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As a vegetable crop with high economic value, the yield of pepper is often

significantly restricted by leaf diseases, and the spots formed by these diseases on

the surface of leaves are highly complex in color and texture characteristics. To

overcome the shortcomings of traditional manual identification methods, such

as low efficiency, time-consuming, and labor-consuming, an integrated multi-

network model (IMNM) was established by combining an improved ResNet, a

dynamic convolution network (DCN), and a progressive prototype network

(PPN), which was aimed at five typical pepper leaf samples (healthy, virus, leaf

blight, brown spot, and phyllosticta). The experimental results show that IMNM

achieves 98.55% accuracy in pepper disease identification, which is significantly

better than the benchmark models such as Inception-V4, ShuffleNet-V3, and

EfficientNet-B7. In the cross-species generalization verification, the average

identification accuracy of the model for apple, wheat, and rice leaf diseases

increased to 99.81%, and its four core indicators of specificity, precision,

sensitivity, and accuracy were all stable over 98%. This demonstrates that

IMNM can effectively analyze the color and texture characteristics of highly

heterogeneous disease spots and possesses strong cross-crop generalization

capabilities. Its technical path lays a theoretical foundation for the development

of field mobile disease diagnosis equipment based on deep learning, and is of

great value for promoting the engineering application of an intelligent

monitoring system for crop diseases and insect pests.
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1 Introduction

Pepper is an important vegetable crop. Leaf diseases and insect

pests affect the growth of the pepper (Shaheen et al., 2021). These

diseases cannot be eradicated, but they can be treated and

monitored to reduce their impact.

A multitude of biotic and abiotic stressors limit crop

productivity. Visible pests and microorganisms are the two types

of biotic stress conditions (Bhar et al., 2022). The most apparent

pests are insects, but rodents and animals can also cause agricultural

harm. Abiotic stress (Omae and Tsuda, 2020) refers to physical

issues such as poor environmental conditions and chemical stress in

soil, air, and irrigation water caused by toxic circumstances.

According to the Food and Agriculture Organization of the

United Nations, pests and diseases account for 20 to 40% of

global food production losses. As a result, diseases can cause

major economic and environmental losses in agricultural product

quantity and yield (Savary et al., 2019).

Currently, precision agriculture is utilized to combine multiple

information technologies to optimize agricultural yields while

minimizing expenses and agricultural losses (Shaikh et al., 2022).

Artificial intelligence, image processing, and sensor networks are

some examples of these information technologies. As a result, one of

the most commonly used technologies for crop disease

identification is image processing. Its primary objective is to

locate signs of plant pathogens. The distinct visual damage modes

that each disease causes in plant tissue may be due to issues with

image processing and artificial intelligence systems. The same

algorithm might not always be able to distinguish between

many diseases.

This study proposed a novel deep learning method, the IMNM,

for identifying pepper leaf disease to fix the aforementioned flaws.

The following are the primary contributions of this paper:
Fron
1. To address gradient vanishing and network deterioration in

the suggested model, this study presents an improved

ResNet solution and uses a quick connection channel

between input and output features to prevent

information omission.

2. To improve the ability to express features of the model, this

study employs the DCN and adaptively chooses the best

convolutional kernels for feature extraction.

3. To enhance the training effectiveness of the model and

shorten the training time of the model, this study adopts

the PPN.
The remainder of the paper is structured as follows: An overview of

the literature on crop leaf disease identification is presented in

Section 2. A summary of the mathematical theory of the proposed

framework is given in Section 3. The experimental evaluation

metrics and discussion to support the suggested system are the

main topics of Section 4. Section 5 concludes the paper by outlining

some suggestions for further investigation.
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2 Literature reviews

Traditional machine learning techniques and well-liked deep

learning algorithms are two different sorts of strategies for

identifying crop diseases with the development of artificial intelligence.

Traditional machine-learning image processing methods, as

reported by Wang et al. (2022), typically utilize color, shape, texture,

and other information to generate feature vectors, which are then

classified using support vector machines. Chaudhari and Patil (2023)

applied genetic algorithms to image segmentation and conducted

research using ensemble models, with identification accuracy

exceeding 92% compared to individual SVM, Naive Bayes, and KNN

classifiers. Islam et al. (2024) used image processing techniques and

support vector machines to classify stress symptoms of early pepper

seedlings with an accuracy of 85%. Rusliyawati et al. (2024) proposed a

model for pepper leaf disease identification based on a radial basis

function neural network, and the research showed that the

identification accuracy of this model was 91.67%. Fakhrurroja et al.

(2024) developed amodel for pepper leaf disease classification based on

support vector machine technology, and the identification accuracy of

the model was 92.13%. Valderrama Solis et al. (2025) proposed several

identification models based on XGBoost, SVM, and decision tree

algorithms, and researched Aleurothrixus foccosus in citrus. The

results showed that the accuracy rates of the XGBoost, SVM, and

decision tree models were 82%, 75%, and 65%, respectively. Kim et al.

(2025) used support vector machines, logistic regression, and neural

networks to rapidly and accurately identify novel variants of tomato

spotted wilt virus, with identification accuracy rates of 71%, 79%, and

84%, respectively. Deep learning algorithms outperform conventional

machine learning techniques in detecting agricultural diseases and

pests, as demonstrated by prior research. Gautam et al. (2022)

developed a hybrid CNN model for classifying paddy leaf diseases,

achieving 96.4% accuracy. Palve (2023) combined deep learning,

computer vision, and Tensorflow techniques to achieve 90.1%

accuracy in leaf disease identification experiments such as sweet

pepper, tomato, and potato. Dai et al. (2023) proposed an enhanced

lightweight model based on the GoogLeNet architecture to identify

pepper leaf diseases with an accuracy of 97.87%. To solve the problems

of low accuracy and insufficient image representation ability in

previous research on spinach leaf disease identification, Xu et al.

(2024) proposed a new model combining a spatial attention

mechanism and nucleated bilinear aggregation technology. The

identification accuracy of this model reached 95.12. Wang Y. et al.

(2024) conducted experiments on potato, corn and tomato leaf datasets

with mask autoencoder and convolutional block attention module, and

their average identification accuracy reached 95.35%. Wan et al. (2024)

proposed a novel pepper disease identification model based on

TPSAO-AMWNet, with an average identification accuracy of

93.52%. Rusliyawati et al. (2024) developed a pepper leaf disease

identification model based on image analysis using radial basis

function neural networks, and the identification accuracy of the

model reached 91.67%. Sultan et al. (2025) proposed an improved

Xception architecture to identify leaf diseases of roses, mangoes, and

tomatoes, which achieved a leaf disease identification accuracy rate of
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98.00%. Ashurov et al. (2025) combined Depthwise CNN with SE

block and residual jump join to propose an automatic plant disease

identification method, achieving 96% identification accuracy.

To sum up, there are obvious technical bottlenecks in current

crop disease identification research: traditional machine learning

relies on artificial features and shallow classifiers, although it

achieves moderate accuracy in limited scenarios, its feature

expression ability is limited and its generalization is insufficient;

although deep learning methods significantly improve accuracy,

they still face three challenges: insufficient feature representation of

single network, high parameter quantity restricting deployment

efficiency and weak cross-crop adaptability. Therefore, this study

proposes a lightweight framework that integrates improved ResNet

(optimized gradient propagation), DCN (adaptive kernel parameter

selection), and PPN (momentum prototype iteration) to enhance the

ability of complex lesion feature extraction through a multi-module

cooperation mechanism, while reducing computational costs and

improving cross-domain generalization performance. The follow-up

experiments will systematically evaluate the validity of the model

from theoretical verification, ablation analysis, cross-crop migration,

and many other aspects based on five kinds of pepper leaf data, to

provide a new paradigm for agricultural intelligent diagnosis with

both accuracy and practicality.

