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Introduction: Accurate application of pesticides at the seedling stage is the key

to effective control of Chinese cabbage pests and diseases, which necessitates

rapid and accurate detection of the seedlings. However, the similarity between

the characteristics of Chinese cabbage seedlings and some weeds is a great

challenge for accurate detection.

Methods: This study introduces an enhanced detection method for Chinese

cabbage seedlings, employing a modified version of YOLO11n, termed YOLO11-

CGB. The YOLO11n framework has been augmented by integrating a

Convolutional Attention Module (CBAM) into its backbone network. This

module focuses on the distinctive features of Chinese cabbage seedlings.

Additionally, a simplified Bidirectional Feature Pyramid Network (BiFPN) is

incorporated into the neck network to bolster feature fusion efficiency. This

synergy between CBAM and BiFPN markedly elevates the model’s accuracy in

identifying Chinese cabbage seedlings, particularly for distant subjects in wide-

angle imagery. To mitigate the increased computational load from these

enhancements, the network's convolution module has been replaced with a

more efficient GhostConv. This change, in conjunction with the simplified neck

network, effectively reduces the model's size and computational requirements.

The model’s outputs are visualized using a heat map, and an Average

Temperature Weight (ATW) metric is introduced to quantify the heat

map’s effectiveness.

Results and discussion: Comparative analysis reveals that YOLO11-CGB

outperforms established object detection models like Faster R-CNN, YOLOv4,

YOLOv5, YOLOv8 and the original YOLO11 in detecting Chinese cabbage

seedlings across varied heights, angles, and complex settings. The model

achieves precision, recall, and mean Average Precision of 94.7%, 93.0%, and

97.0%, respectively, significantly reducing false negatives and false positives. With

a file size of 3.2 MB, 4.1 GFLOPs, and a frame rate of 143 FPS, YOLO11-CGB

model is designed to meet the operational demands of edge devices, offering a

robust solution for precision spraying technology in agriculture.
KEYWORDS

Chinese cabbage seedlings, YOLO11-CGB, real-time detection, deep learning, average
temperature weight
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1 Introduction

Chinese cabbage (Brassica rapa subsp. pekinensis) is the most

widely grown and productive vegetable in China, and has been

introduced in many countries because of its high yield, ease of

cultivation and rich nutrition (Fu et al., 2023). However, pest and

disease infestations in Chinese cabbage can significantly diminish

its quality and yield, impacting economic returns. Often, these

infestations are detected only after extensive damage, missing

optimal control opportunities (Wei et al., 2021). To mitigate this,

preemptive measures, such as the early application of pesticides

during the seedling stage, are common. Nevertheless, conventional

spraying methods fail to discriminate between crops and vacant

spaces, leading to excessive pesticide application in non-crop areas.

This not only results in financial losses but also poses a threat to the

food safety of Chinese cabbage (Liu et al., 2023). Excessive pesticide

usage also contributes to environmental contamination, soil

degradation, and the development of pesticide-resistant pest

populations, further complicating agricultural management (Hu

et al., 2021). The development of new plant protection equipment

based on precision application technology can provide an

important guarantee for pesticide reduction and promote the

improvement of pesticide utilization, and the key point of this

technology lies in how to carry out rapid and accurate detection of

Chinese cabbage seedlings. Achieving accurate detection is

paramount for optimizing pesticide usage, minimizing

environmental harm, and promoting sustainable agricultural

practices (Ong et al., 2023; Shi et al., 2023).

The advancement of convolutional neural networks (CNNs)

has significantly enhanced deep learning applications in crop

identification and detection (Fan et al., 2021). Deep learning-

based target detection algorithms are divided into two categories:

the two-stage frameworks, which initially generate candidate frames

and subsequently classify them using CNNs (Li Z, et al., 2021), and

the one-stage frameworks, exemplified by the YOLO series, which

employ regression analysis for rapid target detection without

needing candidate frames.

The two-stage approach, including algorithms like R-CNN and

Faster R-CNN, offers high accuracy but lacks real-time efficiency.

For instance, Zhang et al. (Zhang Z, et al., 2023) achieved improved

detection accuracy with an enhanced Faster R-CNN for safflower

filaments, adaptable to diverse environments. However, the

computational burden and model size of this two-stage

framework are substantial. Similarly, Vi Nguyen Thanh Le et al

(2021). utilized Faster R-CNN for detecting field weeds among

various vegetables, achieving satisfactory accuracy but with a high

inference time of 0.38 seconds per image, limiting its real-time

application potential.

In contrast, the one-stage YOLO series algorithms, as

demonstrated by Jin et al. (2022) in vegetable detection, offer

speed but sometimes suffer from inaccuracies due to occlusion

and proximity issues. Zhang et al. (Zhang Y, et al., 2023) improved

YOLOv5 to detect Achnatherum splendens, achieving a high mean

Average Precision (mAP) of 95.0% with the largest model, YOLO-

Sp-X. However, its size of 740.5MB creates significant
Frontiers in Plant Science 02
computational demands, especially for on-board robotic systems.

The smaller model, YOLO-Sp-N, while only 50.4MB, offers a lower

mean Average Precision of 81.2%. Wang et al. (2022) integrated the

CBAM module into YOLOv5 for real-time detection of Solanum

rostratum Dunal seedlings. While effective in test sets, field tests

revealed a decline in confidence levels and detection leakages,

indicating the need for further refinement. Zheng et al. (2023)

designed an intermittent herbicide spraying system for open field

kale. Although successful in tests, its model’s limitation to vertical

angle shots of kale plants significantly restricts the system’s

movement speed, affecting herbicide application effectiveness.

In the field of cabbage detection, Ma et al. (2023) proposed an

improved U-Net-based semantic segmentation model, MSECA-

UNet, which demonstrated superior detection performance.

