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SeqSNP-based genic markers
reveal genetic architecture
and candidate genes for low
nitrogen tolerance in tropical
maize inbred lines
Pearl Abu1, Baffour Badu-Apraku2, Beatrice Elohor Ifie1,3*,
John Saviour Yaw Eleblu1, Georgina Lala Ehemba1,
Pangirayi B. Tongoona1 and Samuel Kwame Offei1

1West Africa Centre for Crop Improvement, University of Ghana, Accra, Ghana, 2International Institute
of Tropical Agriculture (IITA), Ibadan, Nigeria, 3Institute of Biological, Environmental and Rural
Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
Maize production in sub-Saharan Africa (SSA) faces significant challenges due to low

soil nitrogen. To enhance breeding efficiency for low nitrogen tolerance, identifying

quantitative trait loci (QTLs) in tropical germplasm is crucial to facilitate marker-

assisted selection (MAS). In this study, gene targeting markers (GTM) derived from

sequence-based single nucleotide polymorphisms (SeqSNP) were utilized to analyse

the population structure and identify potential candidate genes associated with

tolerance to low nitrogen. A total of 150 extra-early quality protein maize (QPM)

inbred lines were assessed under both low (LN) and high (HN) nitrogen, followed by

genotyping with 2,500 SeqSNPs targeting genes previously reported for LN

tolerance-related traits. Population structure analysis revealed six sub-populations.

Association mapping analysis revealed 15 significant single nucleotide

polymorphisms (SNPs) linked to several key traits. Specifically, two SNPs each

were associated with the low nitrogen base index (LNBI), which combines grain

yield with other agronomic traits under low nitrogen, and the low nitrogen tolerance

index (LNTI), a measure of grain yield performance in high nitrogen environments

relative to low nitrogen environments. Additionally, one and ten SNPswere identified

for grain yield under low and high nitrogen conditions, respectively. The two SNPs

associated with LNTI were found to co-localize a potential gene hotspot,

GRMZM2G077863, which belongs to the GDSL esterase/lipase gene family and is

highly expressed in the roots of young seedlings six days after planting and during

tassel meiosis prior to flowering. Additionally, several other putative genes were

identified across different chromosomes: GRMZM2G026137 andGRMZM2G004459

on chromosome 1, GRMZM2G111809 on chromosome 2, GRMZM2G380319 on

chromosome 3, GRMZM2G442057 and GRMZM2G080314 on chromosome 6,

GRMZM2G011213 and GRMZM2G090928 on chromosome 8, and

GRMZM2G338056 and GRMZM2G150598 on chromosome 9. The genes are

involved in several functions including normal growth, tassel meiosis, root

architecture, cell proliferation, cell growth, reproduction, and post-embryonic

development. We report PZE-103012466, a marker co-localizing
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2025.1558741/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1558741/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1558741/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1558741/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1558741/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2025.1558741&domain=pdf&date_stamp=2025-05-30
mailto:bifie@wacci.ug.edu.gh
mailto:bei1@aber.ac.uk
https://doi.org/10.3389/fpls.2025.1558741
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2025.1558741
https://www.frontiersin.org/journals/plant-science


Abu et al. 10.3389/fpls.2025.1558741

Frontiers in Plant Science
GRMZM2G380319, which was previously found to be associated with root

elongation, as a useful marker for breeding low soil nitrogen tolerance in tropical

germplasm. The validation of these markers and candidate genes in other

populations could make them useful for MAS in breeding for nitrogen tolerance.
KEYWORDS

maize, low soil nitrogen, high soil nitrogen, gene targeting markers, population
structure, candidate genes, SeqSNPs
1 Introduction

Nitrogen (N) is an essential soil nutrient required in a relatively

high supply to support several critical growth and developmental

functions in cereal crops (Qiu et al., 2015; Morosini et al., 2017).