3 Proposed process of the IMNM

3.1 Improved ResNet

3.1.1 Definition of the ResNet
The ResNet is a deep Residual Network first proposed by

Kaiming He’s team in 2015 in He et al. (2016), which was

included as an oral presentation in CVPR2016, the premier

conference on computer vision in the world. He et al. (2016)

pointed out that the ResNet is a deep convolutional neural

network architecture whose core mechanism is to pass shallow

features directly to deeper layers through cross-layer residual

connections, forcing the network to learn residual mappings of

inputs and outputs rather than original feature mappings.
Frontiers in Plant Science 03
3.1.2 Fundamentals of the ResNet
The depth of deep neural networks is the most direct way to

improve network performance. As the number of layers increases,

the vanishing gradient will become more and more obvious in the

process of regression, and the corresponding network training effect

will become worse.

These issues were addressed by the outstanding ResNet (Bhuma

and Kongara, 2022), which added a shortcut connection between an

input and output channel. In this way, the input information can

directly reach the output, avoiding the omission of information.

When the network was trained, it only needed the output residual.

The residual function can significantly increase the number of

network layers and is simpler to tune. The residual unit looks like

Equation 1:

F(x) = W2s (W1x) (1)

where s is ReLU. W1 and W2 represent the weights. Then it

obtains an outputH (x) through a shortcut and the second ReLU. H

(x) can be computed as Equation 2:

H(x) = F(x, Wif g) + x (2)

When H (x) changes the dimensions of the input and output, it

can perform a linear transformation on x during the shortcut

operation. It is Equation 3:

H(x) = F(x, Wif g) +Wsx (3)
3.1.3 Details description and implementation
code of the improved ResNet
3.1.3.1 Details description of the improved ResNet

A single residual unit cannot improve the performance of

networks, so this study designed three residual units. The specific

structure is described in Figure 1.

As shown in Figure 1, the details of the improved ResNet mainly

include: The improved ResNet network takes 256×256 resolution

RGB image as input, the first layer extracts 64 channel features

(output size 128×128) through 5×5 convolution kernel (step 2, fill

2), and generates input feature map (InputResNetData) after batch
FIGURE 1

Improved residual unit architecture.
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normalization (BN) and ReLU activation. The feature map enters

the first residual block processing: the main path contains two 3×3

convolution layers, the first layer convolution (output 128 channels,

step 2, fill 1) reduces the feature map size to 64×64, the second layer

convolution (fill 1) maintains the resolution of 64×64; the jump

connection adjusts the input dimension through 1×1 convolution

(output 128 channels, step 2), and the main path and the jump

connection result are added to output 128 channels 64×64 feature

map (OutResNet1) through ReLU activation. The main path of the

second residual block is firstly fused with cross-channel information

through 1×1 convolution (input and output are both 128 channels)

to enhance the feature expression ability, then downsampled to

32×32 through 3×3 convolution (step size 2, filling 1), and then

expanded to 256 channels through 1 × 1 convolution; the skip

connection adjusts the dimension through 1×1 convolution (output

256 channels, step size 2), and outputs 256-channel 32×32 feature

map (OutResNet2) after addition activation. The main path of the

third residual block processes the input features through two 3×3

convolutional layers (padding 1), maintaining 256 channels and

32×32 resolution. Since the main path output (256 channel 32×32)

and the skip connection input (OutResNet2, 256 channel 32×32)

have the same number of channels, there is no need to adjust the

dimension through a 1×1 convolution. The main path result and

skip connection input are directly added and activated by ReLU,

and the output 256-channel 32×32 feature map (OutResNet3) is

output. The final features are compressed into 256-dimensional

vectors by global average pooling (GAP), mapped to a 5-

dimensional class space by fully connected layers, and probability

distributions are generated by the Softmax function.

3.1.3.2 Implementation code of the improved ResNet

For a link to the implementation code for the improved ResNet,

please refer to the “Data availability statement” section of this paper.

3.1.4 Analysis of contributions of introducing the
improved ResNet

The introduction of the improved ResNet not only addresses

the gradient disappearance problem mentioned above but also
Frontiers in Plant Science 04
enhances the feature extraction capabilities of the network.

Furthermore, the improved ResNet can extract multi-scale depth

features, allowing it to capture both the overall structure and local

textures of the blade. More specifically, in the task of leaf feature

extraction and classification, the improved ResNet effectively

extracts local texture and shape features of leaves, providing

essential representations for subsequent classification.
3.2 DCN

3.2.1 Definition of the DCN
The DCN is short for the dynamic convolution network, which

was first presented by Yinpeng Chen’s team in 2019 in Chen et al.

(2020), a paper received as an oral presentation by CVPR2020, the

top international conference in the field of computer vision. Chen

et al. (2020) pointed out that the DCN is an adaptive feature

extraction framework, and its core mechanism is: in the

convolutional layer, multiple parallel convolution kernels are

dynamically aggregated through the input-dependent attention

mechanism to form an optimal convolution operation for a

specific input mode.

3.2.2 Fundamentals of the DCN
With the help of dynamic convolution (Han et al., 2022),

network architecture and computing requirements can be

balanced. Without expanding the depth or width of the network,

it improves the capacity for expression of the model. Instead of

using a single convolution kernel for each layer, the DCN

dynamically aggregates many parallel convolution kernels,

modifies the weight of each convolution kernel, and chooses the

right parameters in Figure 2.

In Figure 2, an output can be expressed Equations 4-7:

y = g(WTx + b) (4)

W = o
K

k=1

pk(x)Wk (5)
( ) 1 2

1, 1 2, 2 ,

, g

Attention

Data Flow

Model Parameter Flow

FIGURE 2

Dynamic perceptron architecture; The symbol * represents multiplication in mathematical operations.
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b = o
K

k=1

pk(x)bk (6)

o
K

k=1

pk(x) = 1, 0 ≤ pk(x) ≤ 1 (7)

where W, b, and g are the weight, offset, and activation

functions, respectively. pk represents an attention weight. It is not

fixed but changes with an input. pk includes the attention weight

calculation and dynamic weight fusion. Its process can be

formulated according to Equation 8:

O(WTx + b) ≫ O(opkbk) + O½p(x)� (8)

where O( · ) is the calculation amount of perceptron.

Three kernels with the same scale and channel were set after a

dynamic convolution, and they were fused using their respective

attention weights to produce the convolution kernel parameters.

The GAP is used in the attention layer to get global spatial

characteristics. Softmax normalizes two fully connected (FC)

layers that are mapped to three dimensions so that the obtained

attention weight can be distributed among the three kernels of this

layer. The previously fixed convolution kernel can now be

dynamically chosen depending on the input, which greatly

enhances the ability of feature expression.

3.2.3 Details description and implementation
code of the DCN
3.2.3.1 Details description of the DCN

The DCN used in this study has three convolutional kernels

in Figure 3.