However, the model requires 64.85 ms for single-image detection,

and its image capture perspective is limited to a vertical sample

angle, which restricts its potential for rapid robotic movement. Ye

et al. (2023) developed a deep learning model, Mask R-CNN, for

cabbage crop extraction using unmanned aerial vehicles (UAVs),

achieving commendable results. Nevertheless, the model’s lengthy

detection time and large size limit its applicability in real-time

detection tasks. Sun et al. (2024) introduced the Cabbage

Transplantation State Recognition Model Based on Modified

YOLOv5-GFD, and Jiang et al. (2024) designed a detection

model, YOLOv8-cabbage, for precise cabbage spraying. Both

models exhibit a recall rate significantly lower than their

accuracy, suggesting potential issues with missed detections.

Additionally, these studies also employed a vertical sample angle

for image capture.

Current research on cabbage detection, as well as detection of

other crops, reveals critical issues that can be observed in similar

studies. Overly large and computationally intensive models present

challenges for robotic deployment. Additionally, detection models

with low precision and recall rates result in frequent omissions and

misdetections. The limited and homogeneous datasets hinder model

generalization, leading to suboptimal accuracy in practical

applications. Furthermore, datasets restricted to vertical sample

angles limit the operational speed of machinery. These challenges

not only hinder the effectiveness of pest and disease control but also

raise broader concerns regarding the economic and environmental

impacts of inefficient pesticide use. Inaccurate detection models may

lead to excessive pesticide application, contributing to environmental

pollution, pesticide resistance, and the loss of biodiversity. To address

these challenges, this study proposes an optimized Chinese cabbage

seedling detection model based on an enhanced YOLO11 framework.

This model integrates several innovations aimed at improving

accuracy, speed, and efficiency, making it suitable for real-world

agricultural robotic applications. Key improvements include refining

the backbone and neck network structures of YOLO11 and

implementing a lightweight improvement strategy to reduce

computational burden. The model was trained on a comprehensive

dataset that includes varying heights, angles, occlusions, and potential

environmental interferences, ensuring robust performance in dynamic

field environments. By addressing both the technical limitations of

current models and the practical challenges in field applications, this
frontiersin.org
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study aims to provide a solution that not only enhances detection

accuracy but also supports the goals of precision agriculture, reducing

pesticide use and minimizing environmental impact.
2 Materials and methods

2.1 Data acquisition

The dataset used in this study for Chinese cabbage was sourced

from Wucuofang Village, Yangcao Town, Anda City, Suihua City,

Heilongjiang Province. The collection focused on Chinese cabbage

seedlings, which were planted in a single ridge with healthy growth.

Image acquisition was carried out using an Honor 30 Pro

smartphone, capturing high-resolution images (4096×3072 pixels)

in JPEG format. The device featured an f/1.8 aperture and automatic

shutter speed adjustment, ensuring proper exposure in various

shooting environments.These features contributed to high-quality

images with clear details and minimal noise, providing a strong

foundation for model training and reliable detection performance.

The f/1.8 aperture used in this study provided a shallow depth

of field (DoF) while maintaining sufficient light intake, which is

crucial for capturing bright and clear images in low-light

conditions. A larger aperture increases the amount of light
Frontiers in Plant Science 03
entering the lens, helping to reduce image noise and blur caused

by insufficient lighting, which is particularly important when

capturing high-quality images of the Chinese cabbage seedlings

under varying natural lighting conditions (such as early mornings,

evenings, or overcast days). This aperture setting also helped to

separate the Chinese cabbage seedlings from the background,

enhancing the visibility of the target object. Furthermore, it

emphasized the details of the seedlings, which is beneficial for

learning the distinctive features of the target.The automatic shutter

speed adjustment feature allowed the device to select the optimal

shutter speed based on ambient light, ensuring neither

overexposure nor underexposure and minimizing the risk of

motion blur. This feature ensured optimal exposure across

various lighting conditions, making the features in the captured

images more distinct and easier for model detection.

The data collection period spanned from early August to early

September 2023, with image capture times ranging from 06:00 to

18:00. During image acquisition, the distance between the camera

and the Chinese cabbage seedlings was controlled between 30cm

and 100cm. The shooting angle ranged from 45° to 90° relative to

the horizontal direction. The Chinese cabbage seedlings were set as

the foreground, while weeds and other elements were considered as

background information. A total of 2715 raw images were collected,

as shown in Figure 1. These images included various data on
(a) (b)

c d

FIGURE 1

Acquisition of chinese cabbage images. (a) A close-up view focusing on a single target. (b) An image depicting the subject shaded by straw. (c) An
image showing interference from a dense weed population. (d) A long-distance shot capturing multiple targets.
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background complexity, shooting angles, distances, and the number

of targets per image, with a particular focus on capturing images of

weeds that share similar characteristics with Chinese

cabbage seedlings.
2.2 Image enhancement

To ensure the diversity of the Chinese cabbage dataset produced

in this study, we employed data augmentation techniques on the

collected images. After segregating the dataset into training, testing,

and validation sets, the original images underwent several

augmentation processes. These included cropping and affine

transformations (comprising linear image modifications like

translation, rotation, and scaling), color distortion (altering image

attributes such as brightness, contrast, saturation, and hue),

Gaussian noise addition, Cutout, and Mosaic. These methods,

exemplified in Figure 2, were instrumental in enriching the

dataset’s diversity. Consequently, this expansion significantly

enhances the model’s robustness and its ability to generalize.
2.3 Dataset construction

In this research, the LabelImg tool, a rectangular region labeling

utility, was employed to manually annotate the captured images,

pinpointing the exact locations of the target Chinese cabbage

seedlings. The annotated data was saved in a.txt file format,

culminating in the creation of the Chinese cabbage seedling

dataset. The dataset was then randomly divided into training,

validation, and test sets in an 8:1:1 ratio, resulting in 2687

training images, 336 validation images, and 335 test images. Each
Frontiers in Plant Science 04
subset contained images of the Chinese cabbage seedlings along

with their associated labels. Every image in the dataset includes at

least one Chinese cabbage seedling, collectively contributing to a

total of 10069 labels.Additionally, the dataset includes detailed

information about the shooting height and angle for each image,

as detailed in Table 1. This comprehensive approach in dataset

preparation enhances the precision and efficacy of the deep learning

and convolutional neural network analyses that follow.
2.4 Chinese cabbage seedling detection
model YOLO11-CGB

2.4.1 Network architecture
The YOLO11 algorithm, released by Ultralytics in September

2024, represents a significant evolution in the YOLO series. YOLO11

builds upon the foundation of previous YOLO versions, introducing

new features and improvements aimed at enhancing both

performance and flexibility. YOLO11 adopts an improved

backbone and neck architecture, which strengthens feature

extraction capabilities and improves object detection accuracy,

especially for complex tasks. Compared to the YOLOv8 model,

YOLO11 replaces the C2F module with the C3K2 module,

increasing the model’s flexibility and configurability. It continues to

utilize the Spatial Pyramid Pooling (SPPF) module, which enhances

accuracy while simplifying the model (Tang et al., 2023).

