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Introduction: Weed poses a greater threat to rice yield and quality in upland

environments compared to paddy fields. Effective weed detection is a critical

prerequisite for intelligent weed control technologies. However, the current

weed detection methods for upland rice often struggle to achieve a balance

between accuracy and lightweight design, significantly hindering the practical

application and widespread adoption of intelligent weeding technologies in real-

world agricultural scenarios. To address this issue, we enhanced the baseline

model RT-DETR and proposed a lightweight weed detection model for upland

rice, named PHRF-RTDETR.

Methods: First, we propose a novel lightweight backbone network, termed

PGRNet, to replace the original computationally intensive feature extraction

network in RT-DETR. Second, we integrate HiLo, a mechanism excluding

parameter growth, into the AIFI module to enhance the model’s capability of

capturing multi-frequency features. Furthermore, the RepC3 block is optimized

by incorporating the RetBlock structure, resulting in RetC3, which effectively

balances feature fusion and computational efficiency. Finally, the conventional

GIoU loss is replaced with the Focaler-WIoUv3 loss function to significantly

improve the model’s generalization performance.

Results: The experimental results show that PHRF-RTDETR achieves precision,

recall, mAP50, and mAP50:95 scores of 92%, 85.6%, 88.2%, and 76.6%,

respectively, with all metrics deviating by less than 1.7 percentage points from

the baseline model in upland rice weed detection. In terms of lightweight

indicators, PHRF-RTDETR achieved reductions in floating-point operations,

parameter count, and model size by 59.3%, 53.7%, and 53.9%, respectively,

compared to the baseline model. Compared with the traditional target

detection models of Faster R-CNN and SSD, YOLO series models, and RT-

DETR series models, the PHRF-RTDETR model effectively balances lightweight

and accuracy performance for weed detection in upland rice.
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Discussion: Overall, the PHRF-RTDETR model demonstrates potential for

implementation in the detection modules of intelligent weeding robots for

upland rice systems, offering dual benefits of reducing agricultural production

costs through labor efficiency and contributing to improved food security in

drought-prone regions.
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1 Introduction

Rice (Oryza sativa) is one of the world’s three major food crops,

with an annual output of approximately 800 million tons, accounting

for a quarter of global grain production (Bai et al., 2023). It serves as

the staple food for nearly 50% of the world’s population (Sun et al.,

2022). Rice is classified into lowland and upland types (Xia et al.,

2019), with the primary distinction based on the growing

environment. Upland rice is cultivated in areas with limited water

resources and unpredictable precipitation, relying on natural rainfall

or limited irrigation, unlike lowland rice, which is grown in paddy

fields. As climate change intensifies and water resources become

scarcer, the area dedicated to upland rice cultivation in arid and

semi-arid regions is expected to expand, while a reduction in paddy

field area is projected, helping to alleviate pressure on global food

security (Alagbo et al., 2022). However, a key challenge in upland rice

cultivation is weed competition. Drylands inherently provide fewer

resources for growth than paddy fields. Weeds compete with upland

rice for these limited resources, severely hindering its growth and

substantially reducing both yield and quality. Therefore, developing

effective weed removal measures is critical to alleviate these constraints

in upland rice cultivation systems.

Currently, there are four primary methods of weed removal:

preventive, biological, chemical, and mechanical weeding (Hasan

et al., 2021). Among these, the chemical and mechanical methods

remain widely adopted in agricultural practice. Intelligent weeding

robots, equipped with precise weed detection capabilities, can

significantly enhance the removal efficiency through targeted

herbicide application and physical elimination. Given the

challenge of labor shortages in agricultural production (Yang

et al., 2021), it is crucial to advance the detection technologies

used in intelligent weeding robots.

Traditional machine learning methods for weed detection rely

on features such as color, shape, vein pattern, size, and texture (Li

et al., 2024). Sujaritha et al. (2017) extracted features from

sugarcane leaf weeds using morphological operations and

combined them with fuzzy real-time classification technology to

distinguish the weeds. Ashraf and Kha (Ashraf and Khan, 2020)

classified rice weed density images into three categories using two

classification techniques. The first technique extracts texture

features from grayscale co-occurrence matrices (GLCM) and
02
applies radial basis functions (RBF) with support vector machines

(SVM), achieving an accuracy of 73%. The second technique uses

scale- and rotation-invariant moment features combined with a

random forest classifier, achieving 86% accuracy. Dadashzadeh

et al. (2020) extracted 302 features related to color, shape, and

texture and then optimized an artificial neural network (ANN) for

weed classification using particle swarm optimization (PSO) and

the bee algorithm (BA). The results indicate that the accuracy of the

ANN-BA classifier is 88.74% and 87.96%, respectively, for the two

test sets. Bakhshipour and Jafari (2018) integrated Fourier

descriptors with invariant moment features using SVM and ANN

to classify common weeds in sugar beet fields and achieved high

accuracy. The results show that the SVM classifier achieved an

overall accuracy of 95%, while the ANN achieved 92.92%. While

these methods focus on enhancing traditional machine vision

techniques for weed detection and have yielded promising results,

the convergence among weed species significantly limits the efficacy

of unimodal feature analysis , compel l ing the use of

multidimensional feature combinations. This paradigm introduces

two fundamental constraints: (1) When processing large-scale, real-

time data, these methods rely on time-consuming manual feature

extraction, resulting in low efficiency. (2) These methods exhibit

limited robustness, particularly in overcoming environmental

challenges such as occlusion, clustering, and illumination changes.

In unstructured environments, deep learning outperforms

traditional image processing techniques (Kamilaris and Prenafeta-

Boldú, 2018) due to its ability to automatically extract features and

handle high-dimensional data (Wang S. et al., 2024). Some

researchers have applied convolutional neural network (CNN)

architectures for weed detection—for example, Jiang et al. (2020)

proposed a graph convolutional network (GCN) based on CNN

features, achieving recognition accuracies of 97.80%, 99.37%,

98.93%, and 96.51% on four different weed datasets. This method

outperformed AlexNet, VGG16, and ResNet-101. Jiang et al. (2019)

used Inception-ResNet-v2 as the backbone of Faster R-CNN to

detect crops and weeds in cotton fields, achieving F1 scores of 72.7%

and 96.9% at IoU thresholds of “all” and 0.5, respectively. Lam et al.

(2021) employed VGG-16 to classify drone images of Rumex

obtusifolius weeds, achieving an overall accuracy of 92.1% and an

F1 score of 78.7%. Zou et al. (2022) proposed an enhanced U-Net

for segmenting wheat and weeds in images. Transfer learning was
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applied during training, resulting in a segmentation IoU of 88.98%

and an average processing speed of 52 FPS on embedded devices.

Although classical convolutional networks have yielded promising

results in weed detection, their real-time detection performance is

inferior to that of YOLO. As a result, research has increasingly

focused on YOLO-based algorithm. Wang et al. (2022) combined

YOLOv5 with the Convolutional Block Attention Module (CBAM) to

develop the YOLO-CBAM model for detecting invasive alien weeds,

such as Solanum rostratum Dunal. After the multi-scale training, the

accuracy of YOLO-CBAM increased from 83.54% to 90.36%, while the

model size was 14.9 MB. Shao et al. (2023), addressing the suboptimal

weed detection performance of lightweight YOLOv5s, introduced the

Ghost, C3 Trans, and CBAM modules into the backbone network to

improve feature extraction in complex environments. They also

incorporated the Bi-directional Feature Pyramid Network (BiFPN)

structure in the neck network for multi-scale feature fusion.

