leaf forest (ENF), deciduous broadleaf forest

(DBF), grassland, and evergreen broadleaf forest (EBF) are

selected. For each site, half-hourly global radiation or

photosynthetically active radiation, relative humidity, air

temperature, and CO2 flux data, as well as some key datasets such

as max LAI, can be used in the study. The half-hourly data

associated with equipment failures have been gap-filled using the

artificial neural network method (Papale and Valentini, 2003) or

Barr’s gap-filling method (Barr et al., 2004). In order to obtain the

inputs of a new daily model, the half-hourly measurements of

radiation and GPP are summed to daily values, while the half-

hourly measurements of air temperature are used to extract the

maximum and minimum air temperatures during a day. Since the

daily GPP is simulated for a whole year, the time-series LAI data are

needed for time-series GPP modeling. For most of the sites, there

are no measured time-series LAI data, but the measured maximum

LAI data are available. So, the measured maximum LAI data are

combined with the time-series MODIS LAI to obtain time-series

LAI data as the model input. To evaluate the model performance

with independent data, for each of the vegetation types, nearly half
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of the sites are used for model calibration, and the remaining sites

are used for model validation (Table 1).
2.2 A leaf-scale temperature and
vegetation type-adapted rectangular
hyperbolic model

The traditional RHM can be expressed as Equation 1:

GCAleaf (t) =
aPmAPAR(t)

Pm + aAPAR(t)
(1)

where GCAleaf is the leaf photosynthetic rate at time t, and a and

Pm are the quantum yield and maximum photosynthetic rate at

light saturation conditions, respectively.

The traditional RHM is usually applied in temperature-controlled

experiments or over a few days during which temperature is assumed

to be constant (Wang et al., 2014b). In our study, we improve the

traditional RHM by establishing a relationship with Baldocchi’s

photosynthesis model to obtain a modified RHM as follows: 1) for a
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given temperature and vegetation type, leaf-scaleGPPs aremodeled by

Baldocchi’s photosynthesis model with a series of photosynthetic

photon flux density (PPFD) values ranging from 50 mmol m−2 s−1 to

2,000 mmol m−2 s−1 as inputs; 2) the two parameters, a and Pm, are

obtained by regressing PPFD against GPP using the rectangular

hyperbolic model with fitted R2 close to 1 (Supplementary Figure

S1); and 3) the above two steps are repeated for all combinations of

temperature from 1°C to 40°C and the maximum rate of Rubisco-

mediated carboxylation (Vcmax,25) from 20 mmol m−2 s−1 to 180 mmol

m−2 s−1 to get thea andPmdistributionmaps (Ceccato et al., 2002) (see

Supplementary Figures S2, S3). It should be pointed out that, for all

combinations of temperature and Vcmax,25, the R
2 values of all fitted

RHMs are greater than 0.99, meaning that, for a vegetation type, the

modified RHM can perform as well as Baldocchi’s model under fixed

temperature conditions (Wang et al., 2014a). The fact that RHM can

accurately simulate the photosynthetic process under fixed

temperature conditions has been proven in a previous study

(Pachepsky et al., 1996). Therefore, we developed a leaf-scale RHM

that is adjusted for air temperature and vegetation type, which is

expressed as Equation 2:
TABLE 1 The description of sites used in this study.

Vegetation type Site ID Longitude Latitude Year Category References

Evergreen needleleaf forest

US_NR1 −105.546 40.033 2005 Calibration Monson et al. (2005)

US_Ho1 −68.740 45.204 2004 Calibration Hollinger et al. (2004)

US_Wrc −121.952 45.821 2004 Calibration Falk et al. (2008)

Ca_DF49 −125.335 49.869 2008 Validation Jassal et al. (2009)

US_Ho2 −68.747 45.209 2004
Validation Richardson and

Hollinger (2005)

US_SP2_ −82.2448 29.765 2004 Validation Zhao et al. (2013)

Deciduous broadleaf forest

US_MOz −92.200 38.744 2007 Calibration Gu et al. (2007)

US_UMB −84.714 45.560 2004 Calibration Curtis et al. (2002)

Ca_OA −106.198 53.629 2008 Calibration Barr et al. (2004)

US_Bar −71.288 44.065 2006 Validation Jenkins et al. (2007)

US_Ha1_ −72.172 42.538 2004 Validation Urbanski et al. (2007)

US_MMS −86.413 39.323 2004 Validation Schmid et al. (2000)

US_WCr −90.080 45.806 2004 Validation Cook et al. (2004)