Additionally, a C2PSA module is added after the SPPF to further

enhance the model’s feature extraction capabilities. YOLO11 retains

the Path Aggregation Network-Feature Pyramid Network (PAN-

FPN) structure in the neck, which strengthens multi-scale feature

fusion (Li et al., 2023). Furthermore, YOLO11 incorporates the head

design ideas from YOLOv10, using depthwise separable convolutions
   
d  e  f  

   

a) b  c  

FIGURE 2

Image enhancement. (a) Original image. (b) Affine transformations. (c)Color distortion. (d) Gaussian noise addition. (e) Cutout. (f) Mosaic.
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to reduce redundant computations and improve efficiency.

Compared to previous versions of YOLO models, YOLO11

demonstrates superior performance (Sapkota et al., 2024).

In this study, the YOLO11-CGB network model was developed

as an enhancement of the YOLO11 nano variant (YOLO11n). This

modified version integrates several innovative components to

address the challenges of Chinese cabbage seedling detection. The

Convolutional Block Attention Module (CBAM) is incorporated to

enhance the model’s focus on the distinct features of Chinese

cabbage seedlings, ensuring that these key features receive greater

attention even in complex backgrounds. The Weighted Bi-

directional Feature Pyramid Network (BiFPN) optimizes the

network’s feature integration capability by facilitating efficient

fusion of features across different scales, which is particularly

critical for detecting small and distant seedlings. To reduce the

computational burden, GhostConv is employed to significantly

shrink the model’s size and computational complexity while

maintaining high detection accuracy, making it well-suited for

deployment on edge devices. Together, these components enable

YOLO11-CGB to not only capture Chinese cabbage seedling

features more effectively and extract relevant information with

greater precision, but also achieve a balanced reduction in

computational and parameter complexity, enhancing its practical

applicability. The structure of the improved network is illustrated

in Figure 3.

2.4.2 CBAM attention mechanism
The Convolutional Block Attention Module (CBAM) is a

streamlined and efficient attention mechanism for feed-forward

convolutional neural networks (Woo et al., 2018; Karim et al.,

2024). Its lightweight structure enables seamless integration into

convolutional neural network frameworks, facilitating end-to-end

training with the base convolutional neural network. CBAM

comprises two primary components: the Spatial Attention

Module (SAM) (Fu et al., 2017) and the Channel Attention

Module (CAM) (Hu et al., 2020), as depicted in Figure 4.

In the context of identifying features of Chinese cabbage

seedlings, the SAM plays a pivotal role. It performs a

transformation process in the spatial domain of the image,

extracting crucial feature information that is vital for accurate

detection. Concurrently, the CAM is responsible for assigning

appropriate weight coefficients to the feature channels based on

their relative importance. This dual approach ensures a more

focused and relevant feature extraction, contributing significantly

to the model’s overall detection efficacy.
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One of the primary challenges in field detection of Chinese cabbage

seedlings is distinguishing them from weeds that share similar

characteristics. To overcome this challenge, YOLO11-CGB integrates

the CBAM attention mechanism after the C3K2 module in the third

layer. This approach allows the network to retain more low-level

details, enhancing its feature extraction capabilities for targets with

similar characteristics., effectively improving the model’s precision.

2.4.3 Ghostconv
In the YOLO11 network, the convolutional layer tends to

consume substantial memory during feature extraction, as

illustrated in Figure 5a. However, with the increasing application

of convolutional neural networks (CNNs) in embedded devices,

there is a heightened demand for reduced memory usage and

enhanced computational efficiency in neural networks.

GhostConv, an innovation originating from Huawei’s Noah’s Ark

Laboratory’s GhostNet, is a lightweight network that effectively

minimizes computational resource demands while preserving

accuracy. It leverages the redundancy in feature maps to conduct

cost-efficient linear transformations, as illustrated in Figure 5b

(Han et al., 2020; Wei et al., 2020). GhostConv operates distinctly

from traditional CNNs, functioning in two primary stages. Initially,

it employs standard convolutional processes to produce a feature

map. This map, though channel-sparse, is information-rich.

Subsequently, the feature map count is augmented through

computationally efficient methods, which, when merged with the

initial maps, form the final output. Essentially, GhostConv

bifurcates the conventional convolution process. It begins with

operations using a limited number of convolution kernels,

followed by channel-level convolutions using smaller kernels (e.g.,

3×3 or 5×5). These are then concatenated with the output from the

first stage.The parameters required for GhostConv include

the height (h), width (w), and the number of channels (c) for the

input features; and for the output features, the height (H), width

(W), number of convolution kernels (n), kernel size (k), size of the

linear transformation kernel (d), and the number of

transformations (s). Additionally, rs and rc represent the

computational and parametric ratios of standard convolution to

GhostConv convolution, as delineated in Equations 1 and 2.

rs =
h�w�c�H�W�n

n
s�H�W�k�k�c+(s−1)�n

s�H�W�d�d

= c�k�k
1
s�c�k�k+(s−1)

s �d�d
≈ s

(1)

rc =
n� c� k� k

n
s � c � k� k + (s� 1)� n

s � d � d
≈

s� c
s + c� 1

≈ s (2)

Taking into account both Equations 1 and 2, it becomes evident

that the ratio of computation to the number of parameters is

intricately linked to the number of transformations, denoted as

‘s’. This implies that the model’s speedup is more pronounced as the

quantity of generated feature maps escalates. Consequently, the

incorporation of GhostConv convolution within the model

markedly diminishes both the computational and parameter
TABLE 1 Dataset details.

