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Diversity and composition
of soil microbial communities
in the rhizospheres of late
blight-resistant tomatoes
after Phytophthora
infestans inoculation
Xinyan Zhou, Liyuan Liao, Ken Chen, Yan Yin, Lulu Qiu,
Xinni Li , Qingshan Li and Shangdong Yang*

Guangxi Key Laboratory of Agro-environment and Agro-products Safety, National Demonstration
Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning,
Guangxi, China
Late blight caused by the oomycete Phytophthora infestans poses a severe threat

to global tomato (Solanum lycopersicum L.) production. While genetic resistance

forms the cornerstone of disease control, the mechanisms underlying cultivar-

specific resistance, particularly their interactions with rhizosphere microbiomes,

remain poorly understood. To elucidate the mechanisms of tomato cultivar

resistance to late blight and screen out antagonistic microorganisms against P.

infestans, we investigated the microbial compositions in the rhizospheres of

tomato cultivars with different late blight-resistance levels under both natural and

P. infestans-inoculated conditions. Considerable differences in soil microbial

diversity and composition of rhizospheres were found between late blight-

resistant and -susceptible tomato cultivars. Under natural conditions, the

resistant tomato cultivar exhibited higher bacterial diversity and lower fungal

diversity than that of the susceptible cultivar. Additionally, after P. infestans

inoculation, both the resistant and susceptible cultivars showed enrichment of

microorganisms with potential antagonistic effects in the rhizospheres. Among

them, bacterial genera, such as Pseudomonas, Azospirillum, and Acidovorax, and

fungal genera, including Phoma, Arthrobotrys, Pseudallescheria, and

Pseudolabrys, were enriched in the rhizospheres of the late blight-resistant

tomato cultivar. In contrast, bacterial genera, including Flavobacterium,

Pseudolabrys, and Burkholderia-Caballeronia-Paraburkholderia, and the

Trichoderma fungal genus were enriched in the rhizospheres of the late

blight-susceptible tomato cultivar. Simultaneously, the enrichment of

pathogenic microorganisms, such as Neocosmospora and Plectosphaerella,

was also detected in the rhizospheres of the susceptible tomato cultivar.

Moreover, no enrichment of pathogenic microorganisms occurred in the late

blight-resistant tomato cultivar after P. infestans inoculation. These findings

suggest that these traits serve as effective defense mechanisms against

pathogen invasion in resistant tomato cultivar. Overall, this study provides a

comprehensive analysis of the rhizosphere microbial community structures in

late blight-resistant and -susceptible tomato cultivars under natural conditions
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Abbreviations: A3, late blight-resistant tomato cultiva

inoculation; ZX, tomato cultivar highly susceptible to

infestans inoculation; A3P, late blight-resistant tomato c

inoculation; ZXP, tomato cultivar highly susceptible

infestans inoculation; OTU, operational taxonom

discriminant analysis; LEfSe, LDA effect size; PCoA

analysis; PCoA, principal coordinate analysis; P

promoting rhizobacterium.
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and their response following pathogen inoculation. Additionally, potential

antagonistic microorganisms against late blight were also identified. The

findings offer valuable insights for effective late blight management in

tomatoes and cont r ibu te to the deve lopment o f sus ta inab le

agricultural practices.
KEYWORDS

tomato, Solanum lycopersicum L., late blight, soil microbial community structure,
rhizosphere, antagonistic microorganisms
Introduction

Tomato (Solanum lycopersicum L.) is a crop of considerable

economic importance worldwide, and it continues to grow in terms

of both cultivation areas and yields in China. However, late blight

caused by the pathogenic Phytophthora infestans poses a serious

threat to sustainable tomato production. This disease is highly

destructive and causes large-scale crop losses, with severe

economic consequences for agricultural production (Arafa et al.,

2022). Currently, the main strategies for controlling late blight, both

domestically and internationally, include physical control, chemical

treatment, and the development of disease-resistant cultivars

(Ivanov et al., 2021). However, traditional methods have several

limitations. Physical control is cumbersome and inefficient; hence,

implementation on a large scale is challenging. Although chemical

control through pesticide application effectively suppresses diseases

in the short term, prolonged use results in environmental pollution

and potential risks to food safety (Liu et al., 2018). Furthermore,

excessive pesticide use triggers pathogens to develop resistance,

thereby enhancing their mutation rates and pathogenicity (Tang

et al., 2021). Although breeding disease-resistant cultivars is an ideal

long-term strategy, the process is time-consuming and often takes

several years or even decades (Galeano Garcia et al., 2018).

Therefore, low-cost, environmentally friendly, and sustainable

solutions for controlling late blight are urgently required. Among

these alternatives, biological control has gained notable attention

because of its eco-friendly and sustainable nature. Antagonistic

microorganisms and microbial inoculants are essential for

controlling plant diseases in sustainable agriculture (Azcón-

Aguilar and Barea, 1997). Therefore, exploring beneficial

microbe-plant interactions and their application in agricultural
r without P. infestans

late blight without P.

ultivar with P. infestans

to late blight with P.

ic unit; LDA, linear
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GPR, plant growth-
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production is critical because it may reduce the need for

fertilizers and pesticides, which subsequently contributes to more

sustainable agricultural practices (Qu et al., 2020).

