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The opening of cotton bolls is an important characteristic that influences the

precocity of cotton. In the field, farmers often use chemical defoliants to induce

cotton leaves to fall off earlier, thus accelerating the cracking of cotton bolls.

However, the molecular mechanism of cotton boll cracking remains unclear. We

identified ten AGAMOUS subfamily genes in upland cotton. Three pairs of

Gossypium hirsutum AG subfamily genes (GhAGs) were amplified via tandem

duplication. The promoters of the GhAGs contained a diverse array of cis-acting

regulatory elements related to light responses, abiotic stress, phytohormones

and plant growth and development. Transcriptomic analyses revealed that the

expression levels of GhAG subfamily genes were lower in vegetative tissues than

in flower and fruit reproductive organs. The qRT−PCR results for different tissues

revealed that the GhSHP1 transcript level was highest in the cotton boll shell, and

GhSHP1was selected as the target gene after comprehensive analysis. We further

investigated the functional role of GhSHP1 using virus-induced gene silencing

(VIGS). Compared with those of the control plants, the flowering and boll

cracking times of the GhSHP1-silenced plants were significantly delayed.

Moreover, the results of paraffin sectioning at the back suture line of the

cotton bolls revealed that the development of the dehiscence zone (DZ)

occurred later in the GhSHP1-silenced plants than in the control plants.

Furthermore, at the same developmental stage, the degree of lignification in

the silenced plants was lower than that in the plants transformed with empty

vector. The expression of several upland cotton genes homologous to key

Arabidopsis pod cracking genes was significantly downregulated in the

GhSHP1-silenced plants. These results revealed that GhSHP1 silencing delayed

the flowering and cracking of cotton bolls and that the cracking of cotton bolls

was delayed due to effects on DZ development. These findings are highly

important for future studies of the molecular mechanism of cotton boll

cracking and for breeding early-maturing and high-quality cotton varieties.
KEYWORDS

Gossypium hirsutum, cotton boll cracking, GhSHP1, virus-induced gene silencing
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1 Introduction

The fruits of many flowering plants (such as siliques, capsules,

and pods) need to crack and release their seeds after maturity to

support the reproduction of future generations. The cracking of the

fruit after ripening is called pod shattering in soybeans, silique

dehiscence in Brassica napus, and boll opening in upland cotton.

Although seed dispersal through fruit cracking is an important

method of plant reproduction, the application of this trait is

completely different in different crop breeding methods. For crops

such as soybeans and oilseed rape, the premature cracking of pods

or siliques can easily lead to seed shattering, resulting in a significant

reduction in crop yield. However, the cracking of cotton bolls is

conducive to the release of cotton fibers, and early boll opening is

one of the key target traits of cotton breeding for early maturity.

Although many studies have explored the mechanism of silique and

pod cracking (Liljegren et al., 2000), the mechanism of capsule

cracking (such as in cotton bolls) has not been studied extensively.

The mechanism of silique dehiscence has been explored mainly in

the model plant Arabidopsis thaliana. When the silique shell of A.

thaliana is transected, three components can be observed in the silique

shell: the valves, valve margins and replum (Dinneny and Yanofsky,

2005; Chen et al., 2024). Valves develop from the carpel, which consists

of six layers of cells, including the outer epidermis, three layers of

mesophyll tissue, endocarp layer b (enb) and endocarp layer a (ena)

(degenerate during fruit ripening) (Dinneny and Yanofsky, 2005; Gu

et al., 1998; Vivian-Smith et al., 2001). The area between the valve and

the replum is called the valve margin and is composed of a lignified

layer (LL) and a separation layer (SL). These two layers also form

dehiscence zones (DZs) during silique cracking (Ferrándiz et al., 1999).

A gene regulatory network involved in silique cracking initially forms

(Ballester and Ferrándiz, 2017). Studies of this regulatory network

revealed that the MADS-box (MCM1, AGAMOUS, DEFICIENS, SRF)

transcription factors SHATTERPROOF1 (SHP1/AGL1) and

SHATTERPROOF2 (SHP2/AGL5) (Liljegren et al., 2000) and the

basic helix-loop-helix (bHLH) transcription factors INDEHISCENT

(IND) (Liljegren et al., 2004) and ALCATRAZ (ALC) (Rajani and

Sundaresan, 2001) are associated with the development of the valve

margin and regulate the development of the DZ, leading to silique

cracking (Ferrándiz, 2002; Lewis et al., 2006). As part of this regulatory

pathway, SHP1/2 positively regulate the downstream factors IND and

ALC. Moreover, IND and ALC control valve margin development

independently of each other. SHP1/2 and IND are essential for the

development of both the lignified layer and the separation layer,

whereas ALC is required for the formation of only the separation

layer (Liljegren et al., 2000, 2004; Rajani and Sundaresan, 2001). The

activities of valve margin identity genes are inhibited by FRUITFULL

(FUL) in the valve (Ferrándiz et al., 2000; Gu et al., 1998) and the

transcriptional regulatory factor REPLUMLESS (RPL), which is

involved in the development of the replum (Ferrándiz et al., 2000;