Height\Angle 90° 75° 45°

30cm 385 363 343

70cm 389 381 350

100cm 388 380 379
frontiersin.org

https://doi.org/10.3389/fpls.2025.1558378
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Shi et al. 10.3389/fpls.2025.1558378
FIGURE 4

CBAM network structure diagram.
FIGURE 3

YOLO11-CGB network structure diagram.
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demands. This reduction directly translates to an increase in the

model’s execution speed and overall computational efficiency,

making it an invaluable adaptation for optimizing convolutional

neural network operations.

YOLO11-CGB replaces the convolutional modules in the

backbone network with GhostConv modules, effectively reducing

the model’s weight. The neck network, however, still utilizes

traditional convolutional modules, which enhances the model’s

multi-scale feature fusion capabilities. This improvement strategy

ensures that the model maintains its detection performance while

increasing efficiency and practicality. It also reduces the number of

parameters and computational complexity, making the model more

suitable for deployment on resource-constrained platforms, such as

edge devices and embedded systems.

2.4.4 BiFPN structure
In tasks involving multi-scale feature fusion, the conventional

Feature Pyramid Network (FPN) typically employs a top-down

approach for fusing various input features. However, this

methodology often results in significant loss of shallow feature

information during the transfer process (Xiao et al., 2022). In

contrast, the Path Aggregation Network (PAN) utilized by the

YOLO11 model, while based on FPN’s design, introduces

additional bottom-up pathways. This bidirectional fusion

approach within the backbone network facilitates more effective
Frontiers in Plant Science 07
propagation of lower-layer information, although its structure

remains relatively simple (Dong et al., 2022). In our study, we

incorporate the Bidirectional Feature Pyramid Network (BiFPN)

(Tan et al., 2020), which allows for weighting, to address these

limitations. The architecture of the three Neck networks, including

this enhanced BiFPN, is illustrated in Figure 6. This integration of

BiFPN in the model structure significantly augments the

effectiveness of feature fusion, ensuring a more balanced

integration of both deep and shallow features.

BiFPN deletes the single input node with small contribution to

simplify the network, then adds an edge between the original input

node and the output node to fuse more features, and finally fuses the

top-down and bottom-up paths into a module, which is designed as

a parameter into the network after calculating the number of

repetitions of the module by NAS technology to improve the

accuracy of the feature extraction of the Chinese cabbage seedling

in order to realize the feature fusion at a higher level.

The improvement to the neck network not only enhances the

model’s ability to fuse multi-scale features but also improves the

efficiency and effectiveness of the feature fusion process. The

updated network architecture allows the model to maintain

efficient computation while better capturing features from targets

of different scales. This is particularly advantageous for small target

detection in complex scenarios, where the model demonstrates

significant improvements.
FIGURE 5

Structure of convolution module. (a) Conventional convolution module. (b) Ghostconv convolution module.
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2.5 Test platform and parameters

The experimental framework for this study was executed on the

following platform specifications: model training tasks were

performed using the aotudl cloud computing server, equipped

with a Intel(R) Xeon(R) Platinum 8352V CPU @ 2.10GHz, an

RTX 4090 (24GB) GPU. The operating system used was Ubuntu

18.04 (64-bit), and the deep learning framework utilized was

PyTorch 3.8.0 with CUDA 12.4.

In this study, the network optimization was conducted using the

SGD optimizer. The settings included a batch size of 32 and a total

of 300 epochs for iterations. The initial learning rate was set at

0.007, and the cosine annealing strategy was employed as the

learning rate decay optimization technique. This particular

strategy enables a gradual reduction of the learning rate by

modulating it in the form of a cosine function, effectively

preventing the model from converging to a local optimum. The

underlying mathematical principle of the cosine annealing strategy

is delineated in Equation 3. This approach ensures a more refined

and effective optimization process, crucial for the robust

performance of the network.

ht = hmin +
1
2

hmax − hminð Þ 1 + cos
Tcur

Tmax
p

� �� �
(3)

where Tcur denotes the current round of training, Tmax denotes

the total number of rounds of training, hmax and hmin denote the

maximum and minimum values of the learning rate, respectively.

The primary advantage of this strategy lies in its dynamic

adjustment of the learning rate: initially, it decreases rapidly,

facilitating swift convergence of the model in the early training

phase. Subsequently, in the latter stages of training, the rate of

decrease in the learning rate slows down. This gradual reduction

allows for more meticulous parameter adjustments, thereby

enhancing the model’s ability to generalize. This careful balance

between rapid initial convergence and slower, more precise fine-

tuning in later stages is crucial for optimizing the model’s overall

performance and effectiveness.
Frontiers in Plant Science 08
2.6 Evaluation indicators

To thoroughly evaluate the performance of the model presented

in this paper, a range of metrics has been employed. These include

precision (P), recall (R), F1 score (F1), mean Average Precision at

IoU 50 (mAP50), Giga Floating-Point Operations Per Second

(GFLOPs), the total number of parameters (Parameters), and

Frames Per Second (FPS).

In this case, precision and recall are used as the basic metrics,

and mAP is used as the final evaluation metric to measure the

recognition correctness of the model.

Precision is the proportion of correctly predicted positive

samples out of all samples predicted as positive. It measures the

accuracy of the model’s predictions for the positive class.

Specifically, it evaluates how many of the instances identified as

Chinese cabbage seedlings by the model are indeed correctly

identified, ensuring that the predictions for the target class are

accurate. The definition is shown in Equation 4:

Precision =
Number of  Correctly Identified Chinese Cabbage Seedlings

Number of  Correctly Identified Chinese Cabbage Seedlings þ Number of  Incorrectly Identified Chinese Cabbage Seedlings

(4)

Recall is calculated based on the proportion of all targets

correctly predicted and examines the ability of the model to find

all positive samples. The definition is shown in Equation 5:

Recall =
Number of Correctly Identified Chinese Cabbage Seedlings

Number of Correctly Identified Chinese Cabbage Seedlings + Number of Missed Chinese Cabbage Seedlings

(5)

The F1 score is the harmonic mean of Precision and Recall,

providing a balanced metric that considers both false positives and

false negatives. it combines the precision and recall into a single

number to give a more comprehensive evaluation of the model’s

performance. The definition is shown in Equation 6:

F1 =
2� Precision� Recall
Precision + Recall

(6)

Mean Average Precision (mAP) is a commonly used metric in

object detection that combines precision and recall by averaging the
FIGURE 6

Diagram of the three network architectures. (a) Traditional FPN network architecture. (b) PANet network structure. (c) BiFPN network architecture.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1558378
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Shi et al. 10.3389/fpls.2025.1558378
precision across multiple recall values. mAP50 refers to the mAP

calculated with an Intersection over Union (IoU) threshold of 0.50.