Additionally, a scale-sensitive crossover loss function was applied to

reduce redundant bounding boxes. The final GTCBS-YOLOv5s

achieved 91.1% mAP for detecting six weed species in paddy fields,

with a processing speed of 85.7 FPS. Based on the YOLOv4 model,

Chen et al. (2022) incorporated the Squeeze-and-Excitation (SE)

module as the logic component in the SPP layer and introduced an

adaptive spatial feature fusion structure in the feature fusion layer. The

F1 scores of the YOLO-SEAM model for sesame and weeds were 0.91

and 0.92, respectively. Hu et al. (2024) proposed the Multimodule-

YOLOv7-L, a lightweight weed severity classification model for lettuce

rows, by selecting a YOLOv7 model with a scale factor (t = 0.5) and

combining the Efficient Channel Attention (ECA) and CAmechanisms,

along with the ELAN-B3 and DownC modules. The model achieved a

precision of 97.5% and a model size of 18.4 MB, successfully balancing

the lightweight design with effective weed severity detection.

In summary, deep learning has become a dominant methodology

in weed detection. However, the current research faces two critical

limitations: (1) weed detection technologies have been primarily

optimized for paddy fields, leaving upland farming systems

comparatively neglected. (2) While current object detection

techniques achieve high accuracy, their large model sizes and

substantial computational requirements hinder their practical

deployment in agricultural environments. The PHRF-RTDETR

model, a deep learning-based approach with enhanced end-to-end

object detection capabilities, shows great promise for weed detection

in upland rice fields. This model is suited to overcome the challenges

associated with the environment of upland rice system and the

intrinsic diversity of weeds, which collectively exacerbate detection

difficulties. By maintaining high detection accuracy, this study

proposes a lightweight adaptation of the RT-DETR model. The key

contributions of this work are outlined as follows:
Fron
1. By integrating the design principles of partial convolution

(PConv), group convolution (GConv), and residual

structures, we propose a new lightweight module called

PGRBlock, which is highly efficient and multi-scale.

Building upon PGRBlock and conventional convolution

techniques, we develop a novel, efficient, and multi-scale

lightweight backbone network named PGRNet. This
tiers in Plant Science 03
backbone network significantly reduces computational

and storage costs while effectively extracting key features

of upland rice weed.

2. Building on the AIFI module, the AIFI-HiLo structure was

developed by integrating the HiLo attention mechanism

excluding parameter growth, which can capture both high-

and low-frequency features. This modification addresses

the limitation of the original AIFI model, where the multi-

head attention mechanism inadequately emphasized the

frequency-specific characteristics of weed in upland rice.

3. To address the issue of RepC3’s inability to handle

convolutional redundancy and effectively capture long-

range features, the RetBlock structure is introduced,

resulting in the development of the RetC3 module. This

module successfully achieved a lightweight design while

ensuring feature fusion for weed in upland rice.

4. Focaler-WIoUv3 was derived by combining WIoUv3 with

Focaler-IoU, effectively addressing the limitation of the

original GIoU loss function when handling overlapping

target frames for weed in upland rice.
2 Materials and methods

2.1 Weed database for upland rice

2.1.1 Data acquisition
The weed images in this study were collected at the

experimental base of Yunnan Agricultural University from July to

August 2024. The specific shooting periods were daily from 9:00 to

12:00 in the morning and 16:00 to 19:00 in the afternoon to obtain

weed image data at seedling and growth stages under different

lighting conditions. The shooting equipment was an iPhone11, and

the device’s built-in camera software was used for collection. The

image resolution was uniformly adjusted to 640 × 640 pixels for

input into the model for training. During constant-velocity image

acquisition, a handheld camera was maintained at approximately 30

cm above ground level to replicate the near-ground perspective of a

robotic weeder. The camera position remained unfixed to permit

dynamic adjustment of the shooting angle, including both top-

down and lateral views. To reflect the prime growth characteristics

of weeds in the early stage, we collected the images of individual

weeds, images of multiple weed communities, and images of weeds

with mutual occlusion. The original dataset consists of 986 images

representing five weed species: beggartick, crabgrass, Galinsoga

quadriradiata, goosegrass, and tropic ageratum herb. Some

sample images are shown in Figure 1.

2.1.2 Data annotation
The training of the RT-DETR model follows a supervised

learning approach, which requires labeled data to define class

information and provide a basis for comparing each output with

the true labeled data. Therefore, the weed dataset for upland rice

was labeled accordingly.
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First, the target categories were assigned labels 0, 1, 2, 3, and 4.

Each weed target was then marked with a minimal bounding box to

ensure that the area covered by the box is minimally affected by the

background elements. The initial labeled data was saved in a text file

format to meet the input requirements of the RT-DETR and YOLO

family models. A Python script was then used to convert the text files

into XML format, compatible with the SSD and Faster R-CNN

models. Both file formats contain similar information, including

category and bounding box details, but differ in their structure. In

the text file, category information is represented by numerical values,

while the bounding box is defined by the center coordinates, along

with the relative height and width. The XML file uses English words

to represent the categories, and the bounding box is specified by the X

and Y coordinates of the top-left and bottom-right corners.

2.1.3 Data demarcation and augmentation
Data augmentation techniques include random cropping,

rotation, and blurring. Random cropping enables the model to

learn features of weeds at various scales and positions, thereby

improving sensitivity to local features and robustness to target

location variations. Rotation operation facilitates the model’s

recognition of weeds from different angles, particularly enhancing

its adaptability to target orientation changes, which is crucial for

distinguishing morphologically similar weeds. Blur processing

simulates out-of-focus or suboptimal shooting conditions, allowing
Frontiers in Plant Science 04
the model to learn weed characteristics from blurred or low-quality

images, effectively improving its generalization capability in real-

world environments. Collectively, these data augmentation strategies

enhance the diversity of the weed dataset and simulate interference

factors in real-world scenarios, significantly improving the model’s

robustness and generalization ability, making it more suitable for

practical upland rice field applications.

The original weed dataset in upland rice was partitioned into

training, validation, and test sets with a ratio of 7:1:2. Data

augmentation was then applied to expand the dataset. The

distribution of the dataset before and after augmentation is

shown in Table 1. Partitioning the data before augmentation is

crucial to prevent data leakage. If data augmentation were applied to

the entire dataset before splitting, the data in the test and validation

sets may contain augmented samples from the training set. This

would lead to issues such as evaluation bias, overfitting, and poor

generalization (Wen et al., 2020).
2.2 Construction of lightweight model
PHRF-RTDETR

2.2.1 The base model RT-DETR
RT-DETR leverages the complementary strengths of CNN for

local feature extraction and Transformer (Carion et al., 2020) for
TABLE 1 Demarcation and augmentation of weed dataset in upland rice.