Roeder et al., 2003; Liljegren et al., 2004). In other words, SHP1/2, IND

and ALC expression is limited to the valve margin through repression

by FUL in the valve and by RPL in the replum.AP2 negatively regulates

the expression of replum and valve margin identity genes to prevent

excessive growth of replum and valvemargins (Ripoll et al., 2011).NAC

SECONDARY WALL THICKENING PROMOTING FACOTR1
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(NST1), which is expressed in the enb layer and highly expressed in

developing LL cells, modulates silique cracking by controlling cell wall

thickening (Mitsuda and Ohme-Takagi, 2008; Zhong et al., 2010).

ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE1

(ADPG1), which is expressed in the SL in DZs, encodes plant-

specific endo-polygalacturonases (PGs) and promotes silique

cracking by reducing cell adhesion (Ogawa et al., 2009; Roberts et al.,

2002). In addition, some plant hormones, such as auxin, cytokinin and

gibberellin, regulate the development of siliques, pods and capsules, and

ethylene is a growth regulator that is commonly used to promote

cotton boll cracking (Arnaud et al., 2010; Forlani et al., 2019; Larsson

et al., 2014; Marsch-Martıńez et al., 2012; Simonini et al., 2017; Zuñiga-

Mayo et al., 2018).

As an important breeding trait for early maturity in upland

cotton, early boll opening has long been a focus of breeders. Farmers

use chemical defoliating agents in field plantings to induce cotton

leaves to fall off early and accelerate cotton boll opening (Li et al.,

2022). Moreover, although cotton bolls are a typical type of capsule,

the mechanism by which they crack remains unclear. In this study,

the AG subfamily genes of upland cotton were first identified; then,

family analysis was performed using bioinformatics methods. The

tissue-specific expression patterns of Gossypium hirsutum AG

subfamily genes (GhAGs) were analyzed on the basis of

transcriptome data from the upland cotton variety TM-1, and the

tissue of Zhongmian113 was used as a template to analyze the

expression patterns of GhAGs using qRT−PCR. To clarify the role

of GhSHP1/AGL1 in upland cotton, we used virus-induced gene

silencing (VIGS) technology to reduce GhSHP1 transcript levels.

Phenotypic changes paraffin sections of cotton boll shells at

different developmental stages, and GhIND, GhFUL, GhALC,

GhRPL and GhNST1 expression were observed and analyzed in the

GhSHP1-silenced plants and controls. These findings increase our

understanding of GhSHP1 and provide a theoretical basis for future

research on the cracking mechanism of cotton bolls and for the

cultivation of early-maturing and high-quality cotton varieties.
2 Materials and methods

2.1 Identification and characteristics of
AGAMOUS subfamily genes in
upland cotton

The AGAMOUS subfamily in the model plant Arabidopsis

thaliana contains four genes: AGAMOUS (AG, AT4G18960)

(Bowman et al., 1989; Yanofsky et al., 1990), SHATTERPROOF1

(SHP1/AGL1, AT3G58780), SHATTERPROOF2 (SHP2/AGL5,

AT2G42830) (Liljegren et al., 2000; Ma et al., 1991) and

SEEDSTICK (STK/AGL11, AT4G09960) (Pinyopich et al., 2003;

Rounsley et al., 1995). The protein sequences of these four genes in

A. thaliana were obtained from The Arabidopsis Information

Resource website (TAIR, https://www.arabidopsis.org) as seed

sequences. The AG subfamily protein sequences of 14 plant

species (Supplementary Table S1) were obtained using BLAST

searches and downloaded from the Phytozome website (https://

phytozome-next.jgi.doe.gov/) and the Ensembl Plants website
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(https://plants.ensembl.org/index.html), with the expected value set

to < e-50. The protein physicochemical properties of the GhAG

subfamily genes were analyzed using the ExPASy website (https://

www.ExPASy.org/). The subcellular localizations of GhAG

subfamily genes were predicted using the WOLF PSORT website

(https://wolfpsort.hgc.jp/).
2.2 Phylogenetic and collinearity analysis
of AG subfamily genes