As shown in Figure 3, the details of DCN in this study mainly

include: First, DCN takes 256 × 256 resolution RGB image as input,

extracts 64 channel features (size 128 × 128) through a 5 × 5

convolution kernel (step 2, fill 2), and then obtains the input data to

enter the attention mechanism (InputAttentionData) after batch

normalization and ReLU activation. The flow process of
Frontiers in Plant Science 05
InputAttentionData in the attention mechanism is as follows: the

GAP is performed on InputAttentionData to extract global spatial

features of input features, so that the model can capture key

information from the overall level; Then, the output of the GAP

is passed into an FC layer for calculation, activated by ReLu, and

then passed into another FC layer for calculation. After that, the

result is normalized by the Softmax function, thus obtaining

dynamically changing attention weights (Attention_weights).

These weights reflect the degree of association between input

features and convolution kernels, and are not fixed and will

adjust with input. Then, the network initializes three same-scale 3

× 3 convolution kernels (input 64 channels, output 256 channels,

step 1, fill 1), and performs channel-level weighted fusion on

convolution kernel parameters according to Attention_weights.

Then, the fused dynamic convolution kernel is applied to

InputAttentionData (step 2, fill 1) to output a 256-channel 64 ×

64 feature map, which is downsampled to 32 × 32 by 3 × 3

maximum pooling (step 2), and then reduced to 16 × 16

resolution by 2 × 2 average pooling. The final features are batch

normalized and ReLU activated to output a 256-channel 16 × 16

enhanced feature map.

3.2.3.2 Implementation code of the DCN

For a link to the implementation code for the DCN, please refer

to the “Data availability statement” section of this paper.

3.2.4 Analysis of contributions of introducing the
DCN

After introducing the DCN, it can enhance the adaptability to

the deformation of disease spots and extract dynamic local features.

By dynamically generating convolution kernel parameters, the

model gains the ability to adaptively adjust the receptive field

according to the input characteristics. This approach significantly

improves the capacity to capture multi-scale disease features of the

model and overcomes the limitations of traditional fixed

convolution kernels regarding scale sensitivity. Its dynamic
FIGURE 3

The DCN used in this study; The symbol * represents multiplication in mathematical operations.
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characteristics are particularly beneficial for addressing the

morphological diversity of disease spots caused by the change of

shooting angles and illumination in leaf images.
3.3 PPN

3.3.1 Definition of the PPN
The PPN is short for the progressive prototype network, which

was first proposed by Chaoqun Wang’s team in Wang et al. (2021)

in 2021, which was officially included as a long article by

NeurIPS2021, the top international conference in the field of

machine learning. Wang et al. (2021) pointed out that the PPN is

a dynamic feature alignment framework, and its core mechanism is

to gradually enhance the cross-domain transferability and category

discrimination of visual features by alternately optimizing attribute

prototypes and category prototypes.

3.3.2 Fundamentals of the PPN
This study creates the PPN, which primarily consists of a

convolution layer, a BN layer, a max-pooling layer, an FC layer,

and a softmax layer, to increase training efficiency and shorten

training time. This study determines the prototype feature

representation for each category following feature extraction. The

average value of all sample features in the validation set of the

category makes up each category prototype. The precise calculation
Frontiers in Plant Science 06
formula is Equation 9.

ck =
1
Skj j o

(xi ,yi)∈Sk

f (xi) (9)

where ck is the prototype feature set for each category Skj j
represents the number of all samples belonging to category k in the

validation set, and f (xi) is the feature vector obtained from feature

extraction of training samples xi.

By comparing the Euclidean distance and normalized

exponential function between each sample and the category

prototype in the query set, the Euclidean distance is converted

into probability, and the probability distribution of the test sample

x̂ for category k is obtained. The probability can be defined as

Equation 10:

pq(ŷ = k x̂ ) =
exp ( − d(f (x̂ ), ck))

ok0 exp ( − d(f (x̂ ), ck0 ))

�
�
�
�

(10)

where d(x) is used to solve the Euclidean distance, q represents

parameters, and k0 is the order number of a category.

The PPN uses the cross-entropy function as the loss function

during training, and its expression is as Equation 11:

L(q) = −ox̂ y log (pq(ŷ x̂ ))j (11)

where y is the true label of a sample and ŷ represents a

prediction label.
FIGURE 4

Overall identification framework of the IMNM; ‘(a) Brown spot’ represents the disease name of the leaf in the first picture; ‘(c) Healthy’ means that the
leaf in the third picture is disease-free; ‘(e) Virus’ represents the disease name of the leaf in the fifth picture; The symbol * represents multiplication in
mathematical.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1558349
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Cai et al. 10.3389/fpls.2025.1558349
3.3.3 Details description and implementation
code of the PPN
3.3.3.1 Details description of the PPN

Now assuming that the PPN in this study takes a feature map

with dimension [B,256,32,32] as input, the details of DCN mainly

include: first, PPN uses a 2×2 convolution kernel (256 channels,

step 1, fill 1) to enhance the input features locally, and the output

dimension remains [B,256,32,32]; then the feature distribution is

normalized by batch normalization layer, and nonlinear response is

introduced via ReLU activation function. The maximum pooling

layer (2×2 kernel, step size 2) compresses the spatial resolution of

the feature map from 32×32 to 16×16 (dimensions [B,256,16,16]) to

focus on significant areas and reduce computational complexity.

The GAP further aggregates spatial features into a 256-dimensional

global vector ([B,256]), capturing the overall semantic information

of the image. The fully connected layer linearly maps the vector to a

5-dimensional space, directly corresponding to five classes of

objects: Brown spot, Leaf bright, Healthy, Phyllosticta, and Virus.

In the training phase, the network dynamically maintains five 256-

dimensional prototype vectors (the initial value is zero vector),

extracts the feature mean of the current same sample from each

batch as a temporary prototype, and iteratively optimizes the

prototype parameters through a momentum update mechanism,

wherein the stability of the update process is guaranteed by setting

momentum coefficients. In the inference stage, the Euclidean

distance matrix between input eigenvectors and prototypes is

calculated, and the Softmax function normalizes the 5-

dimensional probability distribution according to the class

similarity score.

3.3.3.2 Implementation code of the PPN

For a link to the implementation code for the PPN, please refer

to the “Data availability statement” section of this paper.

3.3.4 Analysis of contributions of introducing the
PPN

After introducing the PPN, it strengthens classification

decisions through prototype comparison and improves the

generalization capabilities of the model. The specific workflow

of the PPN involves a two-stage prototype learning strategy: the

first stage constructs a discriminative feature space between
Frontiers in Plant Science 07
classes, while the second stage dynamically optimizes the

classification boundaries. The progressive optimization

mechanism of the PPN helps mitigate the class imbalance

problem and prevents the model from overfitting to high-

frequency disease classes.
3.4 Details description and implementation
code of the IMNM

3.4.1 Details description of the IMNM
The IMNM consists mainly of the improved ResNet, the DCN,

and the PPN. Figure 4 depicts the overall identification

framework intuitively.