Time Type Beggartick Crabgrass Galinsoga quadriradiata Goosegrass Tropic ageratum herb Total

Before Train 184 83 134 178 111 690

Val 16 10 22 33 17 98

Test 49 27 33 50 45 198

Total 249 114 189 261 173 986

After Train 708 427 505 674 436 2,750

Val 59 51 80 122 68 380

Test 182 123 131 199 180 815

Total 949 601 716 995 684 3,945
fro
FIGURE 1

Examples of weed: (A) beggartick, (B) crabgrass, (C) Galinsoga quadriradiata, (D) goosegrass, and (E) tropic ageratum herb.
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global context modeling, allowing it to effectively discern intricate

relationships between weeds and their surrounding backgrounds,

thus improving the detection accuracy. Additionally, RT-DETR

bypasses the non-maximum suppression (NMS) step commonly

employed in conventional object detection pipelines (Zhao et al.,

2024), enabling the direct prediction of detection results and

significantly enhancing the computational efficiency. Therefore, it

is feasible to use RT-DETR as the benchmark model for weed

detection in upland rice environment. As shown in Figure 2, RT-

DETR consists of three components: a backbone network, a hybrid

encoder, and a decoder.
Fron
1. Backbone: The backbone network extracts feature at

different scales, providing a rich set of stage-specific

feature representations for subsequent feature fusion.

2. Hybrid encoder: The encoder consists of two modules. The

first is the Attention-Scale Feature Interaction (AIFI) module,

based on the Transformer architecture, which performs

feature interaction and refinement within scale to enhance

feature representation. The second is the Cross-Scale Feature

Fusion (CCFF) module, based on CNN, which effectively

integrates feature information across different scales.

Together these modules provide more accurate image

feature inputs for the final output of the subsequent decoder.

3. Decoder: The decoder in RT-DETR is a Transformer-based

denoising decoder. Initially, an object query selects a fixed

number of encoder features using an uncertainty
tiers in Plant Science 05
minimization mechanism. The decoder is then combined

with auxiliary prediction heads to iteratively refine these

queries. These queries guide the decoder in extracting valid

target information from the image features provided by the

encoder, ultimately generating target categories and

bounding boxes.
2.2.2 The PHRF-RTDETR model structure
Although RT-DETR18, the most lightweight model in the RT-

DETR series, was chosen as the base model, its backbone network

architecture remains relatively complex, limiting its effectiveness in

real-world weeding operations. Given that weed detection tasks in

agricultural environments typically depend on hardware with limited

resources and the AIFI structure, RepC3 module, and loss function in

RT-DETR18 are not specifically optimized for weed detection, its

practical utility in weed detection tasks of upland fields is considerably

restricted. To address these challenges, we propose a more lightweight

and efficient design for RT-DETR18, as illustrated in Figure 3.

In Figure 3, the new, efficient, and multi-scale lightweight

backbone network, PGRNet, proposed in this study replaces the

original one-layer to an eight-layer feature extraction network of

RT-DETR. Next, the high- and low-frequency attentional

mechanism excluding parameter growth, HiLo, is introduced into

the AIFI structure, which is part of the hybrid encoder, resulting in

the high-efficiency AIFI-HiLo structure. Additionally, a lightweight

feature fusion structure, RetC3, is derived by combining RepC3 in
FIGURE 2

RT-DETR structure framework.
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CCFF with the RetBlock structure. Finally, the loss function in the

detection head of the decoder is optimized by replacing the original

GIoU function with the more flexible Focaler-WIoUv3 function.

2.2.3 The efficient multi-scale lightweight
backbone network PGRNet

The backbone network design of RT-DETR is based on the

ResNet18 architecture (He et al., 2016), which has fewer layers and

a more streamlined structure compared to deeper variants such as

ResNet34 and ResNet50. However, ResNet18 still faces performance

limitations in meeting the demands of lightweight weed detection.

Therefore, we propose PGRNet, a novel lightweight backbone network

centered on the PGRBlock module, designed to achieve a balance

between model complexity and detection performance. By

streamlining the network architecture and integrating multi-scale

feature extraction capabilities, PGRNet significantly reduces

computational requirements while maintaining high accuracy for

weed detection in upland rice fields.

The design of PGRBlock combines the concepts of PConv

(Chen et al., 2023) and GConv (Ioannou et al., 2017), both of

which are lightweight techniques. The structures of GConv and

PConv are illustrated in Figures 4B, C. In Figure 4B, the key idea of

GConv is to divide the input data into g groups, with each group

containing c/g input channels. The depth of the convolution kernel

used in each group is also c/g, while the spatial dimensions (i.e.,

height and width) of the kernel remain unchanged. Each subtask

performs an independent convolution operation within its

respective group. The outputs from all groups are then

concatenated along the channel dimension to obtain an output

with c channels. In this manner, the number of parameters and
Frontiers in Plant Science 06
computational cost of GConv is 1/g of those for standard

convolution, as shown in Figure 4A. In Figure 4C, PConv selects

only the first or last continuous channels in the input feature map as

the representative channels for convolution operations rather than

applying convolutions to all input channels. For channels not

involved in the convolution, the corresponding output values

directly retain the original input values. This selective convolution

strategy not only optimizes memory access efficiency but also

reduces computational overhead.

At the same time, the concept of residual structure is

incorporated into PGRBlock to enhance the information flow in

deep neural networks. The residual structure, as illustrated in

Figure 5, is primarily composed of two components: one

maintains the identity mapping, commonly referred to as the

“skip connection,” which directly passes the input information X

to the output layer. This helps prevent the gradual vanishing of

information in deep networks, a phenomenon known as the

vanishing gradient problem. The second component focuses on

learning the residual, which represents the difference between the

input X and the target output (x). By doing so, the network avoids

the need to learn an entirely complex global mapping from scratch

and instead only needs to correct the deviation between the input

and output. This approach reduces the difficulty of model training.

The PGRBlock module was developed by integrating the design

principles of PConv, GConv, and residual structure, resulting in an

efficient and lightweight multi-scale feature extraction module. By

employing convolutional kernels of different sizes, PGRBlock

effectively captures multi-level features, enhancing the model’s

ability to recognize hierarchical patterns. Furthermore, the

module incorporates a channel grouping strategy, where
FIGURE 3

PHRF-RTDETR framework.
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convolutional operations are applied to a subset of channels while

the remaining channels undergo identity mapping. This design

significantly reduces computational complexity, parameter volume,

and overall model size, achieving an optimized lightweight

architecture. The detailed structure of PGRBlock is presented in

Figure 6. In this figure, the feature information is first processed by a

3 × 3 convolution kernel to extract the initial feature map. Half of

the channels from this feature map are then passed through a 5 × 5

convolution kernel to capture higher-level features. Next, one-

quarter of the channels from the feature map processed by the 5

× 5 convolution kernel is passed into a 7 × 7 convolution kernel for
Frontiers in Plant Science 07
a more detailed feature extraction. During the feature extraction

process, feature information from different convolution kernels is

concatenated. Specifically, one-quarter of the channel features from

the 7 × 7 convolution kernel, one-quarter from the 5 × 5

convolution kernel, and one-half from the 3 × 3 convolution

kernel are concatenated to form a complete feature map. Finally,

the concatenated feature map is added to the original input feature

map to produce the final output feature map.