Grassland

US_Var −120.951 38.407 2005 Calibration Baldocchi (2003)

US_Fwf −111.772 35.445 2007 Calibration Dore et al. (2010)

US_IB2 −88.241 41.841 2006 Calibration Allison et al. (2005)

US_Dk1 −79.093 35.971 2001 Validation Oren et al. (2006)

US_Aud −110.509 31.591 2005 Validation Krishnan et al. (2012)

US_Goo
−89.874 34.255

2004
Validation Wilson and

Meyers (2007)

Evergreen broadleaf forest

BR_Sa1 −54.959 −2.857 2004 Calibration Wick et al. (2005)

BR_Sa3 −54.9714 −3.018 2001 Calibration Goulden et al. (2006)

BR_Sa3 −54.9714 −3.018 2002 Validation Goulden et al. (2006)
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GCAleaf (Vcmax,25,T , t)

=
a(Vcmax,25,T)� Pm(Vcmax,25,T)� APAR(t)
Pm(Vcmax,25,T) + a(Vcmax,25,T)� APAR(t)

(2)

where GCAleaf is the leaf-scale photosynthetic rate for a

vegetation type with a fixed Vcmax,25 at a temperature T. a and

Pm are the two parameters of GCAleaf, and they are determined by

temperature T and Vcmax,25.
2.3 Integration of the modified RHM with
respect to time

The daily leaf-scale GCA can be calculated as:

GCAdaily,leaf (Vcmax,25,T)

=
Z tset

trise

a(Vcmax,25,Tp)� Pm(Vcmax,25,Tp)� APAR(t)

Pm(Vcmax,25,Tp) + a(Vcmax,25,Tp)� APAR(t)
(3)

where trise and tset are the times of sunrise and sunset,

respectively. Tp is the average temperature during the active

photosynthesis period in the day.

The diurnal variation of APAR is described using a simple sine

function (Kimball and Bellamy, 1986) or a squared sine function:

APARt = APARnoon sin
pðt �  triseÞ
tset − trise

� �
  ¼  

pAPARdaily

2Daylength
sin

pðt �  triseÞ
tset − trise

� �

(4)

APARt = APARnoon sin
2 pðt �  triseÞ

tset − trise

� �
  ¼  

2APARdaily

Daylength
sin2

pðt �  triseÞ
tset − trise

� �

(5)

Therefore, daily leaf-scale GPPs are expressed in the forms of

Equations 6, 7 by substituting APAR in Equation 3 with Equation 4

or Equation 5. From Equation 4, we obtain the daily model (TL-

RHM_sine).

GPPdaily =

PmDaylength 1 − 2a
p

ffiffiffiffiffiffiffi
a2−1

p p
2 − arctan 1ffiffiffiffiffiffiffi

a2−1
p

� �� �h i
       a2 > 1

PmDaylength 1 − p
2

� �
                                                        a2 = 1

PmDaylength 1 − a
p

ffiffiffiffiffiffiffi
a2−1

p ln 1+
ffiffiffiffiffiffiffi
1−a2

p
1−

ffiffiffiffiffiffiffi
1−a2

p
� �h i

                        a2 < 1       

8>>>><
>>>>:

(6)

where Daylength is the length of day, a = Pm
aAPARnoon

, APARnoon =
pAPARdaily

2DaylengthAnd from Equation 5, we obtain the daily model (TL-

RHM_sinesine):
Frontiers in Plant Science 04
GPPdaily = PmDaylength 1 −

ffiffiffiffiffiffiffiffiffiffiffi
a

a + 1

r	 

  (7)

where Daylength is the length of day, a = Pm
aAPARnoon

, APARnoon =
2APARdaily

Daylength
2.4 Upscaling leaf-scale GPP to canopy-
scale using a two-leaf strategy

The canopy-scale GPP (GPPcanopy) can be calculated as the sum

of the total GPP of sunlit and shaded leaves (Chen et al., 1999, 2012)

(Equation 8):

GPPcanopy  =  GCAsunlit � LAIsunlit + GCAshaded � LAIshaded (8)

where the subscripts “sunlit” and “shaded” denote the sunlit

and shaded components of GCA and leaf area index (LAI). The

GCAsunlit and GCAshaded are calculated using Equations 6, 7.