We conducted multiple alignments of AG subfamily protein

sequences from 15 plant species using the ClustalW tool, and a

phylogenetic tree was constructed using the neighbor-joining (NJ)

method with 1000 replications and the p distancemethod with pairwise

deletions using MEGA 7.0 software (de Moura et al., 2017; Kumar

et al., 2016). Visualization and beautification were then performed

using the iTOL website (https://itol.embl.de/) (Letunic and Bork,

2019). The genomes and annotated files of Gossypium hirsutum,

Gossypium raimondii and Gossypium arboretum are available on

the Ensembl Plants website (https://plants.ensembl.org/

index.html). Then, intraspecific collinearity analysis of upland

cotton and interspecific collinearity analysis of the three

Gossypium species were performed with TBtools (v.2.091)

software, and the synonymous (Ks) and nonsynonymous (Ka)

substitution rates of the upland cotton AG subfamily genes were

calculated (Chen et al., 2020; Luo et al., 2024).
2.3 Analysis of cis-acting elements in the
promoters of GhAGs

The sequences of the 2000-bp regions located upstream of the

GhAG genes were obtained from CottonFGD (https://

cottonfgd.net/) and utilized to identify cis-regulatory elements

associated with GhAG genes through the PlantCARE program

(http://bioinformatics.psb.ugent.be/webtools/plantcare/html/).

Excel software was employed to visualize the results derived from

these predictions.
2.4 Analysis of the expression patterns of
GhAG subfamily genes

The expression patterns of AG subfamily genes in upland cotton

were analyzed using RNA-seq data obtained from 13 distinct tissues

of the upland cotton variety TM-1 (http://cotton.zju.edu.cn/). Gene

expression levels were quantified based on fragments per kilobase of

transcript per million mapped fragments (FPKM) values. Heatmaps

depicting the expression patterns of GhAG subfamily genes were

generated utilizing TBtools software.
2.5 Plant materials

Leaf rot soil and vermiculite were mixed 1:1 in a seedling cup and

soaked until the surface was slightly wet. Intact seeds were selected
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and planted 1.5 cm below the soil. The artificial climate incubators

were established with fixed conditions (16 h light/8 h darkness, 25°C,

and 70% humidity) for growing the seedlings. The roots, stems,

leaves, sepals, petals, ovaries, cotton shells and cotton fibers were

sampled in the 1st, 4th to 5th and 11th to 17th weeks of cotton

growth. Early opening bolls (Yuzhishi84-1) and late opening bolls

(Ganmain12) varieties were planted, and cotton boll shell tissues

from different development stages were collected. The samples were

quickly frozen in liquid nitrogen and stored at -80°C for future use.
2.6 Quantitative real-time PCR analysis

Total RNA was extracted utilizing an AFTSpin Complex Plant Fast

RNA Extraction Kit (No. RK30122; ABclonal, China). The

concentration, purity and integrity of the RNA were assessed using

RNA electrophoresis and an ultramicro concentration detector. Reverse

transcription was conducted utilizing a UnionScript First-Strand cDNA

Synthesis Mix Kit (No. SR511; Genesand, China). Specific primers for

five GhAGs were designed using Primer-BLAST (https://

www.ncbi.nlm.nih.gov/tools/primer-blast/index.cgi) for qRT−PCR.

The qRT−PCR assay was conducted utilizing BrightCycle Universal

SYBR Green qPCR Mix with a UDG kit (No. RK21219; ABclonal,

China) on a LightCycler® 96 Instrument (Roche, Switzerland).

GhACTIN (Zhao et al., 2020) was utilized as an internal reference

gene for qRT−PCR for normalization of transcript levels. The relative

expression level of each gene was determined using the 2−DDCTmethod.

Three biological replicates were performed to ensure accuracy and

reliability. Statistical analysis was conducted using SPSS 27 software

(IBM, Armonk, NY, USA). The least significant difference (LSD) test

was employed to calculate P values to assess significance (Rao et al.,

2013; Willems et al., 2008; Zhao et al., 2020).
2.7 Virus-induced GhSHP1 silencing in
upland cotton

GhSHP1 silencing was achieved with VIGS technology using a

CLCrV carrier. The 463-bp target fragment of GhSHP1 was obtained

using PCR amplification and integrated into the CLCrV vector. The

recombinant plasmid was subsequently introduced into

Agrobacterium tumefaciens strain GV3101. The transformed A.

tumefaciens was then resuspended. After three hours in the dark,

CLCrV: ChlI, the empty vector and CLCrV: GhSHP1 were mixed with

the auxiliary bacteria at a ratio of 1:1. Finally, the mixed bacterial

mixture was injected into the dorsal surface of the cotyledons of 7-day-

old plants to produce GhSHP1-silenced cotton plants (CLCrV:

GhSHP1), along with negative control (empty vector) and positive

control (CLCrV: ChlI) plants. The plants were subjected to a 24-h

incubation period in darkness prior to being cultured under standard

conditions. When the leaves of the positive control plants were yellow,

the target gene had been successfully silenced. The seedlings were

subsequently transplanted into flowerpots for further cultivation. At

15 and 3 days postanthesis (DPA), the cotton boll shells were sampled

as templates, and GhALC, GhFUL, GhIND, GhNST1 and GhRPL

expression levels were detected using qRT−PCR.
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2.8 Microscopic observation of boll
shell anatomy

Cotton boll shells were sampled at 0, 3, 5, 10 and 15 DPA and

stored in FAA fixative. After the samples were fixed for more than

24 hours, they were dehydrated, dipped in wax, and embedded to

generate paraffin sections (4 mm). The paraffin sections were

subjected to staining with safranin O solution and plant solid

green staining solution, followed by mounting in neutral balsam.

The sections were observed using a Nikon Eclipse E100 microscope

(Nikon, Japan), and images were acquired with a Nikon DS-

U3 system.
3 Results

3.1 Identification and physicochemical
properties of AGAMOUS subfamily genes in
upland cotton

In this study, we identified ten AGAMOUS (AG) subfamily

genes in upland cotton. On the basis of their homology with

Arabidopsis thaliana AG subfamily genes in the phylogenetic tree,

these genes were named GhAG.1, GhAG.2, GhAG.3, GhAG.4,

GhSHP1.1, GhSHP1.2, GhSTK.1, GhSTK.2, GhSTK.3 and GhSTK.4
Frontiers in Plant Science 04
(Supplementary Table S1, Figure 1). The lengths and molecular

weights of the ten GhAG proteins exhibited minimal variation,

ranging from 223 to 246 amino acids (aa) and from 25.72 to 28.37

kDa, respectively. The isoelectric points of the ten GhAG proteins

varied between 9.25 and 9.44, indicating that these proteins are

alkaline. The instability index and average hydropathicity of the

GhAG proteins varied from 48.47 to 62.44 and from -0.848 to

-0.601, respectively. These results suggest that the GhAGs encode

unstable hydrophilic proteins. Subcellular localization predictions

suggested that these proteins were localized within the nucleus.
3.2 Phylogenetic analysis of AG
subfamily members

To clarify the evolutionary relationships among the AG

subfami ly genes , a tota l of 98 AG subfami ly genes

(Supplementary Table S2) from 15 different species were

employed to construct a phylogenetic tree. The phylogenetic tree

was classified into three main branches (Figure 1). The numbers of

genes contained in clades A (n= 28, 28.57%), B (n=35, 35.71%) and

C (n=35, 35.71%) were similar. Among the ten GhAG genes, four,

four and two GhAGs clustered with AtAG, AtSTK/AGL11, and

AtSHP1/AGL1, respectively. However, no homologs of AtSHP2/

AGL5 were found among the GhAGs, GbAGs, GaAGs or GrAGs.
FIGURE 1

Evolutionary relationships of the AG subfamilies in 15 species. Gh, Gb, Gr, Ga, At, Bn, Br, Bo, Cr, Gm, Ah, Mt, Cc, Os and Tc represent Gossypium
hirsutum, G. barbadense, G. raimondii, G. arboreum, Arabidopsis thaliana, Brassica napus, B. rapa ssp. pekinensis, B. oleracea capitata, Capsella
rubella, Glycine max, Arachis hypogaea, Medicago truncatula, Cercis canadensis, Oryza sativa and Theobroma cacao, respectively.
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Among the other ten species, genes homologous to AtSHP2 were

found in only three silique species (Bn, Br and Cr).
3.3 Gene duplication of the AG subfamily
in cotton species

To investigate the expansion pattern of the AG subfamily in the

three Gossypium species, collinearity analysis of the AG subfamily

genes was performed. The results revealed four homologous

duplicate gene pairs in upland cotton (Figure 2A), three of which

were tandem duplications and one of which was a segmental

duplication. The Ka: Ks ratios of the GhAG members were less

than 0.30, suggesting that purifying selection has played a

significant role in the evolutionary processes of genes within the

GhAG subfamily (Supplementary Table S3). In addition, we found

that most GhAG genes presented a collinear relationship with the

GaAG and GrAG genes (Figure 2B).
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3.4 Analysis of cis-acting elements in the
promoters of GhAG subfamily genes