The rhizosphere microbiome is often referred to as the “second

genome” or “extended genotype” of the plant (Banerjee and van der

Heijden, 2023). Rhizosphere microorganisms play a crucial role in

promoting plant growth and development, particularly by

facilitating the absorption of mineral nutrients, enhancing plant

disease resistance, and improving tolerance to abiotic and biotic

stressors (Trivedi et al., 2021; Bai et al., 2022; Zhang et al., 2019).

Specifically, rhizosphere microorganisms promote nutrient uptake

by releasing available nutrients into the soil via primary or

secondary metabolites. In addition, rhizosphere microorganisms

enhance plant disease resistance by inhibiting the growth of

pathogens or inducing systemic resistance in plants (Stringlis

et al., 2018). However, pronounced differences in rhizosphere

microbial community structures have been observed among

different genotypes, even within the same crop species (Walters

et al., 2018). Stress tolerance is an important factor that influences

rhizosphere microbial community structure. For instance, the

varying resistance of kiwifruit to bacterial canker disease (Fu

et al., 2024), and that of tobacco (Zhao et al., 2023; Xia et al.,

2024; Yang et al., 2024), mulberry (Dong et al., 2021), and tomato

(Choi et al., 2020) to bacterial wilt are linked to differences in

microbial community composition.

Throughout their growth cycle, plants are exposed to various

abiotic and biotic stresses, such as insect herbivory and pathogen

infections. Plants have developed resistance mechanisms to cope

with these challenges (Song et al., 2021; Liu et al., 2023). One

strategy involves altering the rhizosphere microbial community in

response to stress. Plants tend to recruit specific functional

microbial groups to enhance their ability to withstand adverse

environmental conditions (Chen et al., 2018). For example, plants

may recruit nutrient-cycling microbes under nutrient-deficient

conditions and disease-suppressing microbes during pathogen

attacks (Xun et al., 2021). For instance, maize selectively enhances

the colonization of phosphate-solubilizing microbes in the

rhizosphere under low-phosphorus conditions (Shao et al., 2021),

and rice recruits rhizosphere microorganisms to improve salt

tolerance in saline soils (Lian et al., 2020). Similarly, wheat (Yin
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https://doi.org/10.3389/fpls.2025.1556928
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhou et al. 10.3389/fpls.2025.1556928
et al., 2021), maize (Xun et al., 2023), and cabbage (Ping et al., 2024)

selectively enrich antagonistic microorganisms in their rhizospheres

in response to pathogen attacks.

The exploration of specific functional microorganisms and the

“bottom-up” regulatory mechanisms of the rhizosphere

microbiome on plant phenotypic traits is of great significance for

leveraging beneficial rhizosphere microbes to develop sustainable

agriculture. In the case of late blight caused by P. infestans, previous

research primarily focused on the genetic resistance of tomato

cultivars and their direct interaction with the pathogen, few

studies have directly linked the composition and function of

rhizosphere microbiomes to the suppression of P. infestans.

Unlike previous studies, which primarily focused on pathogen-

host interactions, we not only investigated how differences in

rhizosphere microbiomes between tomato cultivars with varying

late-blight resistance under natural conditions, but also analyzed

how they responded to pathogen inoculation. The aim of this study

was to elucidate the mechanisms of soil microbiomes in the

rhizospheres of different tomato cultivars with varying late-blight

resistance and they how respond to pathogen attacks. Furthermore,

we also wanted to identify antagonistic microorganisms for the

biocontrol of late blight. Our results will contribute to the more

precise and integrated management and bio-controlling of tomato

late blight disease.
Materials and methods

Field site description and
experimental designs

The experiment was conducted from October 2023 to January

2024 in a greenhouse at the Vegetable Teaching and Experimental

Base of the Agricultural College, Guangxi University (108°17′25″E,
22°51′02″N). The following tomato cultivars were used in this

study: ‘Wild Tomato A3’ and ‘Zixia’. The ‘Zixia’ cultivar is highly

susceptible to late blight, whereas ‘Wild Tomato A3’ exhibits

notable resistance to the disease.

Initially, the seed surfaces were sterilized, soaked, and allowed to

germinate before being sown in seedling trays for 30 days of growth.