Moreover, the APAR of sunlit and shaded leaves and the total

LAI separation into sunlit and shaded LAI are calculated using the

methods of Chen et al. (1999). Therefore, the final daily canopy

GPP models are the two two-leaf temperature and vegetation type-

adapted rectangular hyperbolic models with the diurnal radiation

following a sine function (Equation 4) and a squared sine function

(Equation 5), called TL-RHM_sine and TL-RHM_sinesine,

respectively. The inputs of the models are summarized in

Supplementary Table S1.

Since the effect of relative humidity on GPP estimation is not

considered in the new daily model, a scalar of vapor pressure deficit

(VPD), f(VPD), is used to downregulate the daily GPP by TL-RHM

under unfavorable conditions of high VPD (Equation 9), which will

make the new daily model suitable for changeable environmental

conditions.

GPPactual = GPPcanopy � f (VPD) (9)

where the GPPactual is GPP regulated by VPD, and the f(VPD)

can be expressed as follow (Equation 10):

f (VPD) =

0                              VPD ≥ VPDmax

VPDmax−VPD
VPDmax−VPDmin

         VPDmin ≤ VPD ≤ VPDmax

1                              VPD ≤ VPDmin

8>><
>>:

(10)

where VPDmax, VPDmin are the parameters dependent on

vegetation types (Table 2).
TABLE 2 Parameters calibrated for daily TL-RHM.

Parameters Unit Evergreen
needleleaf forest

Deciduous
broadleaf forest

Grassland Evergreen
broadleaf forest

Vcmax,25 mmol m−2 s−1 52 63 95 30

VPDmax Pa 4,500 4,500 4,500 4,500

VPDmin Pa 650 650 650 650
frontiersin.org

https://doi.org/10.3389/fpls.2025.1555482
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Yi and Wang 10.3389/fpls.2025.1555482
3 Results

The CO2 eddy-covariance measurements from 21 sites with

four vegetation types—ENF, DBF, grassland (GRA), and EBF

(Table 1)—are used to evaluate the two-leaf rectangular

hyperbolic model (TL-RHM) at daily temporal resolution. Since

the two forms of TL-RHM correspond to different assumptions for

diurnal radiation patterns, their performance in GPP simulations

will also be evaluated with different vegetation types.
3.1 Calibration of the two-leaf rectangular
hyperbolic model by measurements

The two-leaf rectangular hyperbolic model is calibrated by

conducting ensemble runs in a range of Vcmax,25, and then the

optimal Vcmax,25 is determined for each vegetation type. The

calibration results are shown in Table 2. For the calibration

dataset, the R2 and RMSE between the modeled and measured

GPP are computed for all four vegetation types, i.e., ENF, DBF,

GRA, and EBF. As seen in Figure 1, the GPP values modeled by TL-
Frontiers in Plant Science 05
RHM_sine are in good agreement with those of the measured GPP

with R2 values of 0.797, 0.871, and 0.944 for ENF, DBF, and GRA

sites and with RMSE values of 1.619, 1.630, and 1.033 g C m−2 day−1

for ENF, DBF, and GRA sites, respectively. For the EBF site, the

modeled and measured GPPs show a relatively poorer agreement

with an R2 value of 0.500. However, since the variation range of

GPP is small for the tropical evergreen forest, TL-RHM performs

acceptably well in tracing the seasonal variation of GPP with an

RMSE of 1.212 g C m−2 day−1. The comparisons between the

measured GPP and the modeled GPP by TL-RHM_sinesine

follow a similar pattern for the four vegetation types with R2

values of 0.804, 0.881, 0.944, and 0.481 (Figure 2) and RMSE

values of 1.549, 1.465, 0.911, and 1.265 g C m−2 day−1 for the

ENF, DBF, GRA, and EBF sites. From Figures 1, 2, it can be seen

that the TL-RHM_sine and TL-RHM_sinesine can accurately

simulate daily variations of GPP for the ENF, DBF, and GRA

sites, and both show a relatively poor performance for EBF sites due

to their small variations of GPP. Although there is a small difference

between TL-RHM_sine and TL-RHM_sinesine, TL-RHM_sinesine

performs slightly better than TL-RHM_sine for ENF and DBF sites,

while for EBF sites, the reverse is true.
FIGURE 1

Scatterplots of GPP simulated by the TL-RHM_sine versus measured GPP for the calibration sites of (a) evergreen coniferous forest (three sites with
1,097 samples), (b) broadleaf deciduous forest (three sites with 1,097 samples), (c) grassland (three sites with 1,095 samples), and (d) evergreen
broadleaf forest (two sites with 731 samples). Diagonal lines are the 1:1 lines.
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For the calibration dataset, the modeled GPP by both TL-