As shown in Figure 4, the IMNM sequentially performs feature

extraction, multiscale fusion, and classification. The improved

ResNet processes 256×256 RGB inputs through three residual

blocks: a 5×5 initial convolution (64 channels, stride 2) followed

by cascaded blocks (128→256 channels) with skip connections,

outputting 256-channel 32×32 features. The DCN applies a 5×5

convolution (64 channels) and attention-guided fusion of three 3×3

kernels to generate 256-channel 16×16 features via dynamic

convolution and pooling. The PPN enhances these features via

2×2 convolution, max-pooling to 16×16, and pooling to 256D

vectors. Prototype vectors are momentum-optimized during

training, generating 5D probabilities via Softmax. The model

achieves end-to-end processing from 256×256 inputs to disease-

specific probability distributions.
3.4.2 Implementation code of the IMNM training
For a link to the implementation code of the IMNM training,

please refer to the “Data availability statement” section of this paper.
3.5 Analysis of the combination advantage
of the IMNM subnets

The IMNM realizes the integration of multi-scale features,

enhancement of dynamic adaptability, and optimization of

computational efficiency. The specific analysis is as follows:
FIGURE 5

Five samples; ‘(a) Brown spot’ represents the disease name of the leaf in the first picture; ‘(b) Leaf blight’ represents the disease name of the leaf in
the second picture; ‘(c) Healthy’ means that the leaf in the third picture is disease-free; ‘(d) Phyllosticta’ represents the disease name of the leaf in
the fourth picture; ‘(e) Virus’ represents the disease name of the leaf in the fifth picture.
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3.5.1 Integration of multi-scale features
First, the improved ResNet extracts global semantic features

of lesions through a deep network and establishes high-level

abstract representations. Second, the DCN embeds dynamic

convolution in the shallow and middle feature layers of the

ResNet, adaptively adjusts the receptive field according to the

size and texture complexity of local lesions, and accurately

captures the details and morphological variations of small

lesions. Finally, the PPN performs prototype projection on

multi-scale features at the end, fusing local details (the DCN

output) and global semantics (the ResNet output) into

hierarchical feature pyramids by contrast loss constraint feature

space geometry. The three cooperate to form the integration of

multi-scale features of the IMNM and finally realize efficient

mapping from pixel-level texture to disease category.

3.5.2 Dynamic adaptive enhancement
First, the improved ResNet filters out key lesion features

through residual structure, providing high discriminative input

for subsequent processing. Second, the DCN dynamically

generates convolution kernels based on geometric characteristics

of lesions to accurately capture local deformation features. Finally,

the PPN constrains feature spatial distribution through prototype

comparison learning to ensure the statistical separability of different

diseases. The closed-loop optimization mechanism makes the

IMNM not only maintain local sensitivity but also maintain

cross-domain classification stability through global constraints,

thus enhancing the dynamic adaptability of the IMNM.
3.5.3 Increase in computational efficiency
First, the improved ResNet multiplexes cross-layer features

through residual hopping connections to reduce redundant

computation in deep networks. Second, the DCN dynamically

generates sparse convolution kernels based on local characteristics

of input lesions, activating complex operations only in lesion

regions to avoid global computational resource waste. Finally, the

PPN compresses feature space dimensions by using prototype

contrast learning, significantly reducing computational complexity

in classification layers. The improved ResNet, DCN, and PPN

coordination mechanism effectively improves computational

efficiency while ensuring accuracy.
4 Experimental results and analysis

4.1 Experimental environment

The network model proposed in this paper employs the

PyTorch 2.3.1 deep learning framework with CUDA 11 and

cuDNN 8.9 acceleration libraries for GPU-accelerated training. It

is implemented in Python 3.9 using PyCharm 2024.2.3. The

computational infrastructure includes a 14-core Intel Ultra 5

CPU@3.00 GHz and an NVIDIA GeForce RTX 4060 GPU for

parallel processing.
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4.2 Details description of the dataset

4.2.1 Collection object
The collected object images are collected from pepper fields in

different planting areas of pepper planting base in Henan Province,

China, covering leaves in different growth cycles, from seedling

stage to mature stage, and the collection time span reaches one

growth season, which ensures the diversity of samples in growth

stage, environmental factors and other aspects, making the dataset

more representative.

4.2.2 Collection equipment and environment
A mobile phone camera (Honor Play 4, China) was used to

shoot in the standardized laboratory. This camera has high

resolution and excellent color reproduction ability, which can

accurately capture leaf details.

4.2.3 Collection techniques
Collect images of five types of pepper leaves (healthy, virus, leaf

blight, brown spot, and leaf spot disease) taken frommultiple angles

under different lighting conditions, such as strong light, normal

light and low light to simulate light changes in actual application

scenarios and increase the authenticity and complexity of data.

4.2.4 Image enhancement means
Due to the actual frequency of various diseases in the field, the

sample size of some disease categories is still relatively small, so this

study has to adopt image enhancement means such as generative

adversarial networks in addition to actual image acquisition, to

obtain a more balanced distribution of data resources.

4.2.5 Image preprocessing
The original image is uniformly cropped to 256×256 resolution,

which ensures that the details of leaf disease characteristics are

preserved and reduces the consumption of computational resources.

4.2.6 Data annotation
The professional guidance of plant pathology experts from

authoritative scientific research institutions in the field of plant

protection in Henan Province shall be provided throughout the data

labeling work to ensure the high consistency, professionalism, and

reliability of data labeling.
4.2.7 Data samples
Data samples include one leaf sample for each of the five

categories of Brown spot, Leaf bright, Healthy, Phyllosticta, and

Virus, as shown in Figure 5.
4.2.8 Datasets size and partitioning strategy
Through original acquisition and image enhancement, this study

finally obtained a total of 11447 images. This study randomly divided

the 11,447 samples into a training set, a validation set, and a test set in

a 3:1:1 ratio. Table 1 displays the results.
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(9) Open access links to datasets

Open access links to datasets, please refer to the “Data

availability statement” section of this paper, are available for free

download and use by researchers.
4.3 IMNM performance analysis based on
the accuracy and loss curve

4.3.1 Hyperparameter configuration information
(including training time)

To verify the performance of the IMNM, the hyperparameter

configuration information, including training time, utilized in this

study, is shown in Table 2.

According to the data in Table 2, the reasons for selecting the

setting “Batch size=32, Learning rate=0.001, Epoch=425” as the

experimental setting are as follows:

4.3.1.1 Test loss

The test loss at the setting “Epoch=425 (0.1524)” is lower than

the test loss at the setting “Epoch=350 (0.1879)”, although slightly

higher than the test loss at the setting “Epoch=525 (0.1637)”, but the

difference is not significant. This indicates that the model has

converged well at 425 epochs, and further increasing the training

period may contribute only marginally to the loss reduction.

4.3.1.2 Test accuracy

At the setting “Epoch=425”, the test accuracy is 0.9855, which is

the highest of the three. This shows that in this training cycle, the

model has the strongest generalization capabilities and is better

equipped to predict unseen data.
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4.3.1.3 Time cost

In terms of time cost, the setting “Epoch=425” takes 49.8 hours

for training, which is longer than the setting “Epoch=350 (41.3

hours), but considering its higher accuracy and lower test loss, the

extra time investment is worth it. At the same time, compared with

the setting “Epoch=525”, it saves approximately 26 hours of

training time, and the performance improvement is not significant.

Considering the test loss, test accuracy, and time cost, the settings

“Batch size=32, Learning rate=0.001, Epoch=425” not only ensure the

performance of the model but also consider the training efficiency.

This setting achieved the highest test accuracy and was reasonable in

terms of time cost, so it was selected as an experimental setting.
4.3.2 The accuracy and loss curve
Through the training set and the validation set, this study

trained the IMNM. Figure 6 displays the variations in the

accuracy and loss (Acc-loss) curve values.