To predict the potential biological functions of the GhAG

subfamily genes, we analyzed the cis-acting elements present in

their promoters. The cis-acting elements associated with GhAGs can

be classified into four primary categories: phytohormone-

responsive elements, light-responsive elements, plant growth and

development-responsive elements, and abiotic stress-responsive

elements (Figure 3). Among these categories, light-responsive

elements constituted the majority of the cis-regulatory

components within the promoters of the GhAGs, whereas

elements responsive to plant growth and development constituted

the smallest proportion. Among the light-responsive elements, Box

4 (31) was the most common and was present in the promoters of

almost all the GhAG genes. Furthermore, a total of 20 ABREs

associated with the ABA hormone response and 28 ARE elements

related to the abiotic stress response were identified in the
FIGURE 2

Intraspecific and interspecies replication analysis of AG subfamily genes. (A) Patterns of GhAG subfamily gene duplication in the genome of upland
cotton. (B) Collinearity analysis of the three cotton species. G. raimondii is shown in green, G. hirsutum is shown in red, and G. arboreum is shown
in yellow.
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promoters of the GhAGs. CAT-box elements accounted for the

largest number of elements responsive to growth and development,

with only four. These findings indicate that GhAGs not only play a

significant role in plant hormone regulation but are also associated

with the response to abiotic stress.
3.5 Tissue-specific expression patterns of
GhAG subfamily genes in upland cotton

The expression patterns of genes are closely linked to their

biological functions, which leads to contrasting features between

species (Hu et al., 2019). To investigate the expression patterns of

GhAG subfamily genes, we used FPKM values from transcriptome

data to generate heatmaps to characterize gene expression levels

across various tissues. The transcriptome data of different TM-1

tissues included data from root, stem, leaf, torus, bract, sepal, petal,

pistil, anther, filament, ovule and cotton fiber tissues (Figure 4A).

We found that GhAG subfamily genes presented relatively low

expression levels in vegetative tissues, such as roots, stems and

leaves, and presented three types of expression patterns in

reproductive organs, such as flowers and fruits (Figure 4A).

GhAG.1, GhAG.2, GhAG.3 and GhAG.4 expression was consistent

with the type I pattern, and these genes were expressed mainly in

the anthers and filaments and during the early stage of ovule and

fiber development (-3 to 15 DPA). The GhSHP1.1 and GhSHP1.2

expression patterns were type II, with high expression occurring

mainly during early ovule and fiber development (-3 to 15 DPA),

especially three days before flowering and on the day of flowering.

The GhSTK.1, GhSTK.2, GhSTK.3 and GhSTK.4 expression patterns

were type III, with high expression mainly in ovules (15 DPA) and

fibers during the late development period (15 to 25 DPA). It follows

that GhAG subfamily genes are highly likely to affect floral organs as

well as the development of later ovules and fibers.
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Given that the above transcriptome data did not include the

expression of GhAG subfamily genes in cotton boll shells, we further

identified the expression patterns of GhAGs across various tissues of

ZM113 (roots, stems, leaves, sepals, petals, cotton boll shells and

fibers) using qRT−PCR. The qRT−PCR primers were not effective

in distinguishing between GhAG.1 and GhAG.2, GhAG.3 and

GhAG.4, GhSHP1.1 and GhSHP1.2, GhSTK.1 and GhSTK.2, and

GhSTK.3 and GhSTK.4. Therefore, we named the above gene pairs

GhAG-1, GhAG-2, GhSHP1, GhSTK-2 and GhSTK-1 and detected

their expression in different tissues of ZM113 (Figure 4B). We

found that GhSHP1 was highly expressed in both cotton boll shell

and fiber tissues during the later stage of growth and development

and that GhSHP1 transcript levels were greater than that of GhAG-

1, GhAG-2, GhSTK-1 and GhSTK-2 in cotton boll shells. After

comprehensive analysis, GhSHP1 was selected as the target gene.