RHM_sine and TL-RHM_sinesine can track the seasonal

variations of measured GPP for the four vegetation types. The

modeled GPP also agrees well with day-to-day variations of

measured daily GPP for most of the sites (Supplementary Figures

S4–S7), but the two types of TL-RHM tend to overestimate GPP in

the spring for the US_NR1 and US_Ho1 sites and are incapable of

capturing the relatively high and low values of daily GPP for

EBF sites.
3.2 Validation of the two-leaf rectangular
hyperbolic model using measurements

The comparison results of the validation dataset are similar to

those of the calibration dataset for the four vegetation types (Figures 3,

4). ForTL-RHM_sine, the relatively largeR2 values of 0.725, 0.846, and

0.825 are obtainedwithRMSEvalues of 2.261, 1.916, and1.349gCm−2

day−1 for the ENF, DBF, and GRA sites, respectively. The R2 for EBF

sites is relatively small, similar to that of the calibration dataset, with an

RMSE of 1.172 g C m−2 day−1. For TL-RHM_sinesine, the R2 values

between the modeled andmeasured GPPs are 0.732, 0.852, 0.826, and
Frontiers in Plant Science 06
0.463withRMSEvalues of 2.001, 1.854, 1.214, and1.230 gCm−2 day−1

for the ENF, DBF, GRA, and EBF sites, respectively. In Figures 3a, 4a,

the points corresponding to the overestimation of GPP are mainly

fromCa_DF49, that is because theVcmax,25 for that site is lower thanthe

average values of evergreen needleleaf forest.

For the validation dataset, the modeled GPP by both TL-

RHM_sine and TL-RHM_sinesine can also track the seasonal

variations of the measured GPP with a peak in summer for most

of the ENF, DBF, and GRA sites and with a small significant

seasonal change for the EBF site (Supplementary Figures S8–S11).

The two types of TL-RHM can capture most of the low values of

measured daily GPP during overcast days over the seasons but fail

to capture the high values for the US_Ha1 site.

Although the GPPs simulated by the two types of TL-RHM

show similar results for different vegetation types, the GPPs

simulated by TL-RHM_sine are always greater than those by TL-

RHM_sinesine for all sites, and the cause will be discussed in the

discussion section. Moreover, the two types of TL-RHM behave

differently in their simulation of daily GPP for different vegetation

types. For the ENF, DBF, and GRA sites, the TL-RHM_sinesine

performs slightly better than the TL-RHM_sine, while for the EBF

sites, the TL-RHM_sine performs better.
FIGURE 2

Scatterplots of GPP simulated by the TL-RHM_sinesine versus measured GPP for the calibration sites of (A) evergreen coniferous forest (three sites
with 1,097 samples), (B) broadleaf deciduous forest (three sites with 1,097 samples), (C) grassland (three sites with 1,095 samples), and (D) evergreen
broadleaf forest (two sites with 731 samples). Diagonal lines are the 1:1 lines.
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4 Discussion

4.1 Comparison of the two types of daily
TL-RHM

The difference between the two types of TL-RHM is the

radiation function used in the daily integration with respect to

time (Equations 4, 5). The maximum daily radiations simulated by a

squared sine function used in TL-RHM_sinesine are always higher

than those simulated by a sine function in TL-RHM_sine. This can

be proven by deriving Equations 11, 12:

Rdaily =
Z Daylength

0
Rnoon,sine sin

pt
Daylength

 dt

         ¼  �Rnoon,sine
Daylength

p  cos pt
Daylength jDaylength0

         ¼ 2�Rnoon,sine�Daylength
p

(11)

Then, the radiation at noon for the sine function, Rnoon,sine =
pRdaily

2�Daylength.
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Rdaily =
Z Daylength

0
Rnoon,sine sin

2 pt
Daylength

 dt

         ¼  Rnoon,squared�sine
Daylength

p   pt
2�Daylength −

1
2 sin

2pt
Daylength

h i
jDaylength0

         ¼  Rnoon,squared�sine�Daylength
2

(12)