The results of Figure 6 show that as the iteration increases, the

training loss and the validation loss decrease, while the training

accuracy and the validation accuracy keep rising until saturation. As

a result of these behaviors, the vanishing gradient and over-fitting

do not occur during the training and validation processes.
4.4 Verification and analysis of the
interpretability of the IMNM effectiveness

4.4.1 Verification and analysis of interpretability
based on convolution thermograms

The IMNM correctly identifies key regions in the original

image, in particular the diseased area on the diseased leaves, after
FIGURE 6

The Acc-loss curves for training and validation.
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comparing it with the heat map. This study displayed the heat maps

of the test samples to verify the capacity to extract features of the

IMNM. Figure 7 displays the visual outcomes of the

running IMNM.

The visual analysis shown in Figure 7 verifies the ability of the

IMNM model to accurately extract disease features. In the thermal

map, the significant areas extracted by the IMNM completely

covered the key features such as lesion edge, irregular shape, and

vein abnormality. These areas clearly distinguished the lesion area

from the background. Multi-stage convolutional activation patterns

for different disease categories visually represent the feature

learning process. For example, early convolutional layers focus on

texture details, and deep networks integrate global semantics. This

hierarchical feature activation mechanism not only verifies the

effective capture of key disease features by the model but also

reveals the biological basis of classification decisions through visual

means, providing empirical support for the effective interpretability

of the model.
4.4.2 Analysis of interpretability based on
inherent feature extraction ability of the IMNM
subnetworks
4.4.2.1 Improved ResNet

Feature maps of different layers of the improved ResNet,

showing the extraction of the network from low-level textures to

high-level semantics. In this study, the shallow network captures the

vein texture, and the deep network identifies the shape and

distribution pattern of the lesion, which reveals the hierarchical
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feature learning mechanism of the model. This just reflects the

model to extract features of effective interpretability.

4.4.2.2 DCN

The convolution kernel generated by the DCN adapts, and the

convolution kernel shape changes triggered by different disease images.

In the brown spot image, the dynamic convolution kernel may focus

on the sharp spots, while in the leaf spot image, the convolution kernel

may focus on the diffuse texture. This proves that the model can

dynamically adjust the feature extraction strategy according to different

disease features and enhance the technical reliability. This just reflects

the model to extract features of effective interpretability.

4.4.2.3 PPN

The PPN decodes the prototype vector of each disease category

into representative image blocks, which show the similarity between

the prototype and the input features. In this study, the prototype of

brown spot disease may correspond to typical round brown spots,

and the model completes classification by matching the input image

with the prototype. The classification logic is explained by the

“typical lesion template,” which is consistent with human cognitive

habits. This proves the interpretability of the features extracted

from the model.

4.4.3 Analysis of the interpretability of
generalization capabilities

The distribution of pepper, apple, wheat, and rice disease images in

prototype space was compared to analyze how the model represented
TABLE 2 Hyperparameter configuration information (including training time).

Methods Batch size Learning rate Epoch Test loss Test accuracy
Time

cost (hours)

IMNN

16 0.001 50 0.3921 0.9087 8.2

32 0.002 150 0.3156 0.9324 19.8

64 0.002 250 0.2532 0.9521 31.5

32 0.001 350 0.1879 0.9724 41.3

32 0.001 425 0.1524 0.9855 49.8

64 0.002 525 0.1637 0.9819 75.8

The experimental setting 32 0.001 425 — — —
TABLE 1 The quantity of each category.

Types Training set Validation set Test set Total number

Virus 1502 503 503 2508

Healthy 1239 416 416 2071

Leaf blight 1322 445 445 2212

Brown spot 1437 483 483 2403

Phyllosticta 1347 453 453 2253

Total number 6847 2300 2300 11447
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the disease spot characteristics of different crops uniformly. Brown spot

disease may share similar prototypical matching patterns in pepper and

rice leaves in the study. This can explain the underlying logic of the

generalization ability of the model and enhance the credibility of multi-

scenario applicability. This shows that the model has good

generalization ability.
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4.5 Formulas for the primary performance
indicators of the IMNM

The specificity, precision, sensitivity, and accuracy were used to

evaluate the IMNM. The evaluation metrics can be computed

according to Equation 12-15.
FIGURE 7

Heat maps of different layers with the IMNM; ‘Brown spot’ on the first picture in the first row represents the disease name of this leaf; ‘Leaf blight’ on
the first picture in the second row represents the disease name of this leaf; ‘Healthy’ on the first picture in the third row means that the leaf is
disease-free; ‘Phyllosticta’ on the first picture in the fourth row represents the disease name of this leaf; ‘Virus’ on the first picture in the fifth row
represents the disease name of this leaf.
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Specificity =
TN

TN + FP
(12)

Precision =
TP

TP + FP
(13)

Sensitivity =
TP

TP + FN
(14)

Accuracy =
TP + TN

TP + TN + FP + FN
(15)

where TP and TN denote true positives (TP) and true negatives

(TN). False positives (FP) and false negatives (FN) are abbreviated

as FP and FN, respectively.
4.6 IMNM performance analysis based on
the ablation experiments

4.6.1 Result of the ablation experiments
Because the IMNM made use of the improved ResNet, DCN,

and PPN strategies, to validate the effectiveness of the improved

strategies, this study conducted ablation experiments on its own

dataset of this study in Figure 8.

The strategy based on model fusion provides several benefits

over the single model and compensates for some of its drawbacks.

In terms of accuracy, the IMNM outperforms the single PPN by

24.92%. In comparison to the single-network model structure, the

IMNM is more stable and robust, and the IMNM successfully

increases the categorization accuracy of samples of pepper sickness.
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4.6.2 Analysis of the result of the ablation
experiments
4.6.2.1 DCN

Using the DCN alone makes it easy to pay too much attention

to local details due to a lack of deep semantic guidance, which will

lead to limited classification performance due to a lack of semantic

features, insufficient identification ability for complex diseases, and

misjudgment of overall disease patterns by the DCN.
4.6.2.2 PPN

Prototype learning is less sensitive to local texture details, and the

PPN alone has insufficient ability to extract basic features, and the

quality of feature extraction is easily disturbed by noise, which makes it

difficult for the PPN to distinguish diseases with highly similar textures.
4.6.2.3 Improved ResNet

As a basic model, its residual structure and multi-scale feature

extraction ability provide a solid semantic feature basis for disease

identification. However, due to the lack of adaptability of dynamic

convolution to non-rigid deformation and the ability of prototype

learning to capture fine-grained differences, its performance is limited

in complex deformation lesions or fine classification, and classification

decision boundaries are susceptible to background noise interference.

4.6.2.4 Improved ResNet + PPN

In the deep network of the improved ResNet + PPN, the PPN

prototype learning can maximize the separability of the leaf image

feature space to enhance the classification discriminability of the

model, so the enhanced model can exhibit stronger migration
FIGURE 8

Results of ablation experiments on its own dataset of this study.
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ability in cross-dataset testing, but the combination of the improved

ResNet + PPN is weak in capturing dynamic deformation features,

and the DCN can improve this defect.

4.6.2.5 Improved ResNet + DCN + PPN

In the deep network of the improved ResNet + DCN + PPN, the

DCN and PPN act on the ResNet backbone network from the feature

generation dimension and feature constraint dimension, respectively,

forming the closed-loop optimized link. Themulti-scale perception of

the DCN provides a richer basis for prototype construction for the

PPN, while the discriminative constraints of the PPN, in turn, direct

the DCN to focus on local regions with more classification value.