Based on PGRBlock, a new, high-efficiency, and multi-scale

lightweight backbone network, PGRNet, is proposed, as shown in

Figure 7. PGRNet consists offive 3 × 3 convolutional layers and four
FIGURE 5

Residual structure diagram.
A B

C

FIGURE 4

Diagrams of different convolution structures. (A) Standard Conv. (B) GConv. (C) PConv.
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PGRBlock modules. In the first stage, two successive 3 × 3

convolutional layers are used to extract low-level features from

the input data. PGRBlock is then applied to streamline the

representation of these low-level features. In the second stage, a

3 × 3 convolutional layer is employed to extract scale-specific

features from the middle layer, followed by the use of PGRBlock

to eliminate redundant feature information. A final 3 × 3

convolutional layer is then applied to integrate the middle-layer

features and produce the semantically enriched middle-layer

output. In the third stage, PGRBlock is first used to efficiently

extract high-level abstract features. A subsequent 3 × 3

convolutional layer refines these high-level semantic features, and
Frontiers in Plant Science 08
PGRBlock is applied again to further reduce feature redundancy

and refine the output.

2.2.4 Improvement of attention mechanism in
AIFI

AIFI is an intra-scale feature interaction module based on the

Transformer architecture, which captures inter-relationships

between intra-scale features using the multi-head attention

mechanism. However, the multi-head attention mechanism

overlooks features with different frequencies, leading to the loss of

high-frequency weed-related features and failing to effectively

suppress the interference from low-frequency features in the
FIGURE 7

PGRNet structure diagram.
FIGURE 6

PGRBlock structure diagram.
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upland rice background. To address this limitation, the multi-head

attention mechanism was replaced with the HiLo non-parameter-

added attention mechanism (Pan et al., 2022), which can focus on

the local high-frequency details of weed while capturing the global

low-frequency features of upland rice fields. This modification

enhances the model’s performance in weed detection in upland

rice. The structure of the HiLo attention mechanism is shown

in Figure 8.

In Figure 8, HiLo consists of high-frequency attention (Hi-Fi)

and low-frequency attention (Lo-Fi). In the Hi-Fi attention branch,

the local high frequency features of weed are captured by using a

simple non-overlapping local window attention mechanism in

distributed (1-a) Nh heads. In the Lo-Fi attention branch, the

average pooling operation is used to obtain the K key and V

value, and then the standard attention is used to capture the

global low frequency features of the upland rice field combined

with the Q information of the original feature map. Finally, the

weed characteristics of high- and low-frequency upland rice treated

with Hi-Fi and Lo-Fi were connected, and the results were output

into the CCFF structure.

2.2.5 Improvement of RepC3
RepC3 is a key component of the extra-scale feature fusion

structure in CCFF, primarily responsible for integrating the features

of upland rice weed through local convolution. However, this

structure has a limitation in handling long-range dependencies.

Specifically, when weeds are located in different areas of the image

or are spatially isolated, the RepC3 structure struggles to capture the

long-distance relationships between them, leading to reduced

detection accuracy. Furthermore, the multilayer convolutional

stacking in the RepC3 design increases computational and memory
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costs. Unlike convolutional structures based on self-attention

mechanisms, which can reduce unnecessary computational

redundancy through fine attention weight allocation, RepC3 lacks

this capability. To address these two issues, the RetBlock (Fan et al.,

2024) structure was introduced into RepC3, resulting in the RetC3

structure, which offers improved fusion performance and a lightweight

design, as shown in Figure 9.

In Figure 9, the RetBlock serves as the core component of

RetC3. Within the RetBlock, the input tensor x is first combined

with its positional encoding and then processed by the MaSA

mechanism. The MaSA utilizes a spatial attenuation matrix to

model the spatial relationships between different tokens in the

image, thereby enhancing the model’s ability to capture global

information and long-range dependencies. Specifically, the matrix

assigns attention weights based on the spatial distance between

token pairs, with closer tokens receiving stronger attention and

distant tokens experiencing attenuated attention. To optimize

computational efficiency, MaSA decomposes the traditional two-

dimensional attention mechanism into two separate one-

dimensional attentions: one operating along the horizontal (row)

axis and the other along the vertical (column) axis. This

decomposition reduces the computational complexity from

quadratic to linear, significantly lowering computational costs

while maintaining the global representation of spatial features.

Finally, the processed x is normalized, passed through FFN, and

fused with multi-scale representations via residual connections.

2.2.6 Improvement of loss function
The original IoU function used in RT-DETR is GIoU

(Rezatofighi et al., 2019). However, in cases where the bounding

boxes completely overlap, GIoU reduces to the traditional IoU,
FIGURE 8

HiLo attention mechanism schematic diagram.
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which limits the RT-DETR model’s ability to handle scenarios with

substantial variations in weed sizes. Furthermore, it leads to

inadequate boundary regression performance for occluded weeds

and is prone to generating inaccurate detection results in cases of

ambiguous boundaries.

To address this limitation, this study combines WIoUv3 (Tong

et al., 2023) with Focaler-IoU (Zhang and Zhang, 2024) to obtain

the Focaler-WIoUv3 function, which replaces the original GIoU.

WIoUv3 is an improvement over WIoUv, retaining its advantage of

reducing the negative impact of low-quality samples on the training

process by minimizing the penalty from geometric mismatches.

Additionally, WIoUv3 introduces a non-monotonic focusing

coefficient r, which allows the model to focus more effectively on

difficult samples while suppressing the adverse gradients caused by

low-quality anchor frames. Based on WIoUv3, the IoUfocaler is

integrated to develop Focaler-WIoUv3. This advanced function

significantly enhances bounding box regression accuracy,

providing robust handling of weed samples characterized by size

variations, occlusions, and indistinct boundaries. The Focaler-

WIoUv3 formula is shown in Equations 1–4.
LFocaler−WIoUv3 = LWIoUv3 + IoU − IoUFocaler (1)

LWIoUv3 = rLWIoUv1 (2)

LWIoUv1 = RWIoULIoU (3)
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IoUFocaler =

0, IoU ≪ d

IoU−d
u−d ,

1, IoU > d

d ≪ IoU ≪ u

8>><
>>:

(4)
2.3 Experimental platform

The software environment for this experiment includes the

PyTorch 2.4.1 deep learning framework, with programming

language conducted in Python 3.8.19. Development tool was

carried out using PyCharm Community Edition, and the system

is accelerated by CUDA 11.8. The hardware configuration consists

of an NVIDIA GeForce RTX 4090 graphics card and an Intel(R)

Xeon(R) Silver 4214R CPU (2.40 Hz).