Nitrogen is a major component of nucleic acids and is involved in

several functional processes such as protein synthesis,

photosynthesis, and carbohydrate production (Bänziger et al.,

2000). In maize, nitrogen deficiency causes retarded leaf

development and accelerated leaf senescence, resulting in lower

leaf area indices, leading to decreased photosynthetic capacity and

reduced grain yield (Bänziger et al., 2000; Asibi et al., 2019). Low

soil nitrogen (LN) related yield losses range between 10-50% but

can reach 90%, especially when it co-occurs with other stresses such

as drought (Obeng-Bio et al., 2019).

Despite the significant relationship between N and maize

productivity, N is highly limited in most soils globally. Africa has

the most severe case of LN-related yield loss of 80%, largely because

of the intrinsically marginal soil nutrient conditions and inadequate

investment by governments in addressing abiotic stress constraints

(Bänziger et al., 2006). This problem is further aggravated by

farmers’ inability to afford soil replenishment interventions such

as organic and inorganic fertilizers (Morosini et al., 2017). Thus,

farmers continue to cultivate maize at suboptimal nitrogen levels

below the 90–120 kg ha-1 recommended rate (Das et al., 2019),

resulting in low yields. The development of LN-tolerant varieties

that can produce substantial yields under the prevailing N

conditions in smallholder farmers’ fields in sub-Saharan Africa

(SSA) is deemed the most appropriate approach, as it is cost-

effective, sustainable and easily integrated into farming systems.

Breeding for LN tolerance is complex because the trait is

controlled by multiple genes (Gallais and Hirel, 2004; Morosini

et al., 2017), highly influenced by genotype × environment (G × E)

interaction effects, and characterized by lower grain yield

heritability estimates (Bänziger et al., 2000; Badu-Apraku et al.,

2004). Furthermore, grain yield, which represents the economically

significant trait in breeding for LN tolerance, is moderated by many

quantitative trait loci (QTLs), making per se performance-based

selection under field conditions less efficient. Therefore, many

breeding programmes have employed secondary traits such as

stay-green characteristics, number of ears per plant, anthesis–
02
silking interval (ASI) and ear aspect due to their relatively higher

heritability and strong correlation with grain yield under abiotic

stress (Bänziger et al., 2000; Badu-Apraku et al., 2011). Nonetheless,

most of these traits are only measurable post-flowering and

harvest, limiting their usefulness in breeding programmes

especially for pre-flowering selection, to enable targeted crossing

of desirable genotypes.

Molecular markers have been useful for dissecting the genetic

structure of populations, studying the genetic relationship between

related and distant populations and enabled the application of

genomic selection and association mapping studies to accelerate

the breeding of complex traits such as grain yield. Marker-assisted

selection (MAS) offers an accelerated and effective selection strategy

for crop improvement programmes in breeding for biotic and

abiotic stresses. Marker-assisted breeding increases selection

efficiency through reduced environmental influence, and saves

cost due to the possibility of integrating pre-flowering data to

enable controlled crosses (Massman et al., 2013). However, the

efficiency of MAS for the introgression of relevant genomic regions

into available tropical populations depends on the availability of

markers with significant association to QTLs related to the target

trait and their reliability in specific genetic backgrounds.

Genome-wide association studies (GWAS) employed in various

research to identify genomic regions and candidate genes have

improved the efficiency in selection for biotic and abiotic traits in

maize breeding programmes. Many researchers have integrated

GWAS to identify QTLs for days to flowering (Wallace et al.,

2016), aflatoxin resistance (Farfan et al., 2015), Striga resistance

(Adewale et al., 2020), drought tolerance (Yuan et al., 2019),

provitamin A content (Azmach et al., 2013), and heat stress

(Longmei et al., 2021). Several QTLs have also been reported for

LN stress-related traits. For instance, Morosini et al. (2017)

identified seven significant markers for nitrogen use efficiency

(NUE) in sixty-four inbred lines of tropical ancestry and reported

seven putative candidate genes involved in biological processes

related to nitrogen synthesis and recycling. Bhadmus et al. (2022),

in a study with tropical quality protein maize (QPM) inbred lines

developed under the maize improvement programme (MIP) of the

International Institute of Tropical Agriculture (IITA), reported 40

SNP markers that were significantly associated with NUE. The

authors also identified putative candidate genes that contributed
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significantly to nitrogen uptake and biosynthesis, normal plant

growth and development, and disease resistance. Ertiro et al.