Such multi-modal fusion and dynamic adaptability synergize to

significantly improve the ability to identify complex diseases.
4.7 Comprehensive performance analysis
of the IMNM

4.7.1 Confusion matrix
To present the predictive effect of the different models for each

disease category, the study used a confusion matrix to create the
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classification results in Figure 9. Where the rows reflect a true

category, the columns correspond to a unique prediction, and the

secondary diagonal is the total number of correctly classified items.
4.7.2 Comparison of the comprehensive
performance of the above models

According to Figure 9, the study calculated that the overall

identification accuracy of Inception-V4, ShuffleNet-V3, Efficient-

B7, and IMNM was 84.95%, 90.16%, 93.16%, and 98.55%,

respectively. As shown in Table 3, the IMNM exhibits a

significant advantage in the overall performance of the model.

Firstly, in terms of the balance between accuracy and efficiency, its

accuracy is 5.39% higher than EfficientNet-B7, while the number

of parameters is reduced by 61.9%, and the inference speed is

increased by 4.8 times, realizing the organic unity of high accuracy

and low calculation cost. Secondly, at the level of lightweight

design, the FLOPs of the IMNM are only 57.6% of those of

Inception-V4, and memory consumption is reduced by 40.4%,

which significantly improves the deployment adaptability of the

model on edge devices. These advantages reflect the advanced

nature of the IMNM in model design and lay a solid foundation
FIGURE 9

The classification results of the confusion matrices on the four models.
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for its efficient application in actual agricultural disease

identification scenarios.
4.7.3 Analysis and discussion of the reasons for
the performance differences of each model
4.7.3.1 Efficiency bottleneck under the complex structure
of Inception-V4

As shown in Table 3, Inception-V4 enhances feature extraction

capability through multi-branch parallel convolution, but its

complex architecture results in a significant increase in

computational complexity (FLOPs 12.5G) and inference latency

of up to 45.2ms. The static weight fusion strategy could not adapt to

the texture characteristics of different diseases, and the final

identification accuracy was only 84.95%. In addition, multi-

branch output needs to store a large number of intermediate

feature maps, and GPU memory occupies 5.2GB, which seriously

limits its deployment feasibility in the mobile device field. Although
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its branching design supports multiscale analysis in theory,

redundant computation and high memory requirements are the

main bottlenecks in practical applications.

4.7.3.2 ShuffleNet-V3 lightweight precision compromise

As shown in Table 3, ShuffleNet-V3 uses channel shuffling and

deep separable convolution to achieve fast inference of 18.7ms with

extremely low computational cost (FLOPs 0.8G), but its shallow

network is difficult to extract high-level semantic features, resulting

in insufficient discrimination ability for subtle lesions, with an accuracy

rate of only 90.16%. Although the parameters are as low as 5.8M, the

receptive field of a single convolution kernel limits the ability to capture

multi-scale features and cannot balance the local details and global

morphological differences of leaf diseases. Although this lightweight

design is suitable for simple tasks on the mobile side, it is difficult to

meet the high-precision identification requirements of complex

diseases in agricultural scenarios.
TABLE 3 Comprehensive performance comparison.

Index Inception-V4 ShuffleNet-V3 EfficientNet-B7 IMNM

Identification accuracy (%) 84.95 90.16 93.16 98.55

Parameter quantity (M) 42.30 5.80 66.40 25.30

FLOPs (G) 12.50 0.80 37.10 7.20

Inference time (ms) 45.20 18.70 92.50 19.30

GPU memory occupancy (GB) 5.20 1.50 8.70 3.10
FIGURE 10

Comparisons of different databases using the IMNM.
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4.7.3.3 EfficientNet-B7 with high precision at a high cost

As shown in Table 3, EfficientNet-B7 optimizes depth, width

and resolution uniformly through a compound scaling strategy,

with a high accuracy rate (93.16%), but its deep network and large

parameter volume (66.4M) cause a surge in computational load

(FLOPs 37.1G), and inference speed as low as 92.5ms. More

seriously, its sensitivity to small sample categories causes

overfitting and limited generalization performance. In addition,

the 8.7GB GPU memory footprint far exceeds the hardware ceiling

of common edge devices, and the actual deployment cost is high,

making it difficult to apply on a large scale in agricultural scenarios.
4.7.3.4 Comprehensive breakthrough of the IMNM
dynamic collaborative optimization

As shown in Table 3, the IMNM achieves triple improvement in

accuracy, efficiency, and generalization through collaborative design

of the improved ResNet, DCN, and PPN. The DCN uses an

attention mechanism to dynamically fuse multi-scale convolution

kernels to accurately capture the characteristic differences between

virus spots and leaf blight diffusion lesions. FLOPs are only 7.2 G,

and the inference speed is 19.3 ms, which is close to the lightweight

level of ShuffleNet-V3. The PPN optimizes training efficiency

through prototype momentum updates and supports cross-crop
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generalization (as shown in Figure 10, average identification

accuracy 99.81%). The IMNM (parameter size 25.3M) and

memory optimization strategy (GPU memory consumption

3.1GB) make it compatible with full-platform deployment from

server to edge equipment, providing cost-effective solutions for

agricultural disease identification.
4.8 IMNM performance analysis based on
violin graph

This study used the IMNM to predict five different sets of

randomly selected samples from the test set. The test results are

presented in Figure 11a, where the left is the predicted class, and the

right is the identification probability of the predicted class. In

addition to observing the overall distribution of correctly

identified probability values, this study used the violin chart to

describe these identification probabilities in Figure 11b.

The results from Figure 11a indicate that the IMNM has an

identification probability of over 70% for pepper leaf diseases. The

results from Figure 11b indicate that the distribution of brown spot

identification probability values performs best, as its median is the

highest and its densest areas are the highest. In conclusion, the
FIGURE 11

(a) The random test results; (b) The correct probability distribution violin chart.
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IMNM has high identification probabilities for the identification of

pepper leaf diseases.
4.9 Verification of the generalization
capabilities of the IMNM

To verify the generalization ability of the IMNM on other

datasets, this study estimates its generalization ability from four

aspects: Specificity, Precision, Sensitivity, and Accuracy.

4.9.1 Details of other datasets
Three other datasets, Plant Pathology, LWDCD2020, and Plant

Diseases Image, will be introduced below, detailing their leaf names,

total number of samples, number of sample categories, number of

samples in each category, data enhancement methods, image

resolution, shooting equipment, shooting environment, and

acquisition links. Their detailed information is shown in Table 4.

4.9.2 Generalization ability performance of the
IMNM

As shown in Figure 10, the IMNM performed well on the other

three datasets: Plant Pathology, LWDCD2020, and Plant Diseases

Image. The results of the IMNM in the four evaluation indicators of

Specificity, Precision, Sensitivity, and Accuracy were all greater than

98%, and the average identification accuracy reached 99.81%. These

results show that the IMNM has good generalization ability.

4.9.3 Analysis and discussion of the reasons for the
excellent generalization performance of the IMNM
4.9.3.1 The cross-domain feature coding mechanism of
the improved ResNet

The improved ResNet constructs a hierarchical feature

expression system through cross-layer residual connection and

channel progressive expansion strategy, which effectively alleviates

the gradient attenuation problem of deep networks and enables it to

extract high-order semantic features with cross-crop invariance.