For the experimental setup, a total of 300 iterations were

performed, with a training batch size of eight. The initial learning

rate was set to 0.0001.
2.4 Evaluation metrics

To comprehensively evaluate the performance of the PHRF-

RTDETR weed detection model in upland rice, the selection of

evaluation metrics focused primarily on model lightweight and

accuracy. Accuracy-related metrics include precision (P), recall (R),

mean average precision (mAP), and F1 score. The corresponding

formulas are provided in Equations 5–9.
FIGURE 9

RetC3 schematic diagram.
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Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

AP =
Z 1

0
P(R)dR (7)

mAP =
1
no

n
i=1APi (8)

F1 =
2� P � R
P + R

(9)

where TP refers to the number of weed correctly identified by

the model, TN refers to the number of non-weed (e.g., other crops,

backgrounds, etc.) correctly identified as non-weeds, FP refers to

the number of non-weed incorrectly identified as weed, and FN

refers to the number of weed incorrectly classified as non-weed. The

closer the values of P, R, mAP, and F1 score are to 1, the better the

accuracy in weed detection tasks.

The lightweight-related metrics include number of parameters

(Params), floating-point operations (FLOPs), and model size (MB).

The corresponding formulas are provided in Equations 10–12:

Params = Kw � Kh � Cout � Cin (10)

FLOPs = H �W � Params (11)

Weight   Size =
Params� BParams

10242
(12)

where Cout and Cin denote the number of output and input

channels of the convolutional kernel, Kw and Kh represent the width

and height of the convolutional kernel, Hout and Wout refer to the

height and width of the output feature map, respectively, and

Bparams represents the number of bytes occupied by each weight.

Smaller values of FLOPs, Params, and MB indicate better
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performance in terms of computational efficiency and

storage requirements.
3 Results and analysis

3.1 The comparison experiment of
lightweight backbone

To evaluate the effectiveness of PGRNet proposed in this study,

we conducted comparative experiments with several representative

lightweight backbone networks. These include RepViT (Wang A.

et al., 2024) and EfficientViT (Liu et al., 2023), which are based on

the Vision Transformer (ViT), as well as UniRepLKNet (Ding et al.,

2024) and LSKNet (Li et al., 2023), which are based on large kernel

convolutions. Additionally, we compared PGRNet with lightweight

backbone networks based on CNN, such as StarNet (Ma et al.,

2024), MobileNetV4 (Qin et al., 2025), ConvNeXtV2 (Woo et al.,

2023), and Fasternet. By performing a comprehensive comparison

with these various lightweight backbone networks, we thoroughly

assessed the advantages of PGRNet in terms of lightweight, as

shown in Table 2.

As shown in Table 2, compared to the original backbone

network of RT-DETR, all of the lightweight backbone networks

exhibit varying degrees of reduction in FLOPs, Params, and Size,

thereby achieving a lightweight effect. Among the ViT-based

lightweight networks, EfficientViT demonstrates the best

lightweight performance, with reductions of 9.1 G in FLOPs, 2.6

M in Params, and 4.8 MB in Size compared to RepViT. In

comparison to EfficientViT, the lightweight effect of PGRNet is

almost identical, while its weed detection accuracy metrics of P, R,

mAP50, and mAP50:95 increased by 2.1 percentage points, 1

percentage point, 2.6 percentage points, and 2.6 percentage

points, respectively. When compared to lightweight networks

based on large kernel convolutions, PGRNet exhibits the best

lightweight performance, with detection accuracy in upland rice

comparable to LSKNet. Among CNN-based lightweight networks,
TABLE 2 Comparative performance of various lightweight backbone networks.

Backbone P/% R/% mAP50/% mAP50:95/% FLOPs/G Params/M Size/MB

Basic 91.5 86.3 88.2 78.1 57 19.88 38.6

RepViT 92.3 83.2 86.9 75.8 36.3 13.31 26.4

EfficientViT 87.6 82.9 85.1 74.4 27.2 10.71 21.6

UniRepLKNet 91.8 85.3 89.6 78.5 33.4 12.71 25.5

LSKNet 89.7 85.9 87.1 76.1 37.6 12.57 24.7

StarNet 92.6 86.5 88.8 77.4 29.7 11.22 22.1

MobileNetV4 91 83.8 87.8 76.2 39.5 11.32 22.3

ConvNeXtV2 89 82.7 87.5 75.7 31.9 12.31 24.1

Fasternet 91.9 87.3 88.6 77.6 37.2 14.34 28

PGRNet 89.7 83.9 87.7 77 29.9 10.58 20.8
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StarNet achieves both the best detection accuracy for weed and the

most efficient lightweight performance. However, PGRNet

outperforms StarNet in terms of parameter count and model size,

with reductions of 0.64 M and 1.3 MB, respectively.

In summary, PGRNet, an efficient multi-scale lightweight

backbone network that integrates the advantages of PConv,
Frontiers in Plant Science 12
GConv, and residual connections, demonstrates superior overall

performance compared to existing mainstream lightweight

backbone networks. In terms of weed detection accuracy, PGRNet

achieves a reasonable level, while its lightweight indices are

outstanding. Specifically, PGRNet’s FLOPs, Params, and Size are

29.9 G, 10.58 M, and 20.8 MB, respectively.
FIGURE 10

Comparison of thermal maps after adding HiLo. (A) Single target. (B) Multiple target. (C) Occlusion.
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3.2 The validation experiment of AIFI-HiLo

The decision-making process of a deep learning model is often

referred to as a “black box”, which means that the internal reasoning

mechanism is difficult to directly interpret. By visualizing the

model’s attention distribution, the Grad-CAM++ (Chattopadhyay

et al., 2018) heatmap experiment can intuitively illustrate how the

attention distribution was adjusted in the weed detection task for

upland rice after incorporating HiLo. This adjustment enables the

model to focus on the more meaningful features of weed. The

heatmap is shown in Figure 10.

As shown in Figure 10, although the basic model RT-DETR is

able to focus on weed areas, it still exhibits some misfocused

regions. Specifically, the RT-DETR model allocates unnecessary

attention to non-target areas, such as the background of upland rice

fields or the gaps between weed. After incorporating the HiLo

attention mechanism, the attention distribution of the RT-DETR

model improved significantly. The attention area for weed targets

increased markedly, while the attention to non-target areas was

substantially reduced. This improvement is due to the HiLo

mechanism, in which the upper branch (Hi-Fi) captures fine-

grained, high-frequency weed features through a local window

self-attention mechanism, while the lower branch (Lo-Fi) captures

the low-frequency global features of the dryland field. Notably, in

complex scenarios characterized by multiple targets and occlusions,

the HiLo-enhanced model demonstrates the capability to

dynamically allocate attention, enabling it to accurately capture

the features of multiple weeds and effectively address

occluded areas.

In summary, the HiLo mechanism enables the RT-DETR model

to effectively focus on weed features at different frequencies, thereby

enhancing the accuracy of weed detection task in upland rice.
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3.3 The validation experiment of RetC3
lightweight performance

To verify whether RetC3 addresses the issues of insufficient

lightweight performance and detection accuracy caused by RepC3’s

redundancy in feature calculation and its inability to effectively

capture long-range relationships in weed, we combined

DiverseBranchBlock (Ding et al., 2021), Conv3XC (Wan et al.,

2024), and gConvBlock (Song et al., 2022) with RepC3 to form

DBBC3, Conv3XCC3, gConvC3, and RetC3 for comparison

experiments, as shown in Table 3.