This metric is useful for evaluating the overall detection accuracy,

considering both the correct identification of objects and the

precision of their localization.

GFLOPs serve as an indicator of the complexity of the model or

algorithm. In contrast, parameters reflect the model’s size.

Generally, lower values of parameters and GFLOPs signify

reduced computational demands, facilitating easier deployment to

end devices and less stringent hardware requirements. FPS denotes

the number of frames processed by the model per second, a critical

metric in real-time applications. The FPS value is influenced not

only by the algorithm’s weight but also by the hardware

configuration of the experimental device.
3 Results and analysis

3.1 Training results

In this study, the Early Stopping training strategy was

employed, meaning that training was terminated early if no

improvement was observed over the past 50 epochs. The

YOLO11-CGB model underwent a total of 290 iterations.

Figure 7a illustrates the changes in precision, recall, and mAP50

throughout the training process. During the initial 75 iterations,

precision, recall, and mAP50 exhibited oscillatory growth before

gradually stabilizing. After 125 iterations, the model parameters no

longer showed significant oscillations, and after 200 epochs, mAP50

stabilized, indicating that the model was approaching saturation

and key performance metrics became stable. Figure 7b shows the

loss curves for bounding box regression (Box Loss) and Distribution

Focal Loss (Dfl Loss). It can be observed that the loss function

rapidly converged in the early stages and gradually flattened. Both

Box Loss and Dfl Loss steadily decreased, and no significant

fluctuations were observed after 200 epochs, suggesting that the

training process was stable without overfitting. The final YOLO11-

CGB model achieved a precision of 0.947, a recall of 0.93, an F1

score of 0.938, and an mAP50 of 0.97. The model contains 3.2M
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parameters, with a GFLOPS value of 4.1, and a processing speed of

143 samples per second.

Figure 7c displays the confusion matrix for the model, which

correctly identified targets in 780 samples, demonstrating the

model’s strong detection capability. This result provides strong

evidence of the effectiveness of the proposed method in object

detection tasks. The number of false positives was only 55,

indicating that the model was able to accurately distinguish

between targets and the background in most cases, with a low

false positive rate. The number of false negatives was 40,

demonstrating that the model successfully detected the majority

of target samples, resulting in an extremely low miss rate.

Furthermore, the model showed high robustness in handling

complex target-background scenarios. This outcome validates the

reliability of the proposed method in real-world applications.
3.2 Comparative performance tests of
different models

To validate the detection capability of the improved YOLO11-

CGB model, its performance was compared with five widely-used

object detection models: Faster R-CNN, YOLOv4, YOLOv5s,

YOLOv8n, and YOLO11n, using the Chinese cabbage seedling

dataset. To further demonstrate the model’s performance, several

recent representative studies on crop seedling detection and

Chinese cabbage detection were also compared. These included

the Seedling-YOLO for broccoli seedlings (Zhang T, et al., 2024),

the improved YOLOv8 for maize seedlings (referred to as YOLOv8-

Maize) (Liu et al., 2024), the improved YOLOv7 for Chinese

cabbage seedlings (referred to as YOLOv7-CCSB) (Gao et al.,

2024), the YOLOv8-cabbage specifically designed for Chinese

cabbage (Jiang et al., 2024), and the YOLOv8-Ghost-Backbone for

mature Chinese cabbage (Zhang H, et al., 2024). The model training

results are summarized in Table 2.

As shown in Table 2, compared with five commonly used

models in the field of object detection, namely Faster R-CNN,

YOLOv4, YOLOv5s, YOLOv8n, and YOLO11n, the YOLO11-CGB

model demonstrates superior performance in the detection of
(a) (b) (c) 

FIGURE 7

YOLO11-CGB network training. (a) changes in precision, recall and mAP50. (b) changes in Box Loss and Dfl Loss. (c) Confusion matrix diagram of
YOLO11-CGB.
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Chinese cabbage seedlings in terms of precision, recall, and mean

Average Precision (mAP). Specifically, the precision is improved by

1.0% to 8.1%, recall is increased by 1.8% to 5.8%, and the F1 score

rises by 1.4 to 6.7. These improvements highlight the progress of

YOLO11-CGB in reducing both missed detection and false

detection rates. Furthermore, mAP50 increases by 2.4% to 7.8%,

reflecting the enhancement of model performance, robustness, and

exceptional generalization ability. These improvements in

precision, recall, and mAP can be attributed to the integration of

the CBAM attention mechanism, which effectively enhances feature

extraction and representation, as well as BiFPN’s efficient fusion of

multi-scale feature information. Additionally, a comparative

analysis of GFLOPs, FPS, and model parameters shows that

YOLO11-CGB has significantly lower computational load than

the other models. This efficiency is largely due to the lightweight

nature of the GhostConv module and the simplified neck network

structure, which substantially reduces computational demands and

model size, facilitating easier deployment of the improved model on

mobile devices or embedded systems.

Moreover, compared to other models targeting different crop

seedlings and specifically those targeting Chinese cabbage, YOLO11-

CGB also demonstrates relatively outstanding performance.