The experimental data show that the Specificity of the IMNM is

0.9881, 0.9891, 0.9921 and 0.9932, respectively on Plant Pathology,

LWDC 2020, Plant Diseases Image and Own datasets, and the range

between them is only 0.0051, which indicates that the IMNM with

the improved ResNet has strong generalization ability for extracting

different plant disease features. In addition, the average

identification accuracy of the IMNM on the four datasets reached

99.81%, indicating that the IMNM can achieve high-accuracy

identification robustness under different crop disease scenarios,

laying a solid feature foundation for cross-crop generalization.

4.9.3.2 Multi-scale adaptive characteristics of the DCN

The DCN adaptively allocates the weights of multi-scale

convolution kernels through an attention-driven multi-kernel

fusion mechanism, and accurately matches different scale lesion

features such as dense spots, diffuse lesions, and long-range

morphology, which enables the IMNM with the DCN to

dynamically adapt to feature extraction requirements in different

scenes. As shown in Table 3, the computational load FLOPs of the
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IMNM with the DCN is 7.2G, which is only 19.4% of EfficientNet-

B7. With such a low computational load, the IMNM has a

Sensitivity mean of 0.9902, Sensitivity variance of only 1.55×10-5,

Precision mean of 0.9993, Precision variance of only 4.08×10–6

across the dataset, as shown in Figure 10. This indicates that the

IMNM has excellent Sensitivity and Precision performance across

four datasets and is stable across datasets. In conclusion, the DCN

provides the IMNM with a dynamic balance between

computational efficiency and feature representation.

4.9.3.3 Dynamic semantic alignment mechanism of the
PPN

The PPN adopts a momentum prototype updating strategy to

dynamically optimize semantic consistency across the crop feature

space. By balancing historical prototype stability with freshness of

current batch characteristics, the PPN maps significantly different

disease patterns, such as rice blast and pepper brown spot, to a

unified disease spread metric space. As shown in Figure 10, the

IMNM with the fused PPN has an accuracy range of only 0.0016

across datasets, a specificity range of only 0.0051, and a sensitivity

range of only 0.0035. This indicates that the Accuracy, Specificity,

and Sensitivity performance of the IMNM on the four datasets does

not fluctuate significantly. Therefore, this mechanism of the PPN

systematically guarantees the generalization reliability of the IMNM

in complex agricultural scenarios and provides a theoretical

guarantee for real-time identification of multiple crop diseases.
4.10 Performance comparison based on
recent published literature methods and
the IMNM

To further confirm the performance of IMNM, this study

collected recent published literature methods for comparative

analysis. Table 5 provides details of the comparative analysis.

According to Table 5, the IMNM has an accuracy rate that is

0.57% lower than the state-of-the-art method by Naik et al. (2022).

Furthermore, the identification accuracy of the IMNM increased by

4.41% when compared to the method by Gopinath et al. (2022). In

conclusion, the recent literature indicates that the IMNM has high

effectiveness in identifying pepper leaf diseases.
5 Conclusions and outlooks

5.1 Conclusion

In this study, five different types of pepper leaves were utilized as

samples to train, validate, and test the accuracy of the IMNM

classification. To extract the fundamental features of pepper leaf

disease, first, the pepper leaf disease image is sent to the improved

ResNet; second, the features of important regions are extracted by the

DCN, and the appropriate convolution kernel is adaptively selected;

finally, the feature distribution and training efficiency are optimized

through the PPN. Experimental results indicate that the IMNMmodel
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achieves an identification accuracy of 98.55%, with specificity,

precision, and sensitivity surpassing those of Inception-V4,

ShuffleNet-V3, and Efficient-B7. Furthermore, the model

demonstrated strong generalization capabilities, achieving an

average identification accuracy of 99.81% in identifying leaf diseases

in apple, wheat, and rice, thereby confirming the effectiveness of multi-

scale feature fusion and dynamic adaptive design. In short, the IMNM

has good performance in balance of the lightweight and the high

identification accuracy, simultaneous improvement of the dynamic

feature extraction capability and the computational efficiency, trade-

offs between the GPU memory occupancy and the edge deployment

adaptability, simultaneous improvement of the cross-crop

generalization ability and the high identification accuracy, and

collaborative optimization of identification accuracy and multi-

network fusion quality. The main innovation points of the IMNM

are summarized based on Table 3, Table 5, and relevant contents

mentioned above, as shown in Table 6.
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5.2 Outlooks

Building on current research, future work targets three key

areas: model reliability, interpretability, and engineering

implementation challenges. The details are as follows.

5.2.1 Study on reliability and module cooperation
of multi-source heterogeneous data enhanced
model

Expanding the sample size, improving the balance of data

distribution, enhancing the database of multi-source heterogeneous

diseases, and improving the quality of data labeling to ensure the

reliability of the model. This will involve integrating data from 3D

imaging (Zhou et al., 2024), multi-spectral analysis (He et al., 2025),

multi-spectral imaging (He et al., 2025), real-time wireless sensing

(Wang et al., 2023), microorganisms (Han et al., 2024), modern

sequencing and genomics (Wang M. et al., 2024), and so on. The
TABLE 5 Comparison of the IMNM with recent published literature methods.

Ref., year Methods Dataset size The number of classes Identification accuracy

Gopinath et al., 2022 CRNN 1496 2 94.14%

Naik et al., 2022 SE-CNN 4590 5 99.12%

Dai et al., 2023 Lightweight CNN 9183 6 97.87%

Begum and Syed, 2024 GSAtt-CMNetV3 1855 2 97.87%

Proposed, 2024 IMNM 11447 5 98.55%
TABLE 4 Detailed statistics for other datasets.

Index Plant Pathology LWDCD2020* Plant Diseases Image

Leaf name Plant Pathology (Apple leaf) LWDCD2020 (Wheat leaf) Plant Diseases Image (Rice leaf)

Total sample size 3651 4990 5932

Number of
sample categories

4 4 4

Size of samples
per category

Apple scab:1200,
Cedar apple rust:1399,
Complex disease:187,
Healthy:2008

Leaf rust:1620,
Fusarium head blight: 1057,
Crown and root rot: 1033,
Healthy:1280

Bacterial blight:1584,
Blast:1440,
Brown spot:1600,
Tungro:1308

Data enhancement
means

Random lighting, upside-down flip, left-right
flip, random rotation, and Gaussian blur, etc.

Rotation, scaling, width-to-height translation,
clipping, horizontal flip, filling, etc.

Rotate left and right, flip vertically and
horizontally, etc.

Image resolution 2048×1365 224x224 300x300

Photographing
apparatus

Canon Rebel T5i DSLR and smartphone Digital camera, but its model is unknown Nikon DSLR-D5600 Camera

Shooting environment
Under various lighting, angles, surfaces, and
noise conditions

Field collection
Different rice fields in Sambalpur and
Bargarh districts of Odisha, India

Getting links
Please refer to the “Data availability
statement” section of this paper

Please refer to the “Data availability
statement” section of this paper

Please refer to the “Data availability
statement” section of this paper
*For the LWDCD2020 datasets above, officially, there are 10 categories, whose total sample size is 12160, but only 4 categories above are publicly available, whose total sample size is 4990. So
these 4 open categories above were used in this study.
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goal is to increase sensitivity to early, novel, and rare diseases while

verifying the module synergy mechanism through statistical tests,

standard deviation analysis, and ablation experiments.
5.2.2 Study on model interpretability
enhancement and decision tool development for
multimodal data fusion

Advancing research on multi-modal interpretability by

combining 3D point cloud data (Zhou et al., 2024), thermal

diagram visualization, and causal reasoning technology. This will

lead to the development of user-friendly interactive decision-

making tools for farmers, thereby improving model logic

transparency and biological relevance.
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5.2.3 Realistic challenges, technical limitations,
ethical considerations, moving photoing
adaptability, and future application deployment
plans in model implementation
5.2.3.1 Realistic challenges include equipment adaptation
and ease of operation

Uneven coverage of rural networks affects model invocation,

while the limited computing power of low-cost equipment leads to

low efficiency of traditional models. Additionally, some farmers lack

the necessary skills for operation and require a lower threshold.