The seedlings were cultivated in pots (30 cm in height, 25 cm in

diameter) containing soil with the following properties: pH 6.33,

organic matter content 10.56 g·kg-1, total nitrogen 0.89 g·kg-1,

phosphorus 0.78 g·kg-1, and potassium 8.51 g·kg-1. Available

nitrogen, phosphorus, and potassium levels were 20.27, 1.68, and

102.8 mg·kg-1, respectively. After 14 days of growth in the pots, the

plants were inoculated with late blight pathogen Phytophthora

infestans. The inoculum was prepared by culturing P. infestans on

potato dextrose agar medium, and the sporangia were collected. The

inoculation procedure involved spraying 10 mL of a 1 × 106 spores/

mL solution evenly on each plant. Controls were sprayed with 10

mL of distilled water instead of the inoculum. The plants were then

incubated under conditions conducive to disease development (16°

C, 90%–95% relative humidity, and 12-h photoperiod). The

following four treatment groups were investigated: late blight-
Frontiers in Plant Science 03
resistant tomato cultivar without P. infestans inoculation (A3);

tomato cultivar highly susceptible to late blight without P.

infestans inoculation (ZX), late blight-resistant tomato cultivar

with P. infestans inoculation (A3P), and tomato cultivar highly

susceptible to late blight with P. infestans inoculation (ZXP).
Test methods

Sample collection
The rhizosphere soil samples were collected on January 18,

2024. Three tomato plants were randomly selected for each

treatment. With the tomato plant in the center, the surrounding

soil was loosened using a small sterilized spatula, and the tomato

plant was carefully uprooted. Large clods were shaken off and the

soil attached to the tomato roots was collected as a rhizosphere soil

sample (Yang et al., 2023). The rhizosphere soil samples were placed

in pre-labeled sterile self-sealing bags and placed in an icebox with

ice packs for transport to the laboratory. In the laboratory,

impurities were removed from the rhizosphere soil samples, and

the soil was sieved through a 2-mm stainless steel mesh for

rhizosphere soil microbial analysis (Ling et al., 2015). Each

treatment included three biological replicates for rhizosphere soil

microbial analysis.

DNA extraction and PCR amplification
The total DNA was extracted from the soil samples using the

Fast DNA® Spin Kit for Soil (MP Biomedicals, Thomas Irvine,

CA, USA) according to the manufacturer’s instructions. The

extracted DNA was examined on 1% agarose gel to verify

extraction quality, followed by gel electrophoresis. The

concentration and purity of the extracted DNA were

determined using a NanoDrop 2000 spectrophotometer

(Thermo Fisher Scientific, Waltham, MA, USA) (Bulgarelli

et al., 2012). Following extraction, the DNA was stored at −20°

C for further processing. PCR amplification was performed on

an ABI GeneAmp® 9700 (ABI, Los Angeles, CA, USA) using

specific primers and sequence types. Targeting the key regions

with in microbia l genomes , we ampl ified the V3–V4

hypervariable region of the 16S rRNA gene for bacteria and

the ITS1 region for fungi. This was achieved using specific

primer pairs: 338F (5′-ACTA3PTACGGGAGGCAGCAG-3′)
and 806R (5 ′-GGACTACHVGGGTWTCTAAT-3 ′) for

bacterial samples (Lundberg et al., 2012), and ITS1F (5’-

CTTGGTCATTTAGAGGAAGTAA-3 ’) and ITS2R (5 ’-

GCTGCGTTCTTCATCGATGC-3’) for fungal samples (Adams

et al., 2013). The PCR protocol involved an initial denaturation

at 95°C for 3 min, followed by denaturation cycles (16S rRNA

gene: 27 cycles; ITS gene: 35 cycles) at 95°C for 30 s, annealing at

55°C for 30 s, and extension at 72°C for 72 s. This was concluded

with a final extension at 72°C for 10 min and termination at 4°C.

The PCR products were detected and recovered using 2% agarose

gel electrophoresis. The recovered products were purified using

an AxyPrep DNA Gel Extraction Kit (Axygen Biosciences,

Union City, CA, USA). The purified products were again
frontiersin.org
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detected using 2% agarose gel electrophoresis, and a Quantus™

Fluorometer (Promega, Madison, WI, USA) was subsequently

used to ensure the integrity and purity of the samples.

Illumina sequencing
Purified amplicons were pooled in equimolar amounts and were

then paired-end sequenced on Illumina MiSeqPE300 (bacteria) and

MiSeqPE250 (fungi) platforms (Illumina, San Diego, USA) by

Majorbio Bio-Pharm Technology Co. Ltd. (Shanghai, China)

according to standard protocols. The raw data for the soil

bacterial and fungal sequences were deposited in the NCBI

Sequence Read Archive database under the accession numbers

PRJNA1154786 and PRJNA1154788, respectively.

Data processing
Raw FASTQ files were demultiplexed using an in-house Perl

script, quality-filtered using fastp version 0.19.6, and merged using

FLASH version 1.2.7. The following criteria were used: (i) the reads

were truncated at any site receiving an average quality score of <20

over a 50-bp sliding window, truncated reads shorter than 50 bp

were discarded, and reads containing ambiguous characters were

also discarded; (ii) only overlapping sequences longer than 10 bp

were assembled according to their overlapped sequence, the

maximum mismatch ratio in the overlapping region was 0.2, and

reads that could not be assembled were discarded; (iii) samples were

distinguished according to the barcode and primers, and the

sequence direction was adjusted for exact barcode matching and

two nucleotide mismatches in primer matching. The optimized

sequences were then clustered into operational taxonomic units

(OTUs) using UPARSE 7.1 with a 97% sequence similarity level.