To further verify whether GhSHP1 affects cotton boll cracking,

qRT−PCR was used to study the difference inGhSHP1 expression in

the cotton boll shell tissues of early (Yuzhishi84-1) and late

(Ganmian12) opening bolls varieties at different growth stages

and during boll shell cracking (Figure 4C). The results revealed

that GhSHP1 expression in the cotton boll shell of Yuzhishi84-1 was

greater than that in the boll shell of Ganmian12. The difference is

significant at 0, 3, 5, 15, 20 and 25 DPA. In summary, we

hypothesized that GhSHP1 may play a regulatory role in the

development of cotton boll shells.
3.6 GhSHP1 silencing leads to delayed
flowering and cracking of cotton bolls

To assess the functions of GhSHP1, we employed VIGS

technology to suppress its expression. Approximately 21 days

after viral infection, the CLCrV: ChlI positive control plants were

yellow, indicating that virus-induced silencing was successful in
FIGURE 3

Cis-acting elements located within the promoter regions of GhAG genes. The Arabic numerals in the cells denote the quantity of cis-acting
elements present.
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upland cotton plants (Figure 5A). The first flowering time, first five

flowering times and cracking time of the silenced CLCrV: GhSHP1

plants and empty vector plants were analyzed statistically. We

found that the flowering time of the CLCrV: GhSHP1 plants was

approximately 10.3 days later than that of the empty vector plants

(Figure 5B). The flowering times of the first five flowers were

measured to analyze whether silencing the GhSHP1 gene affected

the flowering concentration of upland cotton. The scatterplot of the

flowering times of the first five flowers was analyzed using linear

regression, and the results revealed that silencing GhSHP1 caused

the flowering time of the upland cotton plants to be less
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concentrated (Figure 5C). These findings indicated that GhSHP1

gene silencing not only delayed the flowering time of upland cotton

but also reduced the flowering concentration.

Further observations indicated that the boll opening time of the

CLCrV: GhSHP1-silenced cotton plants was approximately 9.0 days

longer than that of the empty vector control plants (Figures 6A, B).

Paraffin sections of cotton bollback sutures collected at different

time points were observed under a microscope. The factors

influencing the cracking time of the cotton bolls were analyzed

from a cytological point of view (Figure 6C). In this image, the red

cells are lignified cells colored with safranin O. On the left and right
FIGURE 5

Phenotypic analysis of VIGS-treated upland cotton at the flowering stage. (A) Flowering phenotypes of plants treated with CLCrV: ChlI, empty vector,
or CLCrV: GhSHP1. (B) Statistical analysis of the first flowering time of upland cotton. (C) Statistical analysis of the first five flowering times of
upland cotton.
FIGURE 4

Analysis of the expression patterns of GhAG subfamily genes across various tissues in upland cotton. (A) Expression patterns of GhAG subfamily
genes in different tissues of TM-1. The color of the continuous gradation represents the expression level. Red represents high expression, and blue
represents low expression. (B) Expression patterns of GhAG subfamily genes in different tissues of ZM113. (C) GhSHP1 expression in the cotton boll
shell tissues of early and late opening boll varieties.
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are the valves, and in the middle of them are the valve margins and

the dehiscence zone (DZ). The outermost rectangular layer of cells

in the valve is the ectocarp, and the inside layer is the mesocarp.

During the early stage of fruit development, the DZ between

adjacent valves is composed of numerous small square cells

closely arranged in a line. However, until 3 DPA, the formation

of such compact small cells could not be clearly observed in the

CLCrV: GhSHP1-silenced plants. By examining paraffin sections of

cotton boll shells at 0, 3, 5, 10, and 15 DPA, we observed that the DZ

cells in the CLCrV: GhSHP1-silenced plants were thinner than

those in the empty vector plants. On the other hand, at 3 DPA,

unique lignified cells were observed on the back sutures of the

cotton boll in both the empty vector plants and the silenced plants.

At 5, 10 and 15 DPA, the plants transformed with empty vector

exhibited more lignified cells than did the silenced plants. Near the

DZ is the valve margin, where the lignification of cells and the inner

cell layer of the valve results in pod shattering (Giménez et al.,

2010). As the fruit ripens and dries, the parenchyma cells of the

cotton boll valve shrink, creating tension in the hard lignified area,

which helps the DZ shatter (Liljegren et al., 2000). This could cause
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the bolls of the empty vector-transformed plants to crack earlier

than those of the CLCrV: GhSHP1-silenced plants.
3.7 Effects of GhSHP1 silencing on key
genes involved in fruit shattering