Compared to the five cited models, YOLO11-CGB leads in F1 score

and mAP50 to varying degrees, indicating its superior detection

performance among similar models. Additionally, YOLO11-CGB

has significantly lower GFLOPs and model parameters, with a

considerable advantage in FPS compared to other models, reflecting

its efforts in lightweight design. This also demonstrates the model’s

efficiency in computation and storage, verifying its suitability for real-

time detection tasks on field-edge devices.
3.3 Ablation test

To ascertain the validity of the enhancements incorporated in

the YOLO11-CGB model, we conducted a series of ablation tests.
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These tests were designed to evaluate the individual and

collective impacts of each improvement made to the original

YOLO11n model. Specifically, we integrated the CBAM attention

module into the backbone layer, applied the weighted Bidirectional

Feature Pyramid Network (BiFPN) in the neck layer, and

replaced the standard convolutional (Conv) module with

GhostConv in the network. We conducted tests on the original

YOLO11n with each of these improvements independently, as

well as in combinations of two or three, to assess the synergistic

effects of these modifications.These experiments were carried out

under identical conditions using the Chinese cabbage seedling

dataset developed for this study. The outcomes, which provide

insights into the efficacy and interaction of each enhancement

within the YOLO11-CGB model, are systematically presented

in Table 3.

Table 3 clearly demonstrates that incorporating the CBAM

attention module into the backbone network and utilizing the

weighted bidirectional feature pyramid network (BiFPN) in the

neck layer significantly improves the model’s average accuracy.

These enhancements enable the YOLO11-CGB model to achieve

higher precision and exceptional detection performance. However,

the inclusion of the CBAM attention mechanism increases the

number of parameters and computation of the model, which

reduces the speed of detection. In contrast, the improved BiFPN

network structure, combined with the use of GhostConv to replace

the original convolution (Conv) modules, substantially reduces the

model’s computational burden and model size, leading to a

significant increase in FPS. Remarkably, the model does not suffer

from a loss in detection speed due to the lightweight design; on the

contrary, it significantly accelerates detection speed, reflecting a

substantial enhancement in feature extraction capability under

limited computational resources. There is no apparent

interference between the three enhancement strategies, and each

contributes uniquely when working together. The above

experimental data analysis validates the effectiveness of YOLO11-

CGB on the large Chinese cabbage seedling dataset.
TABLE 2 Comparative performance test results.

Model P R F1 score mAP50 GFLOPs FPS Parameters

Faster R-CNN 86.60% 87.70% 87.10% 89.20% 196.7 21 137M

YOLOV4 89.90% 88.90% 89.40% 91.60% 83.9 37 55M

YOLOV5s 91.60% 87.20% 89.40% 92.90% 18.2 43 14M

YOLOV8n 91.30% 89.40% 90.30% 93.40% 8.2 83 6.0M

YOLO11n 93.70% 91.20% 92.40% 94.60% 6.3 111 5.5M

Yolo11-CGB 94.70% 93.00% 93.80% 97.00% 4.1 143 3.2M

Seedling-YOLO 91.30% 92.10% 91.70% 94.30% 11.6 30 5.0M

YOLOv8-Maize 92.90% 87.00% 90.00% 93.40% - 45 -

YOLOv7-CCSB 91.30% 83.40% 84.30% 84.30% - 60 -

YOLOv8-cabbage 95.50% 85.10% 90.00% 93.90% - 38 -

YOLOv8-Ghost-Backbone 93.40% 92.50% 92.90% 94.40% 9.2 83 6.5M
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3.4 Performance comparison of models
incorporating different
attention mechanisms

To explore the impact of different attention modules on the

performance of the YOLO11n model, four distinct attention

mechanisms were integrated into the YOLO11 network for

comparative study. These mechanisms include Squeeze-and-

Excitation Attention Module (SE), Channel Attention Module

(CA), Simple Attention Module (SimAM), and Convolutional

Block Attention Module (CBAM). The resulting models were

named YOLO11-SE, YOLO11-CA, YOLO11-SA, and YOLO11-

CBAM, respectively. Each attention module was strategically

placed before the convolutional layer in the fourth network layer.

This positioning was chosen to enhance the model’s feature

extraction capabilities, particularly for medium- to small-scale

samples. All four models were trained and tested under the same

experimental conditions using the same Chinese cabbage seedling

dataset, and the results are presented in Table 4.

Table 4 shows that, compared to the original YOLO11n model,

the YOLO11 model enhanced with attention mechanisms

demonstrates significant improvements in precision, recall, and

mAP50, indicating that adding attention mechanisms to the

model positively impacts its performance. Among these models,

the YOLO11-CBAM model shows the most significant gains.

Compared to the original YOLO11n, its precision improves by

0.5 percentage points, recall increases by 1.1 percentage points, and

mAP50 rises by 1.8 percentage points. Additionally, the

performance of YOLO11-CBAM also surpasses that of the other

three attention mechanisms, showcasing that the CBAM attention

mechanism provides a more substantial performance enhancement

for the model.
3.5 Comparison of model
improvement results

The original YOLO11n network model and the improved

YOLO11-CGB model were tested and compared on the image

test set. The test set contains 335 images and 930 Chinese
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cabbage seedling samples. Representative images from the trained

test set were randomly selected for presentation, as shown in

Figure 8. The false positive and false negative counts in the results

were manually counted and compared, and the comparison results

are presented in Table 5.

As shown in Figure 8a, both the YOLO11n and YOLO11-CGB

models exhibit commendable performance on the near-distance

dataset. Both models demonstrate a certain level of resistance to

weed interference, accurately distinguishing Chinese cabbage

seedlings from other plant types. However, compared to the

original YOLO11n model, the YOLO11-CGB model shows a

slightly higher confidence level in detection. In Figure 8b, where

weeds with features similar to Chinese cabbage are present, the

YOLO11n model produces false positives. In contrast, the

YOLO11-CGB model, with enhanced feature extraction

capabilities and stronger interference resistance, reduces

misdetections. As seen in Figure 8c, both models are able to

recognize Chinese cabbage seedlings occluded by weeds, but the

YOLO11-CGB model outperforms YOLO11n in terms of detection

confidence, with YOLO11n again misidentifying weeds with

features similar to Chinese cabbage. Figure 8d shows the

detection results under a small-angle scenario, where, after the

distance increases, the YOLO11n model produces false positives,

while the YOLO11-CGB model accurately distinguishes Chinese

cabbage seedlings from weeds due to its strong feature extraction

capabilities. Figure 8e presents the detection results under a large-

angle multi-target scenario. The YOLO11n model’s detection ability

significantly decreases, missing some distant Chinese cabbage

seedlings. In contrast, the YOLO11-CGB model maintains a high

detection rate for distant targets and demonstrates noticeably better

detection confidence compared to YOLO11n. These observations

collectively highlight the superior performance of the YOLO11-

CGB model in various challenging environments.