The most abundant sequence of each OTU was selected as the

representative sequence. The taxonomy of each OTU representative

sequence was analyzed using RDP Classifier version 2.11 against the

16S rRNA gene database (Release138 http://www.arb-silva.de) and

fungi Unite database (Release 8.0 http://unite.ut.ee/index.php)

using a confidence threshold of 0.7 (Zhou et al., 2024).
Statistical analysis

Bioinformatic analysis of the soil microbiota was performed

using the Majorbio Cloud platform (https://cloud.majorbio.com).

Based on OTU information, alpha diversity indices, including

observed OTUs, Shannon index, and Chao richness, were

calculated using Mothur v1.30.1. Similarities among the microbial

communities in different samples were determined using principal

coordinate analysis (PCoA) based on Bray–Curtis dissimilarity

using the Vegan v2.5-3 package. Linear discriminant analysis

(LDA) effect size (LEfSe) (http://huttenhower.sph.harvard.edu/

LEfSe) was used to identify significantly abundant taxa (phylum

to genera) of bacteria and fungi among the different groups (LDA

score > 3.5, P < 0.05). FAPROTAX software (1.2.1) was used to

predict the functions of the bacterial communities, whereas

FUNGuild software (http://www.funguild.org/) was used to

predict the functions of fungal communities.
Frontiers in Plant Science 04
Results

As shown in Figure 1A, in the absence of P. infestans

inoculation, the Shannon index of the soil bacterial communities

in the rhizospheres of A3 was markedly higher than that of ZX.

However, the Chao index of soil bacterial richness in the

rhizospheres was not significantly different between A3 and ZX

(Figure 1B). The Shannon and Chao indices of the soil fungal

communities in the rhizospheres of A3 were lower than those of ZX;

however, no significant differences were observed (Figures 1C, D).

Additionally, under P. infestans inoculation, the Shannon index

of the soil bacterial and fungal communities in the rhizospheres of

A3P was higher than that of ZXP; however, no significant

differences were observed between them (Figures 1A, C). In

addition, the Chao indices of soil bacterial and fungal richness in

the rhizospheres were not significantly different between A3P and

ZXP (Figures 1B, D).

These results indicated that under natural conditions, the

bacterial diversity in the rhizospheres of the resistant cultivar

(A3) was markedly higher than that of the susceptible cultivar

(ZX). However, bacterial richness and fungal diversity and richness

in the rhizospheres were not significantly different from each other.

After P. infestans inoculation, bacterial diversity and richness in the

rhizospheres of the resistant cultivar (A3P) decreased, whereas

bacterial diversity in the rhizospheres of the susceptible cultivar

(ZX) markedly increased. Moreover, after P. infestans inoculation,

soil fungal diversity increased, whereas soil fungal richness

decreased in the rhizospheres of the resistant cultivar (A3P). In

contrast, soil fungal diversity decreased; however, their richness did

not significantly change in the rhizospheres of the susceptible

cultivar (ZXP).

Based on the Bray–Curtis distance, PCoA was used to visualize

the compositional characteristics of the bacterial and fungal

communities in the rhizospheres of A3, ZX, A3P, and ZXP

plants. Distinct clustering of rhizospheric bacterial and fungal

communities was observed among A3, ZX, A3P, and ZXP plants

(Figure 2). Further analysis should be conducted to explore the

specific differences in community composition.

As shown in Figure 3A, at the phylum level, the top five

dominant bacterial phyla (relative abundance ≥1%) were

consistent, namely Proteobacteria, Actinobacteriota, Firmicutes,

Patescibacteria, and Chloroflexi. However, other dominant

bacterial phyla, such as Desulfobacterota, were the unique

dominant soil bacterial phyla in the rhizospheres of A3P, and

Myxococcota was absent in the rhizospheres of ZX.

As shown in Figure 3B, the top 10 dominant soil bacterial genera

(relative abundance ≥1%) in the rhizospheres of A3 were

Sphingomonas, Bacillus, norank_f:LWQ8, Arthrobacter, norank_f:

Chitinophagaceae, Chujaibacter, Streptomyces, Dyella, Nocardioides,

and Devosia. In contrast, Sphingomonas, Bacillus, norank_f:LWQ8,

Arthrobacter, Chujaibacter, Streptomyces, norank_f:Chitinophagaceae,

Nocardioides, norank_f:JG30-KF-CM45, and Dyella were the top 10

dominant soil bacterial genera in the rhizospheres of ZX. Additionally,

Sphingomonas, norank_f:LWQ8, Bacillus, Arthrobacter, unclassified_f:

Rhizobiaceae, norank_f:Chitinophagaceae, Nocardioides, Devosia,
frontiersin.org
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FIGURE 1

Alpha diversity index of the bacterial (A, B) and fungal (C, D) communities in the rhizospheres of A3, ZX, A3P, and ZXP plants. A3, late blight-resistant
tomato cultivar without Phytophthora infestans inoculation; ZX, tomato cultivar highly susceptible to late blight without P. infestans inoculation; A3P,
late blight-resistant tomato cultivar with P. infestans inoculation; ZXP, tomato cultivar highly susceptible to late blight with P. infestans inoculation.
FIGURE 2