ALCATRAZ (ALC), FRUITFULL (FUL), INDEHISCENT (IND),

NAC SECONDARY WALL THICKENING PROMOTING

FACOTR1 (NST1) and REPLUMLESS (RPL) are key genes

involved in regulating pod shattering in A. thaliana (Dong and

Wang, 2015) . GhALC , GhFUL , GhIND , GhNST1 and

GhRPL expression characteristics were examined in both the

CLCrV: GhSHP1-silenced plants and the control plants. The

expression levels of these five genes in the control plants were

markedly greater than those in the GhSHP1-silenced plants

(Figure 7). These results indicated that GhSHP1 silencing strongly

affected the expression of cracking-related genes, indicating that

GhSHP1 could be an important gene in the cotton boll opening

regulatory network.
FIGURE 6

Phenotype and paraffin section analysis of upland cotton during the boll opening period. (A) Cotton boll cracking phenotypes of plants treated with
CLCrV: ChlI, empty vector, or CLCrV: GhSHP1. (B) Statistical analysis of the boll cracking time of upland cotton. (C) Paraffin sections of cotton boll
shell back sutures from empty vector-transformed plants and CLCrV: GhSHP1-silenced plants. The dehiscence zones are marked with a black frame.
Scale bar = 100 mm.
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4 Discussion

In plants, fruit cracking is affected by fruit size, shape, growth

rate, water content, skin characteristics, internal fruit cracking-

related gene expression and external factors such as temperature,

light, and precipitation (Hu et al., 2024). These factors ultimately act

on the outer peel, which is unable to withstand the expansion force

from inside the peel and cracks (Correia et al., 2018; Khadivi-Khub,

2015; Li et al., 2021). The split fruit can also be subdivided into the

following four fruit types: silique, legume, capsule, and follicle

(Hernandez et al., 2023). The fruit of A. thaliana is a silique that

develops from two symbiotic carpels, with a lateral membranous

placenta and a replum that is generated at the ventral suture of the

carpel to divide the ovary into two chambers. When the siliques are

ripe, the peel cracks along both sides of the abdominal suture and

falls off in two pieces. The fruit of soybean is the legume, and the

pod is the fruit formed by the development of a single carpel. At

maturity, it splits along the abdominal suture and the back suture

simultaneously, and the peel splits into two pieces. The fruit of

cotton is the capsule. The cotton boll develops from a compound

pistil of a conjunctive carpellary and has an axial placenta. It is

usually formed by the carpel, with three to five chambers. The fruit

ripens and cracks in a way known as loculicidal dehiscence, along

the sutures of the back. Follicles develop from a single carpellary

pistil or from the apocarpous gynoecium. When ripe, the fruit will

split along one side of the dorsal or abdominal suture.

Members of the MADS-box family are integral to various

aspects of plant biology, including flower and seed development,

the regulation of flowering time, fruit maturation processes, and

responses to both abiotic and biotic stresses (Schilling et al., 2018).

To date, genes belonging to this family have been reported in A.

thaliana, rice, soybean, tomato and other plants. The target genes

identified in this study are classified within the AGAMOUS

subfamily of the MADS-box family, and bioinformatics analysis

of the identified GhAGs was performed. Ten AG subfamily genes

were identified in upland cotton. This result is consistent with a

report from Ren et al (Ren et al., 2017). The greatest number of AGs

was detected in Brassica napus (15) (Wu et al., 2018). This was

followed by the tetraploid cotton G. hirsutum (10) and G.

barbadense (10), as well as the legume crop Glycine max (10)

(Nardeli et al., 2018; Shu et al., 2013). Furthermore, phylogenetic

analyses revealed that AG subfamily genes have undergone a series

of genome amplification events during the evolutionary transition
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of cotton from diploid to tetraploid forms. This process doubled the

number of AG subfamily genes within the allotetraploid cotton

species G. hirsutum and G. barbadense compared with G. raimondii

and G. arboreum. AtSHP2 homologous genes were found only in

Bn, Br and Cr but not in the other 11 species. This may be due to

gene loss that occurred during the evolutionary process. In this

study, four AG subfamily genes were identified in Oryza sativa,

whereas five OsAGs were identified by Ren et al (Ren et al., 2017).

This discrepancy may arise from the utilization of different

reference genomes or from inconsistencies in the screening

criteria employed. These findings suggested that the AG subfamily

genes share a common origin and that different species evolved

different numbers of AG subfamily genes during evolution.

Most AG subfamily genes in upland cotton presented one-to-

one collinearity. A good collinearity relationship was noted with the

other two cotton species. The Ka: Ks ratios for all the members of

the GhAG subfamily were less than 1. Ka/Ks values can determine

whether selection pressure is acting on the gene that encodes the

protein. If Ka/Ks is > 1, it indicates a positive selection effect. If Ka/

Ks = 1, this suggests neutral selection. If Ka/Ks is < 1, it is indicative

of purifying selection. These findings indicate that purifying

selection has played a significant role in the evolutionary

development of GhAG subfamily genes. An examination of the

cis-acting elements within promoters revealed that the majority of

them were light-responsive elements, and all of them were located

in the nucleus. Taken together with the results of the expression

pattern analysis, these findings suggest that GhAGs are likely to play

regulatory roles in plant growth and development by affecting

flower organs and fruits. This is consistent with findings from

prior research (Dreni et al., 2011; Liu et al., 2016, 2018; Lu et al.,

2019; ÓMaoiléidigh et al., 2013; Xu et al., 2017).