An analysis of Table 5 and Figure 8e shows that, compared to

the original YOLO11n model, the performance of the YOLO11-

CGB model has substantially improved, particularly in detecting

targets at the far end of the images. The original YOLO11n model

had notable issues with missed detections for distant targets.

However, the improved YOLO11-CGB model exhibits a

significant reduction in the missed detection rate, which dropped
TABLE 3 Comparison of ablation test results.

Model combination mAP50 GFLOPs FPS Parameters

YOLO11n 94.60% 6.3 111 5.5M

YOLO11n+CBAM 96.40% 6.5 105 5.6M

YOLO11n+BiFPN 95.80% 4.8 137 3.7M

YOLO11n+GhostConv 94.50% 5.4 128 4.5M

YOLO11n+CBAM+BiFPN 97.10% 5 133 3.9M

YOLO11n+CBAM+GhostConv 96.00% 5.5 126 4.7M

YOLO11n+BiFPN+GhostConv 95.80% 3.9 147 3.1M

YOLO11-CGB 97.00% 4.1 143 3.2M
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by 10.6%, with the final missed detection rate standing at just 0.8%.

This enhancement effectively addresses the practical agronomic

requirements for real-world applications. Additionally, the false

positive rate was markedly reduced from 1.0% to 0.3%, highlighting

the optimization of the model’s detection accuracy for distant

targets at large angles.

To further validate the adaptability and robustness of the

YOLO11-CGB model under varying environmental conditions,

image processing techniques were used to simulate various actual

agricultural operations scenarios. These included adjusting

brightness and saturation to mimic direct midday sunlight and

dim evening conditions, as shown in Figures 9a, b, respectively.

Furthermore, low-contrast extreme environments, such as foggy

weather, were simulated by reducing the contrast, as shown in

Figure 9c. Noise interference, which may occur due to field signal

transmission and other factors, was simulated by injecting Gaussian

noise, as depicted in Figure 9d. The experimental results

demonstrate that the model maintains excellent stability and

robustness when handling variations in lighting conditions,

making it suitable for all-weather detection tasks and ensuring

reliable results throughout different times of the day. Even under
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extreme weather conditions, while the model’s confidence slightly

decreased, it still maintained a high detection accuracy overall,

showcasing the model’s exceptional environmental adaptability and

its ability to handle complex scenarios. This provides a solid

technical foundation for achieving precise Chinese cabbage

seedling detection in dynamic and changing environments.
3.6 Comparison of model
visualization effects

In this study, we used the class-activation heat map Grad-CAM

(Selvaraju et al., 2017; Xie et al., 2022) to visualize and compare the

features extracted after convolution of the fourth layer of the

YOLO11n and YOLO11-CGB models in Chinese cabbage

seedling detection. This visualization reveals the image regions

that the convolutional neural network focuses on in the Chinese

cabbage seedling detection task, highlights the discriminative part of

the image that influences the model’s decision, and makes it more

intuitive to see the effect of the network’s feature extraction on

different regions of the Chinese cabbage seedling. In the heat map,

the color depth of the red region (high temperature region)

indicates the importance of this region in the detection process.

The comparison results of the class activation heat map are shown

in Figure 10.

In order to quantitatively evaluate the ability of different models

in feature extraction, this study proposes an average temperature

weight value (ATW) as a digital reference index to measure the

effectiveness of the heat map. When calculating the average

temperature weight value: firstly, in order to reduce the interference

in the background map, the thermogram is segmented, leaving only

the foreground map with thermal range for the calculation of
Original 

image 

YOLO11n 

YOLO11-

CGB 

Model (a) (b) (c) (d) (e) 

FIGURE 8

Comparison of model detection results. (a) Normal environment. (b) Weed interference with similar features. (c) Occlusion by weeds. (d) Small-angle
multi-target scenario. (e) Large-angle multi-target scenario.
TABLE 4 Performance comparison of models incorporating different
attention mechanisms.

Model Precision Recall mAP50

YOLO11n 93.70% 91.20% 94.60%

YOLO11-SE 93.90% 92.00% 95.80%

YOLO11-CA 94.10% 91.60% 95.50%

YOLO11-SA 93.70% 90.90% 95.10%

YOLO11-CBAM 94.20% 92.30% 96.40%
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ATW.The color space conversion of the processed image is carried

out to convert the image from RGB color space to Lab color space,

which is beneficial to weaken the interference of external factors and

highlight the color differences. Subsequently, the reference color is

defined, and four representative colors in the heat map, namely, red,

yellow, green and blue, are selected as the weight benchmarks, and

the colors on the heat map are grouped into the four benchmark

colors according to the principle of approximation.Each base color is

assigned a weight for the temperature it represents in the heat map,

with red representing the highest temperature with a weight of 1.0,

and red and its neighboring colors proportionally assigned a weight

of 0.8 to 1.0. Yellow and its similar color family are proportionally

assigned a weight of 0.6 to 0.8; green and its similar color family are

assigned a weight of 0.4 to 0.6; and blue, as the lowest temperature

representative, is assigned a weight of 0. On this basis, the

CIEDE2000 color difference formula is used to compute the color

difference between each pixel of the image and the reference color in

Lab space, and the dynamic weight interpolation function is used to

compute the weight values.The ATW value is obtained by

accumulating the whole image pixel weights and dividing by the
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total number of whole image pixels. The higher ATW finally obtained

indicates that the overall temperature of the image is higher; on the

contrary, it indicates a lower temperature, which effectively reflects

the differences in the temperature distribution of the thermogram

and provides a quantitative means for the comparison of the model

efficacy.The formula of ATW is shown in Equation 7.

ATW =
1
No

N

i=1
o
c∈C

wic · I dic, cð Þ
 !