Beta diversity indexes of the (A) bacterial and (B) fungal communities in the rhizospheres of A3, ZX, A3P, and ZXP plants. A3, late blight-resistant
tomato cultivar without Phytophthora infestans inoculation; ZX, tomato cultivar highly susceptible to late blight without P. infestans inoculation; A3P,
late blight-resistant tomato cultivar with P. infestans inoculation; ZXP, tomato cultivar highly susceptible to late blight with P. infestans inoculation;
PCoA, principal coordinate analysis; OTU, operational taxonomic unit; PC, principal component.
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Burkholderia-Caballeronia-Paraburkholderia, and norank_f:JG30-KF-

CM45 were the top 10 dominant soil bacterial genera in the

rhizospheres of A3P. In contrast, Bacillus, Sphingomonas, norank_f:

LWQ8, Burkholderia-Caballeronia-Paraburkholderia, Arthrobacter,

unclassified_f:Rhizobiaceae, Chujaibacter, Streptomyces, norank_f:

Gemmatimonadaceae, and norank_f:JG30-KF-CM45 were the top 10

dominant soil bacterial genera in the rhizospheres of ZXP.

These results suggest that soil bacterial composition in the

rhizospheres of tomato cultivars with different resistance abilities

to late blight could be altered by P. infestans inoculation. In

particular, the relative abundances of Firmicutes and

Patescibacteria decreased in the rhizospheres of A3P; however,

they increased in the rhizospheres of ZXP. Moreover,

Citrifermentans was uniquely enriched in the rhizospheres of

A3P. In contrast, the relative abundance of Burkholderia-

Caballeronia-Paraburkholderia markedly increased by 125.6% in

ZXP compared to that in ZX. Moreover, Pseudolabrys and

Pseudomonas were enriched in the rhizospheres of different

tomato cultivars only after P. infestans inoculation.

As shown in Figure 4A, Ascomycota, Basidiomycota,

unclassified_k:Fungi, Olpidiomycota, and Chytridiomycota were

the top five common soil dominant fungal phyla (with relative

abundance ≥1%) in the rhizospheres of tomato cultivars with

varying resistance to P. infestans.

As shown in Figure 4B, the top 10 dominant soil fungal genera

(with relative abundance ≥1%) in the rhizospheres of A3 were

Chaetomium, Aspergillus, Conocybe, Penicillium, Rhodotorula,

Arachnomyces, unclassified_f:Microascaceae, Fusarium, Olpidium,

and unclassified_c:Sordariomycetes. In contrast, Chaetomium,

Penici l l ium , Aspergi l lus , Arachnomyces , Gibel lulopsis ,

Plectosphaerella , Olpidium , Trichoderma , unclassified_p:

Ascomycota, and unclassified_c:Sordariomycetes were the top 10

dominant soil fungal genera in the rhizospheres of ZX.

Additional ly , Chaetomium , Aspergi l lus , unclassified_f :
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Microascaceae , Penici l l ium , Olpidium , unclass ified_p:

Chytridiomycota, Arachnomyces, unclassified_c:Sordariomycetes,

Fusarium, and Phialosimplex were the top 10 dominant soil

fungal genera in the rhizospheres of A3P. In contrast,

Trichoderma , Chaetomium , Arachnomyces , Penicil lium ,

Aspergillus, Plectosphaerella, Olpidium, Microascus, unclassified_f:

Chaetomiaceae, and Phialosimplex were the top 10 dominant soil

fungal genera in the rhizospheres of ZXP.

These results showed that the relative abundances of

Ascomycota and Olpidiomycota increased, and the relative

abundance of Basidiomycota decreased in the rhizospheres of

A3P and ZXP. Furthermore, the relative abundance of

Chytridiomycota markedly increased in the rhizospheres of A3P,

whereas it declined in the rhizospheres of ZXP plants. Moreover,

Rozellomycota is a unique soil-dominant fungal phylum in the

rhizospheres of A3P. At the genus level, Conocybe was specifically

enriched only in the rhizospheres of A3. However, after inoculation

with P. infestans, Conocybewas absent.Gibellulopsis was enriched in

the ZX rhizospheres. After P. infestans inoculation, the relative

abundance of Trichoderma in ZXP rhizospheres increased by

607.75% compared to that in ZX rhizospheres.

As shown in Figure 5A, 6, 16, 14, and 9 bacterial taxa were

identified as biomarkers in the A3, ZX, A3P, and ZXP rhizospheres,

respectively. At the phylum level, Bacteroidetes, Actinobacteria,

Desulfobacterota, and Proteobacteria were identified as biomarkers

in the rhizospheres of A3, ZX, A3P, and ZXP, respectively. At the

genus level, norank_f:Chitinophagaceae was identified as a

biomarker in the A3 rhizospheres, and Streptomyces ,

Chujaibacter, and Dyella were identified as biomarkers of the ZX

rhizospheres. Acidovorax , Pseudomonas , unclassified_f:

Rhizobiaceae, and Azospirillum were identified as biomarkers in

the A3P rhizospheres, whereas Flavobacterium, Pseudolabrys, and

Burkholderia-Caballeronia-Paraburkholderia were identified as

biomarkers in the rhizospheres of the ZXP plants.
FIGURE 3

Rhizospheric bacterial compositions at the phylum (A) and genus (B) levels among A3, ZX, A3P, and ZXP. A3, late blight-resistant tomato cultivar
without Phytophthora infestans inoculation; ZX, tomato cultivar highly susceptible to late blight without P. infestans inoculation; A3P, late blight-
resistant tomato cultivar with P. infestans inoculation; ZXP, tomato cultivar highly susceptible to late blight with P. infestans inoculation.
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As shown in Figure 5B, 7, 11, 15, and 7 fungal taxa were

identified as biomarkers in the A3, ZX, A3P, and ZXP rhizospheres,

respectively. Basidiomycota were markedly enriched in the

rhizospheres of A3, whereas Mucoromycota and Rozellomycota

were considerably enriched in the rhizospheres of A3P. At the genus

level, Rhodotorula, Fusarium, and Preussia were significantly

enriched in the rhizospheres of A3, whereas Gibellulopsis,

Clitopilus, and Stemphylium were notable enriched in the

rhizospheres of ZX. Gibberella, Arthrobotrys, and Pseudallescheria
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were markedly enriched in the A3P rhizospheres. In contrast,

Trichoderma, Arachnomyces, Plectosphaerella, and Microascus

were considerably enriched in the rhizospheres of the ZXP plants.

As shown in Figure 6, the bacterial communities in the A3, ZX,

A3P, and ZXP rhizospheres exhibited the highest expression levels

during chemoheterotrophy and aerobic_chemoheterotrophy. After

inoculation with P. infestans, the expression levels of the following 10

functions markedly increased in both A3P and ZXP:

knallgas_bacteria, dark_hydrogen_oxidation, nitrate_denitrification,
FIGURE 4

Rhizospheric fungal compositions at the phylum (A) and genus (B) levels among A3, ZX, A3P, and ZXP. A3, late blight-resistant tomato cultivar
without Phytophthora infestans inoculation; ZX, tomato cultivar highly susceptible to late blight without P. infestans inoculation; A3P, late blight-
resistant tomato cultivar with P. infestans inoculation; ZXP, tomato cultivar highly susceptible to late blight with P. infestans inoculation.
FIGURE 5

LEfSe analysis of significant abundance of rhizospheric bacteria (A) and fungi (B) among A3, ZX, A3P, and ZXP plants. A3, late blight-resistant tomato
cultivar without Phytophthora infestans inoculation; ZX, tomato cultivar highly susceptible to late blight without P. infestans inoculation; A3P, late
blight-resistant tomato cultivar with P. infestans inoculation; ZXP, tomato cultivar highly susceptible to late blight with P. infestans inoculation; LEfSe,
linear discriminant analysis effect size.
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nitrous_oxide_denitrification, nitritedenitrification, denitrification,

nitr i terespirat ion, nitrogenrespirat ion, ureolysis , and

nitraterespiration. In addition, the expression levels of A3P were

markedly higher than those of ZXP. The expression levels of plant

pathogens, nitrogenfixation, and nitrate_reduction also showed

notable increasing trends after inoculation, although there were no

significant differences between A3P and ZXP. In A3P rhizospheres,

the expression levels of cellulolysis and Mn oxidation were

considerably lower than those in A3.

FUNGuild predicted the trophic and functional guilds of fungal

communities in the A3, ZX, A3P, and ZXP rhizospheres. The

rhizospheric fungal communities from all four treatments could be

classified into ten guilds. Undefined Saprotroph, Dung Saprotroph,

Animal Parasite-Fungal Parasite, Plant Pathogen, Animal

Endosymbiont-Animal, Pathogen-Endophyte-Plant, and Pathogen-

Undefined Saprotroph were common across all treatments. Among

these, the relative abundance of Undefined Saprotrophs decreased

considerably after pathogen inoculation, with a more pronounced

reduction observed in the resistant varieties. The relative abundance

of Plant Pathogens in the rhizospheres of ZX was markedly higher

than that in A3, whereas the relative abundance in the rhizospheres

of A3P was markedly higher than that in A3. However, the relative

abundance in the rhizospheres of ZXP was considerably lower than

that in the rhizospheres of ZX. Additionally, Dung Saprotroph-Plant

Saprotroph was unique to the rhizospheres of A3, Plant Pathogen-

Wood Saprotroph and Plant Saprotroph were specific to the

rhizospheres of ZX, and fungal parasites were unique to the

rhizospheres of A3P. The Undefined Saprotroph-Wood

Saprotroph guild was only found in the rhizospheres of A3P and

ZXP (Figure 7).
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Discussion

Soil microbes in the rhizosphere are closely associated with

plant resistance to stress (Oyserman et al., 2022). Moreover, the

inherent natural microbiome of a plant confers resistance at both

the individual and community levels (Carrión et al., 2019; Li et al.,

2022). According to the well-known “cry-for-help hypothesis,”

plants under pathogen attack secrete specific root exudates that

promote colonization of beneficial microbes in the rhizosphere

(Rolfe et al., 2019). Furthermore, when plants are exposed to

adverse conditions, such as drought, salinity, alkalinity,

pathogens, or pests, rhizosphere microbes engage in symbiotic

interactions that enhance their ability to adapt to these stresses

(Philippot et al., 2013; Li et al., 2020). Therefore, understanding the

assembly of the rhizosphere microbiome is crucial to elucidate its

role in plant stress responses. Therefore, in this study, tomato

cultivars with varying resistance to late blight were selected to

analyze their natural rhizosphere microbiomes and their responses

to pathogen inoculation.