As shown in Table 3, compared to the original RepC3 structure,

Conv3XCC3 showed minimal improvement in lightweight

performance, and the accuracy of weed detection in upland rice

was not significantly enhanced. In contrast, while the FLOPs of

gConvC3 increased by 0.1 G, the Params decreased by 5.8%, and the

Size was reduced by 7%; the accuracy of weed detection slightly

declined. Compared to the original RepC3 structure, Conv3XCC3

and gConvC3, DBBC3 achieved the best accuracy metrics for weed

detection, with mAP50 and mAP50:95 values of 89% and 78.8%,

respectively. Additionally, the FLOPs, Params, and Size of DBBC3

were reduced by 7.98 G, 1.57M, and 0.3 MB, respectively, compared

to the original RepC3 structure. When compared to DBBC3, RetC3

showed improvements in accuracy, with mAP50 and mAP50:95

increasing by 0.8 and 0.2 percentage points, respectively, while

retaining similar lightweight performance metrics.

In conclusion, compared to other improved RepC3 structures,

RetC3 achieves the best weed detection accuracy and lightweight

performance for upland rice. Compared to the original RepC3,

RetC3 demonstrates improvements with mAP50 and mAP50:95

values of 89.8% and 79%, respectively, representing increases of 1.6

and 0.9 percentage points. Additionally, the FLOPs, Params, and
TABLE 3 Performance of different RepC3 types.

Type mAP50/% mAP50:95/% FLOPs/G Params/M Size/MB

Basic 88.2 78.1 57 19.88 38.6

DBBC3 89 78.8 49.1 18.31 38.3

Conv3XCC3 88.8 78.2 57 19.88 39.3

gConvC3 88.2 77.8 57.1 18.72 35.9

RetC3 89.8 79 50.2 18.52 35.6
TABLE 4 Performance of different loss functions.

Loss function P/% R/% mAP50/% mAP50:95/%

GIoU 91.5 86.3 88.2 78.1

ShapeIoU 92.2 84.5 89.2 78.8

PowerfulIoU 92 85.1 88.5 77.9

MPDIoU 92.7 85.3 89.7 78.9

Focler-WIoUv3 92.6 87.2 89.9 79.3
frontiersin.org

https://doi.org/10.3389/fpls.2025.1556275
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Jin et al. 10.3389/fpls.2025.1556275
Size are reduced by 11.9%, 6.8%, and 7.8%, respectively. Thus,

RetC3 successfully meets the objectives of reducing computational

redundancy while enhancing weed detection accuracy.
3.4 The comparison experiment of loss
function

To verify whether the Focaler-WIoUv3 function can

dynamically adjust the border regression for different samples,

optimize the training process of the RT-DETR model, and

thereby improve the generalization ability in detecting weeds in

upland rice, a comparative experiment was conducted using GIoU,

ShapeIoU (Zhang and Zhang, 2023), PowerfulIoU (Liu et al., 2024),

and MPDIoU (Ma and Xu, 2023). The results of this experiment are

presented in Table 4 and Figure 11.

As shown in Table 4, compared to the original loss function

GIoU, the accuracy metrics P, R, mAP50, and mAP50:95 for

Focalcer-WIoUv3 in weed detection for upland rice increased by

1.1, 0.9, 1.7, and 1.2 percentage points, respectively. Among the

other loss functions, MDPIoU outperformed ShapeIoU and

PowerfulIoU, achieving the highest values for P, R, mAP50, and

mAP50:95 at 92.7%, 85.3%, 89.7%, and 78.9%, respectively. When

compared to MDPIoU, Focaler-WIoUv3 showed a similar

performance for P but exhibited increases of 1.9 percentage

points in R, 0.2 percentage points in mAP50, and 0.4 percentage

points in mAP50:95.

As shown in Figure 11, all loss functions exhibit relatively strong

oscillations in the early stages. However, as training progresses, the

oscillations gradually decrease. Among them, Focaler-WIoUv3

exhibits the earliest disappearance of oscillation, indicating that

its convergence rate is the fastest. Additionally, its stability is

reflected in the smoothness of the curve. Compared to GIoU,

ShapeIoU, PowerfulIoU, and MDPIoU, Focaler-WIoUv3

demonstrates the smoothest loss curve, suggesting that the

training process of the RT-DETR model, guided by Focaler-

WIoUv3, is the most stable.

In conclusion, the Focaler-WIoUv3 function enables the RT-

DETR model to demonstrate superior generalization ability in the

weed detection task for upland rice.
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3.5 The ablation experiment of overall
improvement

To assess the impact of each improved module on the

lightweight and accuracy performance of the RT-DETR model for

weed detection in the upland rice, an ablation experiment was

conducted. Models 1 through 4 correspond to the ablation

experiments of individual improved modules, while models 5 and

6 combine the first two and three modules, respectively. Finally, the

PHRF-RTDETR model incorporates all four improved modules.

The results are presented in Table 5 and Figure 12.

As shown in Table 5, compared with the baseline model, the P

and R indices of model 1, after incorporating PGRNet, decreased

slightly. However, the FLOPs, Params, and Size were reduced by

47.5%, 46.7%, and 46.1%, respectively. This demonstrates that

PGRNet significantly simplifies the model through its lightweight

convolution and residual connections, with only a minimal decrease
FIGURE 11

Comparison of the curves for different loss functions.
TABLE 5 Performance of different improved points.

Model PGRNet AIFI-
HiLo

RetC3 Focaler-
WIoUv3

P/% R/% mAP50/
%

FLOPs/
G

Params/
M

Size/
MB

Basic – – – – 91.5 86.3 88.2 57 19.88 38.6

1 ✓ – – – 89.7 83.9 87.7 29.9 10.58 20.8

2 – ✓ – – 91.7 87.2 90.7 57.1 19.84 38.5

3 – – ✓ – 90.4 86.4 89.8 50.2 18.52 35.6

4 – – – ✓ 92.6 87.2 89.9 57 19.88 38.6

5 ✓ ✓ – – 91 85.7 88.2 30.6 10.74 21.1

6 ✓ ✓ ✓ – 89.3 85.3 89.2 23.2 9.2 17.8

Ours ✓ ✓ ✓ ✓ 92 85.6 88.2 23.2 9.2 17.8
fr
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in accuracy. According to Figure 12, model 3, which incorporates

RetC3, exhibits a similar trend to the previous model, with a slight

decrease in the lightweight indices. This is due to the RetBlock in

RetC3, which reduces computational complexity to linear levels

through decomposition of the self-attention mechanism and assigns

different attention weights based on the spatial distance between

token pairs to ensure detection accuracy. Both model 2, which

incorporates AIFI-HiLo, and model 4, which incorporates Focaler-

WIoUv3, achieved optimization of the weed detection accuracy

indexes in upland rice without increasing the lightweight indexes.

This is because HiLo is a no-parameter-added attention

mechanism, and optimizing the loss function typically does not

incur additional computational overhead.

As presented in Table 5, the incorporation of RetC3 into model

5 resulted in the development of model 6. By incorporating

PGRNet, AIFI-HiLo, and RetC3, model 6 achieved optimal

lightweight performance, with FLOPs, Params, and model size

reduced by 59.3%, 53.7%, and 53.9%, respectively, compared to

the baseline. With the addition of the Focaler-WIoUv3 loss

function, the final model maintained a mAP50 of 88.2,

unchanged from the baseline, while precision increased by 0.5

percentage points and recall decreased by 0.7 percentage points.