(2020) found 83 SNP that were associated with yield related traits

under LN and optimal environments in tropical inbred lines from

the International Maize and Wheat Improvement Center

(CIMMYT). The authors reported pleiotropic effects of some

SNPs for several traits and identified 136 putative candidate genes

under LN and optimal growing conditions, four of which are

involved in important biological functions related to shorter ASI.

Other studies have also mapped QTLs for LN tolerance by using

linkage mapping analysis (Cai et al., 2012; Mandolino et al., 2018;

Ribeiro et al., 2018).

Even though several QTLs for LN tolerance have been

identified in different populations with varying genetic

backgrounds, their relevance for MAS is often limited to specific

populations and agro-ecologies and, hence may not be applicable

to other germplasm (Ribeiro et al., 2018). Therefore, to effectively

integrate or introgress the reported QTLs for accelerated breeding

of LN tolerant varieties through MAS, their availability and

significance in our tropical QPM maize germplasm is necessary.

Currently, under the MIP of the IITA, we have a collection of 160

QPM inbred lines that are useful genetic resources that could be

exploited in breeding for LN tolerance. However, there are no

available markers to enable the integration of MAS, hence, it is

crucial to identify molecular markers and candidate genes that are

associated with nitrogen use efficiency (NUE) to optimize

selection for genetic gains in our population which can also be

applied in other tropical backgrounds.

Gene targeting markers (GTMs) are a class of molecular

markers that targets specific genes in the genome (Poczai et al.,

2013). When GTMs are positioned inside coding regions for a target

gene of interest, they are more informative compared to non-genic

markers which rely solely on their expected associations with the

target genes or loci (Osterman et al., 2021). By designing SNPs that

are located within coding sequences, it is expected that the

probability of accurately describing the genetic diversity within

and between population with respect to a specific trait of interest

would increase (van Tienderen et al., 2002).

SeqSNP is a refined form of targeted genotype by sequencing

(targeted GBS) technique used to genotype known highly

polymorphic SNPs in a target crop. Unlike whole-genome

sequencing via the GBS technique, SeqSNP, which is a GTM

technique, relies on a probe library design that surrounds a

targeted SNP sequence. This offers flexibility in SNP sequence

selection, ultimately allowing breeding programmes to focus on

the genomic regions that are relevant to the target trait. In

circumstances where desirable SNPs for a specific trait are not

available, de novo SNPs candidate gene identification can be

achieved via allele mining of available genomic resources of the

crop of interest (Osterman et al., 2021). Subsequently, the

importance of these novel SNPs for a particular genetic resource

can be tested through population structure, based on which a core

set of SNPs could be identified for improving the genetic resource

through MAS. The availability of publicly accessible sequence data
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for maize in the maize genome database (Andorf et al., 2010)

enabled the application of the SeqSNP for our studies. At the time of

this study, the latest genome was the B73 reference genome

assembly (Schnable et al., 2009) version 3; the annotations and

assemblies enabled the determination of gene sequences and SNP

markers targeting LN tolerance related traits in our inbred lines.