First, we observed that soil bacterial diversity in the

rhizospheres of the resistant tomato cultivar was considerably

higher than that in the rhizospheres of the susceptible cultivar. In

contrast, the soil fungal diversity in the rhizospheres of the

susceptible cultivar was higher than that of the resistant cultivar.

Similarly, bacterial diversity in Chinese wheat varieties resistant to

wheat yellow mosaic virus is higher than that in susceptible varieties

(Wu et al., 2021). Additionally, the rhizospheres of Fusarium head

blight-resistant wheat varieties exhibited markedly higher bacterial

diversity than that of susceptible varieties, whereas fungal diversity

was lower in the rhizospheres of resistant varieties than in their
FIGURE 6

FAPROTAX functional prediction of rhizospheric bacteria in A3, ZX, A3P, and ZXP plants. A3, late blight-resistant tomato cultivar without
Phytophthora infestans inoculation; ZX, tomato cultivar highly susceptible to late blight without P. infestans inoculation; A3P, late blight-resistant
tomato cultivar with P. infestans inoculation; ZXP, tomato cultivar highly susceptible to late blight with P. infestans inoculation.
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susceptible counterparts (Li et al., 2023). Moreover, after P.

infestans inoculation, the rhizosphere bacterial diversity of the

susceptible cultivar markedly increased, whereas the changes in

the resistant varieties were less pronounced. Soil bacterial diversity

was considerably increased in the rhizospheres of diseased plants

compared to that in healthy plants (Huang et al., 2019). Simply, P.

infestans inoculation failed to overcome the defense mechanisms of

the resistant tomato cultivar, leaving the plants unaffected by the

pathogen. Consequently, the rhizosphere microbiomes of the

resistant cultivar remained relatively stable. In contrast, the

susceptible tomato cultivar was unable to resist pathogen

infection, resulting in pronounced alterations in the rhizosphere

microbial diversity. A more diverse and abundant rhizosphere

bacterial community may be a key factor contributing to the

inherent resistance of tomato cultivars to late blight.

Additionally, dominant soil bacterial genera, such as Dyella,

Luteibacter, TM7a, Mizugakiibacter, Altererythrobacter, and

Marmoricola, were lost in the rhizospheres of both late blight-

resistant and -susceptible cultivars after P. infestans inoculation. This

indicates that the soil microbial composition in the rhizospheres can

be altered by P. infestans inoculation, regardless of the cultivar

resistance. Some soil bacterial genera, such as Citrifermentans,

norank_f:norank_o:Vicinamibacterales, and Acidovorax, were

specifically enriched in the rhizospheres of the resistant tomato

cultivar. Furthermore, LEfSe analysis identified Azospirillum,

Pseudomonas, Acidovorax, and unclassified_f:Rhizobiaceae as

biomarkers in the rhizospheres of the resistant tomato cultivar.

Azospirillum synthesizes plant hormones (Iparraguirre et al., 2024)

that promote plant growth and development (Lambrecht et al., 2000)

and enhance plant stress resistance (Gray and Smith, 2005). Moreover,

Acidovorax activates plant defense mechanisms and limits pathogen

colonization (Emmenegger et al., 2023). Furthermore, Pseudomonas is

a well-known plant growth-promoting rhizobacterium (PGPR) that

inhibits fungal pathogens by releasing lytic enzymes, phenazines, and
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organic volatiles (De Vrieze et al., 2015; Zhang et al., 2015; Müller

et al., 2016). Pseudomonas also induces plant defense mechanisms and

promotes plant growth under stressful conditions (Kumar and Verma,

2018). In contrast, Pseudolabrys, Flavobacterium, and Burkholderia-

Caballeronia-Paraburkholderia were identified as biomarkers in the

rhizospheres of the susceptible tomato cultivar after P. infestans

inoculation. Although Pseudolabrys is considered a PGPR that

enhances plant growth and health (Peng et al., 2022),

Flavobacterium also contributes to plant health (Lazcano et al., 2021;

Zhou et al., 2022; Chen et al., 2023). The microbe can be isolated from

soil and produces antimicrobial substances, such as hydrogen cyanide,

chitinase, and siderophores (Belimov et al., 2005; Soltani et al., 2010;

Kharade and McBride, 2014). Notably, some Flavobacterium species

protect tomato plants from pathogenic infections by limiting sugar

acquisition through efficient sugar metabolism (Kwak et al., 2018).

Furthermore, Burkholderia-Caballeronia-Paraburkholderia exhibit

plant growth-promoting abilities and antagonistic effects against

pathogens (Dendooven et al., 2024). Our results suggest that both

the resistant and susceptible tomato cultivars can recruit growth-

promoting and biocontrol microorganisms into their rhizospheres

upon P. infestans inoculation.