Future research plans: lightweight model to achieve rapid reasoning

of low-computing devices; development of offline mode to support

network disconnection identification; minimal interface integration

of dialect guidance and training to improve proficiency.
TABLE 6 Summary of main innovation points of the IMNM.

Main innovation points of
the IMNM

Performance
indicators of the

comparative models/
literature models

Performance indicators of
the IMNM

The comparison of
performance indicators

Balance of the lightweight and the high
identification accuracy

The parameter quantity of EfficientNet-
B7 is 66.4M, its identification accuracy
is 93.16%, and its inference time
is 92.50ms.

Its parameter quantity is 25.30 M.
Its identification accuracy is 98.55%.
Its inference time is 19.30ms.

Compared with EfficientNet-B7, the
IMNM reduces the parameter quantity
by 61.90%, but improves the
identification accuracy by 5.39%. The
inference speed is 4.79 times faster than
EfficientNet-B7.

Simultaneous improvement of the
dynamic feature extraction capability
and the computational efficiency

The FLOPs of the Inception-V4 are
12.50G, and its inference time is
45.20ms.
The FLOPs of the EfficientNet-B7 are
37.10G, and its inference time
is 92.50ms.

Its FLOPs are 7.20G.
Its inference time is 19.30ms.

With the help of the IMNM with the
integrated DCN design, the IMNM can
reduce FLOPs by 42.40% and increase
inference speed by 2.34 times
compared with Inception-V4, and
reduce FLOPs by 80.60% and increase
the inference speed by 4.79 times
compared with Efficient Net-B7.

Trade-offs between the GPU memory
occupancy and the edge
deployment adaptability

The GPU memory occupancy of the
EfficientNet-B7 is 8.70GB, and its
identification accuracy is 93.16%.

Its GPU memory occupancy is 3.10
GB.
Its identification accuracy is 98.55%.

Compared with EfficientNet-B7, the
IMNM has an identification accuracy
increase of 5.39%, but the GPU
memory occupancy is reduced by
64.37%. The IMNM can better adapt to
edge devices such as Jetson Nano
(4GB memory).

Simultaneous improvement of the cross-
crop generalization ability and the high
identification accuracy

The SE-CNN of Naik et al. (2022)
supports 5 classes with an identification
accuracy of 99.12%.
The GSAtt-CMNetV3 of Begum and
Syed (2024) supports Class 2 with an
identification accuracy of 97.87%.

Supporting 5 kinds of pepper leaves, its
identification accuracy is 98.55%.
It can identify other crops, such as
apple, rice, and wheat leaves, and its
average identification accuracy
is 99.81%.

The IMNM supports more categories
(5 categories).
The generalization ability of the IMNM
across crops was significantly enhanced
by introducing the PPN momentum
update prototype.
The identification accuracy of the
IMNM is only 0.58% lower than Naik’s
SE-CNN, but 0.70% higher than
Begum’s GSAtt-CMNetV3.

Collaborative optimization of
identification accuracy and multi-
network fusion quality

The identification accuracy of the
ShuffleNet-V3 is 90.16%, and its
inference time is 18.70ms

Its identification accuracy is 98.55%.
Its inference time is 19.30ms
It fuses the improved ResNet, DCN,
and PPN.

When the inference time difference
between the IMNM and the
ShuffleNet-V3 is small, the
identification accuracy of the IMNM is
8.39% higher than that of the
ShuffleNet-V3. In addition, the ablation
experiments in Section 4.6 show that
the identification accuracy of the
IMNM with the multi-network fusion
is 24.92% higher than that of a
single PPN.
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5.2.3.2 The technical limitation is the problem of data
coverage and equipment adaptation

the current model can only identify 5 pepper leaf types, the

expansion ability is limited, and the network structure needs to

adapt to new categories; the disease coverage of the dataset is

insufficient, and the field environmental variables affect the

identification stability; the traditional model has high power

consumption and large cross-equipment adaptation cost. Future

research plans: optimization by factor graph (Xiao et al., 2024),

multimodal data fusion (Cai et al., 2025) and dynamic threshold

adjustment to implement multi-scenario data enhancement,

expand data and improve robustness; dynamic calculation to

optimize matching equipment calculation; establishment of

compatibility test system customization optimization to reduce

deployment difficulty.
5.2.3.3 Ethical considerations are data security and
compliance risk issues

data security and compliance risk. Identification results contain

sensitive production data with a risk of leakage/abuse; training data

management needs to avoid disputes. Future research plans: end-

to-end encryption, local processing does not transmit the original

image, only returns the identification suggestion; establishes the

data ledger to clarify the purpose; the technical certificate

guarantees source traceability and processing transparency.
5.2.3.4 Moving photoing adaptability

The 98.55% identification accuracy of this study was obtained

when the camera was stationary. To test the inference effect of the

IMNM in the case of moving the mobile phone camera to photo,

this study conducted the test in the laboratory. The following are the

test processes:
Fron
① Use the electric slide to control the Honor Play 4 mobile

phone camera to take photos of pepper leaves at moving

speeds of 0.1m/s, 0.3m/s, and 0.5m/s, respectively.

② Inputting the photos into the IMNM program for inference,

the identification accuracy of the IMNM at three speeds is

98.53%, 98.42%, and 98.23%, respectively, which is only

0.02%, 0.13%, and 0.32% lower than that of 98.55% of static

reference, respectively.

③ Concluding from the test, the IMNM is robust to motion

disturbances when moving photoing inference is performed

at the above moving speeds, and more tests will be carried

out in the future to illustrate the issue of the moving

photoing adaptability of the IMNM.
5.2.3.5 Future application deployment plans
5.2.3.5.1 Rapid deployment stage

The government deploys the IMNM application-based Cloud

Server in areas with perfect network infrastructure and develops an

IMNM-based mobile phone APP. Farmers obtain identification results

through personal smartphones in the field with the help of this APP.
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5.2.3.5.2 Transitional implementation stage

In areas with poor network stability or low smartphone

penetration, the government configures agricultural stores with

mobile devices pre-installed with the offline-optimized IMNM

applications, with which farmers can obtain identification results.

5.2.3.5.3 Local deployment stage

The government introduced edge computing devices embedded

with the optimized IMNM applications in villages without network

services but with a stable power supply, allowing farmers to quickly

obtain identification results.

5.2.3.5.4 High-performance service stage

The government provides high-performance mobile devices

integrated with the optimized IMNM applications to large-scale

growers with high identification accuracy requirements, which

farmers can use to quickly obtain identification results in real

time in the field.

5.2.3.5.5 All regional intelligent services stage

The government will build cloud and edge collaborative

identification service networks based on the IMNM in mixed

agricultural areas with significant technical differences, and provide

dedicated, ubiquitous, ultra-high-performance handheld identification

terminals for farmers who do not have mobile phones. Regardless of

whether farmers have mobile phones or their mobile phones and

network status, the system or the above terminals will provide farmers

with ultra-high-quality identification services in all regions.
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