(7)

where N is the total number of pixels in the image, C is a set of

predefined reference colors, dic denotes the CIEDE2000 color

difference between the ith pixel and the reference color c, wic

denotes the weight of each color C on each pixel i calculated based

on the color difference dic, and I(dic,c) is an exponential function

with the value of 1 when the color c is the closest reference color of

the pixel i, and the otherwise the value is 0.

Analysis of Figure 10a reveals that the YOLO11-CGB model

exhibits a significantly larger activation area on Chinese cabbage

seedling features compared to the YOLO11n model, with the color
(a) (b) 

(c) (d) 

FIGURE 9

Detection tests under different simulated environmental conditions. (a) Direct sunlight scenario. (b) Dim lighting scenario. (c) Foggy weather.
(d) Noise interference.
TABLE 5 Comparison of model improvement results.

Model
Number of

targets detected
Number of

missed detections
Probability of

missed detection
Number of

false detections
Probability of
false detection

YOLO11n 833 106 11.4% 9 1.0%

YOLO11-CGB 926 7 0.8% 3 0.3%
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tending towards higher temperatures. This indicates that YOLO11-

CGB responds more sensitively and effectively to features than its

YOLO11n counterpart. From Figure 10b, it can be observed that the

activation area of YOLO11n is more focused on the leaves,

representing the model’s tendency to capture leaf features. In

contrast, YOLO11-CGB focuses on the overall features of the

Chinese cabbage seedling, with a more comprehensive activation

area, thereby enhancing the model’s generalization. This

improvement reduces the impact of environmental variables and

provides better resistance to weed interference in both models.

The Average Temperature Weight (ATW) values of YOLO11-

CGB are notably higher than those of YOLO11n in both figures.

Specifically, there is a 4.77% increase in ATW in Figure 10a,

corresponding to a 32.8% enhancement, and a 5.86% increase in

ATW in Figure 10b, equating to a 45.1% enhancement. These

results signify that the network modifications have markedly

bolstered the extraction of key features within the images. The

improved ATW values reflect a substantial enhancement in the

network’s capacity to discern and process critical information, with

a heightened focus on pivotal regions. Additionally, these results

demonstrate the network’s improved sensitivity, enabling it to more

effectively differentiate between crucial features and background

noise, thereby augmenting the overall performance of the model.
4 Discussion

YOLO11-CGB can realize the task of fast and accurate

inspection of Chinese cabbage seedlings, and the volume of the

model and the detection speed are both limited to a superior range.

Most of the precision spraying robots in the current research

capture images in vertical direction (Ye et al., 2023; Sun et al.,
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2024; Jiang et al., 2024), this image capture method can reduce the

pressure of the detection algorithm, but it will likewise limit the

movement speed of the robot, resulting in many precision spraying

robots being limited to 0.5m/s (Zheng et al., 2023; Hu et al., 2022).

This study not only incorporates images in the vertical

direction, but also focuses on high and large-angle distal Chinese

cabbage seedling recognition, and the better distal recognition effect

can enable the model to buy more time for the robot after being

applied to the precision spraying robot, providing favorable support

for improving the robot’s operation speed.

In future research, we will continue to further develop the

Chinese cabbage seedling detection model, focusing on expanding

the number and variety of weeds in the dataset to enhance the

model’s resistance to a broader range of weeds. Additionally, we will

incorporate a target tracking function into the model to prevent the

repeated spraying of the same Chinese cabbage seedling during

pesticide application. We will deploy the model on mobile devices,

integrating precision spot-spraying equipment with an autonomous

walking chassis, thus providing further technical support for the

research of precision spraying robots.
5 Conclusions
1. To enhance the detection of Chinese cabbage seedlings in

agricultural settings, we propose an advanced YOLO11-CGB

model. This model incorporates a Convolutional Block

Attention Module (CBAM) within its backbone network,

augmenting its capability to discern key features amidst

complex backgrounds. Additionally, the neck network

employs a simplified Bidirectional Feature Pyramid

Network (BiFPN), which effectively boosting feature fusion
Original image YOLO11n YOLO11-CGB

（a） ATW=9.79% ATW=14.56%

（b） ATW=7.14% ATW=13.00%

FIGURE 10

Model detection thermograms. (a) Standard state. (b) With weed interference.
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Fron
efficiency, thereby enhancing detection accuracy, reducing

the model’s computational load, and increasing detection

speed.A notable innovation in the YOLO11-CGB model is

the substitution of standard convolutional modules in the

backbone network with GhostConv modules. This

adjustment markedly diminishes the model’s size and

optimizes computational efficiency without compromising

accuracy. The optimized model has a compact parameters of

just 3.2 MB and a computational demand of 4.1 GFLOPS,

rendering it highly suitable for real-world deployment in

precision spraying robots.

2. To rigorously assess the YOLO11-CGB model’s efficacy, we

curated a specialized dataset of Chinese cabbage seedlings

captured in natural settings. This dataset encompasses a

diverse array of images showcasing seedlings from various

angles and heights, set against backgrounds with multiple

disturbances. We enhanced the dataset using image

processing techniques such as affine transformations, color

warping, Gaussian noise addition, Cutout, and Mosaic. The

YOLO11-CGB model demonstrates exceptional

performance on this dataset, achieving a precision of

94.7%, a recall of 93.0%, and a mean Average Precision

(mAP) of 97%. These metrics reflect improvements of 1.0%,

1.8%, and 2.4%, respectively, over the baseline YOLO11n

model. Additionally, the model boasts a rapid detection

speed of 7 milliseconds, underscoring its high accuracy and

efficiency in detection tasks.

3. To objectively assess and visualize the class-activated

thermograms of the YOLO11-CGB model, both pre- and

post-improvement, we introduce an Average Temperature

Weight (ATW) as a quantitative metric. This index serves to

evaluate the efficacy of the thermograms. Through this

approach, we conducted a thorough numerical and visual

analysis of the model’s class-activated thermograms. The

findings indicate a significant enhancement in the ATW of

the improved model, registering an increase of 32.8%-45.1%.

This improvement suggests that the YOLO11-CGB model

exhibits a more refined feature extraction capability. The

outstanding performance of the YOLO11-CGB model not

only provides critical technical support for the development

of precision spraying robots but also offers valuable insights

for the advancement of precision agriculture technologies.
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