Addit ional ly , fungal genera, including Gibbere l la ,

unclassified_p_Rozellomycota, and Phoma, were specifically

enriched in the rhizospheres of the resistant tomato cultivar after P.

infestans inoculation. In contrast, Neocosmospora was predominantly

enriched in the rhizospheres of the susceptible tomato cultivar under

the same conditions. Phoma protects crops from pathogens by

inducing systemic resistance (Sultana et al., 2008), whereas

Neocosmospora causes stem rot disease in various crops, including

peanuts (Sun et al., 2012), mulberries (Zhu et al., 2024), dragon fruit

(Zheng et al., 2018), and tomatoes (Kwon et al., 2017). LEfSe analysis

further revealed that Gibberella, Arthrobotrys, and Pseudallescheria

were identified as biomarkers in the rhizospheres of the resistant

tomato cultivar inoculated with P. infestans. Arthrobotrys can control
FIGURE 7

FUNGuild functional predictions of rhizospheric fungi in A3, ZX, A3P, and ZXP plants. A3, late blight-resistant tomato cultivar without Phytophthora
infestans inoculation; ZX, tomato cultivar highly susceptible to late blight without P. infestans inoculation; A3P, late blight-resistant tomato cultivar
with P. infestans inoculation; ZXP, tomato cultivar highly susceptible to late blight with P. infestans inoculation.
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nematodes and induce plant defense responses against fungal

pathogens (Bordallo et al., 2002). Pseudallescheria also produce

bioactive secondary metabolites that combat various plant

pathogens (Ko et al., 2010; Zhu et al., 2020). In contrast,

Trichoderma, Arachnomyces, Plectosphaerella, and Microascus were

identified as biomarkers in the rhizosphere of the susceptible tomato

cultivar inoculated with P. infestans. Trichoderma and its secondary

metabolites released into the rhizosphere influence plant growth and

nutrition, induce systemic resistance, and contribute to pathogen

biocontrol (Hermosa et al., 2012; Kotasthane et al., 2015; Zeilinger

et al., 2016). Trichoderma has a strong ability to compete with

pathogens for nutrients and space in the rhizosphere (Soltani et al.,

2010). Additionally, Trichoderma produces antibiotics and hydrolytic

enzymes, such as chitinase and b-1,3-glucanase, which partially

degrade pathogen cell walls and lead to parasitism (Rai et al.,

2016). In contrast, Plectosphaerella is considered to be responsible

for diseases in various plants (Usami et al., 2015; Li et al., 2017; Yang

L. et al., 2023).

Under natural conditions, soil bacterial composition and

function in the rhizospheres of tomato cultivars with varying levels

of resistance were similar, with no significant differences. However,

after pathogen inoculation, the functional expression levels of the

rhizosphere soil bacterial communities markedly increased for 10

bacterial functions: knallgas_bacteria, dark_hydrogen_oxidation,

ni t ra te_denit r ificat ion , ni t rous_oxide_denit r ificat ion ,

nitrite_denitrification, denitrification, nitrite_respiration,

nitrogen_respiration, ureolysis, and nitrate_respiration. Notably,

the expression levels in the rhizospheres of the resistant tomato

cultivar were markedly higher than those in the susceptible tomato

cultivar. In addition, under natural conditions, the relative

abundance of pathotrophic fungi in the rhizospheres of susceptible

tomato cultivar was considerably higher than that in the

rhizospheres of resistant tomato cultivar. Conversely, after P.

infestans inoculation, the relative abundance of saprotrophic fungi

increased in the rhizospheres of the susceptible cultivar. Our results

are consistent with those of previous studies that have reported an

increase in the abundance of soil saprotrophic fungi in the

rhizospheres of diseased plants (Wang et al., 2024).

These findings suggest that tomato resistance to late blight is

closely linked to the functional profiles of the rhizosphere soil

microbial communities. Under natural conditions, the low

abundance of pathogenic microorganisms, combined with the

highly expressed bacterial functions following pathogen

inoculation, play a positive role in resisting pathogen invasion.
Conclusion

Under natural conditions, soil bacterial diversity in the

rhizospheres of the late blight-resistant tomato cultivar was

considerably higher than that in the susceptible cultivar, whereas

fungal diversity was higher in the susceptible cultivar. Additionally,

the low abundance of pathogenic microorganisms in the

rhizospheres of the resistant cultivar coupled with the high
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functional expression of bacterial communities under P. infestans

inoculation played a positive role in resisting pathogen invasion.

Furthermore, Pseudomonas, Azospirillum, Acidovorax, Phoma,

Arthrobotrys, Pseudallescheria, Pseudolabrys, Flavobacterium,

Burkholderia-Caballeronia-Paraburkholderia, and Trichoderma

were identified as functional microorganisms with potential roles

in protection against late blight. In contrast, the enrichment of

Neocosmospora and Plectosphaerella in the rhizospheres of the late

blight-susceptible tomato cultivar may contribute to the

exacerbation of late blight symptoms.
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