To further investigate the effect of GhSHP1 on cotton boll

cracking, we conducted a VIGS experiment. Compared with those

of the control plants, the flowering and boll cracking times of the

GhSHP1-silenced plants were delayed. Paraffin sections were

prepared at the suture line on the posterior side of the cotton

boll. The findings indicated that the development of the DZ in the

silenced plants occurred later than that observed in the control

plants during the same timeframe; furthermore, the extent of valve

lignification was lower in the silenced plants than in the control

plants. GhSHP1 may affect cotton boll cracking by regulating DZ

development. Research has demonstrated that, in A. thaliana,

AtSHP1/2 plays a role in promoting the differentiation of the DZ
FIGURE 7

Quantitative analysis of key genes associated with fruit shattering in both control plants and GhSHP1-silenced plants. Asterisks denote significant
differences in the expression levels of related genes between silenced and control plants (*P<0.05, **P<0.01).
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while simultaneously promoting the lignification of adjacent cells

(Liljegren et al., 2000). In Brassica napus, BnSHP5-184 with five

homologous mutants was obtained using the CRISPR-Cas9 system,

and fewer lignification and separation layers were found in and

around the valve. BnSHP1A09 may be a promising site for

controlling the DZ lignin content (Zaman et al., 2021). In fleshy

tomato fruits, the AtSHP1/2 homologous gene TOMATO

AGAMOUS-LIKE1 (TAGL1) promotes fruit ripening (Itkin et al.,

2009; Jeon et al., 2024; Vrebalov et al., 2009). TAGL1 overexpression

in A. thaliana leads to a phenotype that closely resembles the

phenotype observed with SHP1/2 overexpression. The functions of

SHP in these species are similar, and there is no difference in

function due to different fruit types. These findings suggest that the

role of SHP1/2 genes in determining organ identity is

fundamentally conserved (Pinyopich et al., 2003).

Fruit dehiscence is caused by a combination of many factors in

the plant, which form a complex regulatory network. To further

investigate the role of GhSHP1 in the regulatory network of cotton

boll cracking, we selected five key genes in the tissue differentiation

regulatory network required for A. thaliana pod fragmentation. In

this study, qRT−PCR analysis revealed a significant decrease in the

expression levels of the five genes in plants with silenced GhSHP1.

Therefore, a positive regulatory relationship may exist between

GhSHP1 and these five genes. In contrast, FUL exerts a negative

regulatory effect on SHP1/2 within the regulatory network

governing pod cracking in A. thaliana (Ferrándiz et al., 2000). In

FUL1/2 RNAi-treated fruits, the expression of the tomato gene

TAGL1 was upregulated in the peel, indicating a negative regulatory

relationship between FUL1/2 and TAGL1 (Bemer et al., 2012).

Moreover, for key genes in the A. thaliana pod-shattering

regulatory pathway, we predicted the protein interaction network

of upland cotton homologous genes (Supplementary Figure S1).

These findings indicate that GhSHP1 expression may be directly

correlated with GhIND and GhRPL expression. Therefore, GhSHP1

may have an indirect regulatory relationship with both GhFUL and

GhALC. This may explain why the expression levels of these four

genes differed significantly between the GhSHP1-silenced plants

and the control plants.
5 Conclusion

In summary, we identified 10, 10, 5 and 5 AGAMOUS subfamily

genes in G. hirsutum, G. barbadense, G. raimondii and G. arboreum,

respectively. We conducted bioinformatic analyses of the GhAGs,

including phylogenetic studies, collinearity assessments, repeated

event evaluations, investigations of promoter cis-acting elements,

and expression pattern analyses. The GhAG promoter sequences

include numerous light-responsive elements as well as elements

associated with plant hormones. Expression pattern analysis

revealed that GhAGs may affect the development of flower organs,

ovules, cotton boll shells and fibers during the later stages of growth

and development. In addition, on the basis of the VIGS experiment

results, we concluded that silencing the GhSHP1 gene led to delayed
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flowering and boll opening in upland cotton. The results of the

paraffin section analysis indicate that GhSHP1 may affect the

cracking time of cotton bolls by influencing the development of

the DZ at the back suture line of the cotton boll shell. This study

provides a reference for future studies of key genes affecting cotton

boll cracking and for the molecular breeding of early-maturing

cotton varieties.
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