Compared to the baseline model, the accuracy metrics remained

close to their original levels.

To sum up, the weed detection accuracy of the PHRF-RTDETR

model for upland rice remained largely unchanged, with P, R, and

mAP50 values of 92%, 85.6%, and 88.2%, respectively. The

lightweight indices, including FLOPs, Params, and Size, were

significantly reduced to 23.2 G, 9.2 M, and 17.8 MB, respectively.
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This demonstrates a successful balance between model detection

accuracy and lightweight efficiency.
3.6 Comprehensive evaluation of the
classification performance of PHRF-
RTDETR

To evaluate the classification performance of the PHRF-

RTDETR model on five types of weed in upland rice, a

comprehensive analysis was conducted using tools such as the

confusion matrix, etc. The results are presented in Figures 13 and

14 and Table 6.

The depth of the color blocks in the confusion matrix represents

various classification outcomes, with darker colors indicating a

higher frequency of corresponding classification results. As shown

in Figures 13A, B, the confusion matrices of both the original model

and the PHRF-RTDETR model indicate that the detection accuracy

for beggartick, goosegrass, and tropic ageratum herb is above 0.92,

while the accuracy for crabgrass and Galinsoga quadriradiata is

above 0.82. All off-diagonal values represent misclassification

detection. The confusion matrices of the original and PHRF-

RTDETR models reveal minimal differences in the classification

of the five weed species. Overall, the classification performance of

the PHRF-RTDETR model, achieved through lightweight

improvements to the foundational RT-DETR model, remains

stable without decline in overall efficacy.

In Figure 14A, the area enclosed by the P/R curve represents the

detection performance of the PHRF-RTDETR model on different
FIGURE 12

Comprehensive comparison of different improvement points.
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weed species under IoU of 0.5. The species are ranked from highest

to lowest detection performance as follows: beggartick, goosegrass,

tropic ageratum herb, Galinsoga quadriradiata, and crabgrass. In

Figure 14B, the F1 score, which is the harmonic mean of P and R,

reaches a value of 0.88 for all weeds in upland rice, under a

confidence level of 0.645.

In Table 6, the PHRF-RTDETR model achieved an overall P of

92% for all types of weeds. Among these, the P for detecting

beggartick was the highest at 98.5%, demonstrating that PHRF-

RTDETR is particularly effective at detecting this species. The R for

all weed species was 85.6%, with the lowest R at 79.3%, indicating

that the PHRF-RTDETR missed most instances of Galinsoga

quadriradiata. The mAP50 and mAP50:95 for detecting the five

types of weeds were 88.2% and 76.6%, respectively, reflecting that

PHRF-RTDETR successfully and efficiently detected the five weed

categories when the predicted bounding box overlapped with the

ground truth by more than 50% or between 50% and 95%.
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In conclusion, the PHRF-RTDETR model demonstrates robust

performance in classifying five types of weeds in upland rice, further

confirming its superiority.
3.7 Comparative analysis of different series
models

To further validate the superiority of the PHRF-RTDETR model

in detecting weed in upland rice, several other advanced target

detection models were selected for comparative experiments. These

included traditional models such as Faster R-CNN and SSD, YOLO

series including YOLOv5s, YOLOv8s, YOLOv9s, YOLOv10s, and

YOLOv11s, and the RT-DETR series such as RT-DETR, RT-

DETR34, and RT-DETR50, as shown in Table 7 and Figure 15.

As shown in Table 7, in the traditional target detection models,

Faster R-CNN has significantly higher FLOPs, Params, and Size
A B

FIGURE 14

Visual comparison of mAP50 and F1 indicators. (A) mAP50 visual figure. (B) F1 visual figure.
A B

FIGURE 13

Confusion matrix contrast diagram. (A) RT-DETR confusion matrix. (B) PHRF-RTDETR confusion matrix.
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TABLE 6 Performance of different species of weed.

Class P/% R/% mAP50/% mAP50:95/%

All 92 85.6 88.2 76.6

Beggartick 98.5 87 92.5 77.5

Crabgrass 90.7 80 83 73.1

Galinsoga quadriradiata 91.1 79.3 80.9 71

Goosegrass 88 90.1 92.3 82.1

Tropic ageratum herb 91.5 91.4 92.1 79.5
F
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TABLE 7 Performance of different series models.

Model P/% R/% mAP50/% F1 FLOPs/G Params/M Size/MB

Faster R-CNN 78.1 84.8 84.6 0.81 237.04 28.32 108

SSD 73.5 66.7 70.2 0.7 60.12 12.2 47.2

YOLOv5s 62.4 75 71.6 0.66 16.3 7.06 13.7

YOLOv8s 91.7 86.6 93.4 0.89 28.4 11.13 21.4

YOLOv9s 91.8 88 94.3 0.9 26.2 7.07 56.2

YOLOv10s 91.3 84.9 92.2 0.88 24.5 8.04 15.7

YOLOv11s 90.2 89.3 93.5 0.9 21.3 9.41 18.3

RT-DETR 91.5 86.3 88.2 0.89 57 19.88 38.6

RT-DETR34 92.4 87.8 89.1 0.9 92.4 87.8 92.4

RT-DETR50 90.9 86.3 88.4 0.88 129.6 41.96 82.1

PHRF-RTDETR 92 85.6 88.2 0.88 23.2 9.2 17.8
FIGURE 15

Visual comparison of the different models.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1556275
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Jin et al. 10.3389/fpls.2025.1556275
compared to the SSD model. Although Faster R-CNN achieves

better detection accuracy for upland rice weed than SSD, it clearly

does not optimize the use of computational resources. Among the

YOLO series, YOLOv5s exhibits the best lightweight indices, with

reductions of 42.6% and 36.6%, respectively, compared to

YOLOv8s, which has the highest number of FLOPs and Params.

When compared to YOLOv9s, which has the largest Size, YOLOv5s

shows 75.6% reduction of size. However, YOLOv5s exhibited the

lowest performance metrics, with mAP50 and F1 scores of 71.6 and

0.66, respectively. Among the RT-DETR series, RT-DETR34

demonstrated superior accuracy in weed detection in upland rice

fields, achieving P, R, mAP50, and F1 scores of 92.4%, 87.8%, 89.1%,

and 0.9, respectively. In comparison to RT-DETR34, RT-DETR50

required more computational resources and showed a decline in all

accuracy metrics, with mAP50 decreasing by 0.7 percentage points

and the F1 score dropping by 0.02.

As shown in Figure 15, compared to the SSD model, which

exhibits the best performance among traditional target detection

models, the PHRF-RTDETR model outperforms SSD in seven key

dimensions FLOPs, Params, Size, P, R, mAP50, and F1. While the

PHRF-RTDETR model is not as simplified as YOLOv5s, the lightest

model in the YOLO series, it surpasses YOLOv5s in terms of P, R,

mAP50, and F1 by 47.4%, 14.1%, 23.2%, and 33.3%, respectively.