The radiation at noon for the squared sine function,  

Rnoon,squared�sine =
2�Rdaily

Daylength. Therefore, since 2 is greater than PI/2,

we can draw a conclusion that Rnoon,squared-sine is higher than Rnoon,

sine, but except around the noon hours, the radiation simulated by a

sine function is higher than that simulated by a squared sine

function. Because GPPs at noon hours on clear days usually

approach an asymptote, the increase in radiation at those hours

does not produce a significant increase in the corresponding GPP,

while the increase in radiation at morning or afternoon hours will

result in an obvious increase in the corresponding GPP. Therefore,

the modeled GPPs by TL-RHM_sine are always higher than those

obtained by TL-RHM_sinesine, as shown in Figure 5. For ENF,

DBF, GRA, and EBF, the R2 values of the fitted linear equations
FIGURE 3

Scatterplots of GPP simulated by the TL-RHM_sine versus measured GPP for the validation sites of (a) evergreen coniferous forest (three sites with
1,098 samples), (b) broadleaf deciduous forest (four sites with 1,463 samples), (c) grassland (three sites with 1,096 samples), and (d) evergreen
broadleaf forest (one site with 365 samples). Diagonal lines are the 1:1 lines.
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between GPPs from TL-RHM_sine and TL-RHM_sinesine are close

to 1, indicating that the GPPs simulated from the two types of TL-

RHM are highly correlated with each other. The slopes of the fitted

linear equations between GPPs are 0.93, 0.91, 0.92, and 0.92,

respectively, for ENF, DBF, GRA, and EBF, with an average slope

value of 0.92.

As to which type of TL-RHM performs better in GPP

estimation, it depends on which radiation function (i.e., sine or

squared sine) can accurately simulate the diurnal radiation variation

at the study sites. In general, at high latitudes, solar radiation follows

a squared sine function approximately, while it follows a sine

function approximately at low latitudes. Therefore, TL-RHM_sine

may be suitable for lower latitudes, while TL-RHM_sine may be

appropriate for higher latitudes.
4.2 Limitations of daily TL-RHM

In the modified TL-RHM, we considered the effects of

temperature and vegetation types on GPP. Although vapor
Frontiers in Plant Science 08
pressure deficit was taken into account in the daily GPP

estimation, it is only considered by an empirical function.

Moreover, GPP is also affected by soil water content, but it is not

included in daily TL-RHM. A possible solution is to introduce a soil

water factor to the daily GPP model, similar to its application in

LUE models. For large-scale applications, the water stress spectral

index derived from remote sensing data can be used to

downregulate daily GPP under conditions of deficient soil water

content (Ceccato et al., 2002; Xiao et al., 2005). Finally, it should be

noted that the influence of CO2 concentration on photosynthesis is

also not considered, but it is important for long-term GPP

simulation. In addition, since the daily TL-RHM is developed

based on Baldocchi’s photosynthesis model, the uncertainties in

Baldocchi’s model may be inherited by the daily TL-RHM.

In our study, the diurnal variations of radiation were assumed

to follow a sine or a squared sine function. The diurnal radiation

basically follows a sine or a squared sine function. However, for an

individual day, the assumption may not be satisfied under some

unstable weather conditions (e.g., concurrent sunny and cloudy

days in the morning or afternoon), in which the estimated daily
FIGURE 4

Scatterplots of GPP simulated by the TL-RHM_sinesine versus measured GPP for the validation sites of (a) evergreen coniferous forest (three sites
with 1,098 samples), (b) broadleaf deciduous forest (four sites with 1,463 samples), (c) grassland (three sites with 1,096 samples), and (d) evergreen
broadleaf forest (one site with 365 samples). Diagonal lines are the 1:1 lines.
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GPP may not be accurately calculated by TL-RHM, and in most

cases, overestimation of daily GPP may occur.
5 Conclusions

In our study, two types of daily two-leaf GPP models were

developed. The two models called TL-RHMs were constructed by

integrating a temperature and vegetation type-adapted rectangular

hyperbolic model with respect to time to make them suitable for

different environmental conditions and vegetation types. Four

eddy-covariance measurement sites with different vegetation types

and an hourly process model (the BEPS model) were used to

evaluate the performance of the two types of the daily GPP

model. Comparison results showed that the newly developed TL-

RHMs can not only track the seasonal trends of daily GPP but also

capture the day-to-day variation of daily GPP. The RMSE values

between daily GPPs measured and simulated by TL-RHM_sine are

2.261, 1.916, and 1.349 g C m−2 day−1 for the ENF, DBF, and GRA

sites, respectively, and 2.001, 1.854, 1.214, and 1.230 g C m−2 day−1

by TL-RHM_sinesine for the ENF, DBF, GRA and EBF sites,

respectively. The results mean that TL-RHMs can simulate a
Frontiers in Plant Science 09
comparative daily GPP as accurately as a process model but with

a lower complexity compared to the TL-LUE model, indicating the

great potential of TL-RHMs for daily GPP simulation at large scales.
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