Compared with the YOLO series’ top-performing models,

YOLOv10s and YOLOv11s, the PHRF-RTDETR model

demonstrates a higher P value than both, and its R value is 0.7

percentage points higher than that of YOLOv10s. Although its

mAP50 is not at an advantageous level, when considering the

lightweight metrics, its FLOPs is 5.3% lower than that of

YOLOv10s, and its Params and Size are 2.2% and 2.7% lower

than those of YOLOv11s, respectively. Additionally, PHRF-

RTDETR does not require NMS, simplifying the post-processing

procedure and facilitating hardware acceleration. In conclusion, the

PHRF RTDETR model offers the best overall performance, even

though it may not achieve the absolute optimum in

some dimensions.

In summary, compared to traditional target detection models,

YOLO series models, and RT-DETR series models, the PHRF-

RTDETR model demonstrates superior overall performance in

weed detection for upland rice, which balances both detection

accuracy and lightweight efficiency.
3.8 Visual analysis of PHRF-RTDETR model
detection performance

The weed environment in upland fields is characterized by its

non-structural property. Weed detection was performed in upland

rice fields across different scenarios, including single-target, multi-

target, and occluded conditions using YOLOv10s, YOLOv11s, and

PHRF-RTDETR models. The corresponding results are illustrated

in Figure 16.

In the single-target scenario, all three models achieved high

confidence scores of 0.92 or above for weed detection, with no
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significant differences observed among them. However, in multi-

target scenarios, the detection superiority of PHRF-RTDETR

became evident. Compared to PHRF-RTDETR, both YOLOv10s

and YOLOv11s exhibited lower overall confidence scores in

detecting weeds, and YOLOv11s additionally suffered from

missed detections. In occlusion scenarios, PHRF-RTDETR

demonstrated confidence scores of 0.97 and 0.81, respectively,

outperforming those of both YOLOv10s and YOLOv11s.

In conclusion, through detection experiments across various

scenarios, the PHRF-RTDETR model demonstrated well-pleasing

performance in weed detection in upland fields. Whether in single-

target, multi-target, or occluded scenarios, the PHRF-RTDETR

model consistently and reliably detected weeds in upland fields.
4 Discussion

Wang K. et al. (2024). employed an improved YOLOv7 model

to detect five common weed species in wheat fields, achieving a high

precision rate of 97.7% and recall of 98.8%, which surpassed the

performance metrics of our proposed model. However, their

approach demands substantially greater computational resources,

rendering it less suitable for deployment on resource-constrained

field devices. Cai et al. (2023) performed weed segmentation

analysis in pineapple fields using UAV-based imagery, achieving a

mean pixel accuracy (MPA) of 88.66%. Their work establishes an

important reference for developing adaptive spraying systems using

drone platforms. While UAV-based herbicide application

demonstrates superior operational efficiency, this approach

becomes non-operational during adverse weather conditions. By

contrast, our research provides robust technical support for

ground-based spraying robots and mechanical weeding systems,

which exhibit significantly better operational reliability under

various weather conditions. Arsa et al. (2023) developed an

encoder–decoder convolutional neural network with dual decoder

branches for weed growth point detection, achieving a detection

rate of 85.05%. This method provides satisfactory detection

performance for laser-based weeding systems. However, the high

equipment costs associated with laser weeding technology

significantly increase the operational expenses, limiting its

economic feasibility for widespread agricultural applications. In

contrast, our proposed method offers a more cost-effective solution

for both mechanical and spray-based weeding robots, maintaining

competitive detection accuracy while substantially reducing the

economic barriers to implementation. Fan et al. (2023)

implemented an enhanced Faster R-CNN architecture for weed

detection in cotton fields, achieving a remarkable mAP of 98.43%.

They successfully deployed this model on a sprayer robot,

demonstrating an effective spraying rate of 98.93% and an average

coverage rate of target areas of 97.42%. The image acquisition

height of their study was 30 to 60 cm, which achieved good weeding

effect. In contrast to our study, the acquisition height was about

30 cm, which proved the rationality and applicability of the imaging

height used in this paper for the ground spraying weeding robot.
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Wang Y. et al. (2024) developed an optimized dynamic coverage

algorithm for selective mechanical weeding robots, enabling

precision weeding operations within an 80-cm height range. By

contrast, the imaging height condition of about 30 cm in our study

is also suitable for the working range of the weeding actuator of the

mechanical robot.
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The proposed PHRF-RTDETR model generates detection

outputs that provide intelligent spraying and mechanical weeding

robots with precise identification and localization information. Based

on these outputs, the decision-making module enables optimized

path planning, allowing the robots to accurately execute herbicide

application or physical removal within targeted grid cells containing
YOLOv10s YOLOv11s PHRF-RTDETR

A

B

C

FIGURE 16

Detection graphs of different scenarios. (A) Single target. (B) Multiple target. (C) Occlusion.
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weeds. Compared to drone spraying systems and laser-based weeding

robots, our detection model demonstrates superior adaptability to

adverse weather conditions while maintaining significant cost-

effectiveness advantages for field operations.

However, this study has two main limitations that should be

acknowledged. First, although the lightweight detection

performance of PHRF-RTDETR has been thoroughly analyzed

and validated, the model has not yet been deployed or tested on

actual weeding equipment. Thus, its practical performance under

real-world field conditions requires further verification. Second, the

dataset used in this study only includes dominant weed species in

upland rice field. Consequently, the detection performance for other

weed types remains unexplored. This investigation focuses

particularly on early-growth weed detection in low-density

conditions, representing the most economically efficient treatment

period, while high-density weed infestations in later growth stages

have not been addressed. These aspects represent important

directions for future research.
5 Conclusion

In this study, we developed a lightweight weed detection model

for upland rice, named PHRF-RTDETR. Compared with the

baseline RT-DETR model, PHRF-RTDETR achieved reductions

of 59.3%, 53.7%, and 53.9% in FLOPs, Params, and Size,

respectively, with values of 23.2 G, 9.2 M, and 17.8 MB. The P, R,

mAP50, and mAP50:95 of PHRF-RTDETR showed little difference

from the original RT-DETR, achieving 92%, 85.6%, 88.2%, and

76.6%, respectively. Overall, the PHRF-RTDETR model strikes a

better balance between lightweight performance and weed detection

accuracy for upland rice, which demonstrates significant potential

for deployment in the detection modules of edge devices, offering

valuable technical insights for the advancement of an intelligent

weeding robot. Such technological advancement could significantly

improve upland rice productivity, offering a sustainable solution to

regional food security challenges.

Future research will focus on advancing the practical

application of our model in smart agricultural weeding equipment

while enhancing its generalization capabilities. Specifically, we will

pursue the following directions: First, we will implement

quantization of the PHRF-RTDETR model weight file followed by

deployment on mobile edge computing platforms such as NVIDIA

Jetson series Raspberry Pi series, Huawei Atlas 200, etc. Through

integration with platform dynamics simulation, we will

quantitatively evaluate the impact of large speed variations on

imaging quality to optimize the corresponding parameters and

configurations. Second, we will expand the image dataset to

include greater diversity in weed species and density levels,

enabling more robust performance in practical agricultural settings.
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