Using gene-targeting SNPs located within coding sequences for

association mapping studies, together with phenotypic information

on LN tolerance, markers with strong association to the traits could

be identified in our tropical QPM population for efficient MAS and

could be applied in other tropical populations. Therefore, the aim of

this research was to determine SNP markers and candidate genes

that are significantly linked to LN tolerance and yield-related traits

in the tropical QPM inbred lines.
2 Materials and methods

2.1 Genetic material

This study used 160 extra-early QPM inbred lines obtained

from the maize improvement programme (MIP) of the

International Institute of Tropical Agriculture (IITA). They

consisted of 53 yellow, 57 orange, and 50 white QPM inbred

lines. These selected lines were considered to be diverse enough

for the marker traits association study because they were extracted

from three different stress tolerant populations and are of different

endosperm colours.
2.2 Phenotyping under low and high soil
nitrogen

The lines were screened under low (LN) and high (HN) nitrogen

field conditions during the major and minor growing periods of 2019

in Ghana. The trials were conducted in three locations; the Research

Farm of the West Africa Centre for Crop Improvement (WACCI),

University of Ghana Legon (5° 38–45 N lat., 00° 11–13 E long.)

during the minor growing season, the Crop Research Institute (CRI)-

Fumesua (6°41′ N lat., 1°28′ W long.) during both the major and

minor growing seasons, and at Ejura (70 40N and10 39W) during the

minor growing season. Location-by-season combinations were

considered as environment, which resulted in four (Legon,

Fumesua-major season, Fumesua-minor season and Ejura-minor

season) and three (Fumesua-major season, Fumesua-minor season

and Ejura-minor season) environments for the LN and HN

experiments, respectively. The soils in all experimental fields were

planted with maize at a high population density for at least one

growing season to deplete N and achieve N levels ≤ 0.2% (Landon,

1991). After the depletion, soil samples were taken for laboratory

analysis following the procedure described by Bremner and

Mulvaney (1982). The soil analysis revealed low nitrogen levels of

0.04%, 0.05% and 0.16% at the Ejura, Legon and Fumesua

experimental sites respectively.
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The experiment was arranged in a 10 × 16 alpha lattice design

and was replicated twice. A 4 m long plot size having 0.4 m intra-

row spacing and 0.75 m inter-row spacing was adopted. Initially,

three seeds were planted in each hole but was reduced to two plants

at two weeks after planting to achieve 66,666 plants per hectare for

the experiment. The LN trials were supplied with a quantity of

fertilizer (urea) based on the levels reported in the soil analysis to

bring the level to 30 kg N ha-1 while the HN trials were fertilized

with 90 kg N ha-1. In both the HN and LN trials, nitrogen fertilizer

was applied when the plants were two and five weeks old. All

experiments received phosphorus as triple super phosphate and

potassium applied as muriate of potash at 60 kg ha-1 each.
2.3 Phenotypic data collection

Data were collected as described by Badu-Apraku et al. (2016).

Briefly, days to anthesis (DA) were recorded as the number of days

from planting to when 50% of the plants in a plot had shed pollen.

Days to silking (DS) were obtained as the number of days from

planting to when 50% of the plants in a plot produced silk. The

anthesis silking interval (ASI) was estimated as the difference between

DS and DA. Stay-green characteristics (STGR) and plant aspect (PA)

were scored 70 days after planting (DAP). The STGR was scored

based on leaf senescence using a scale of 1–9, where 1 = 0–10% dead

leaf area and 9 = 91–100% dead leaf area. PA was scored on a scale

of 1–9, where 1 = excellent plant phenotypic appearance and 9 =

poor plant phenotypic appearance. The number of ears per plant

(EPP) was calculated by dividing the number of ears harvested per

plot by the number of plants harvested. The ear aspect (EA) was

scored at harvest, after removing the husk, on a scale of 1–9, where

1 = uniform, well-filled, large, and disease-free ears, and 9 =

undesirable ear features. Grain yield (kg ha-1) in each plot was

calculated using the grain weight (kg), the shelled weight of

harvested ears per plot, and moisture content of the shelled ears

and 15% adjusted moisture content. Two methods were used to

determine LN tolerance in this study. The first method employed

the low nitrogen base index (LNBI) according to Badu-Apraku

et al. (2011) as indicated below;

LNBI = 2� GYLD + EPP + ASI + PA + EA + STGR

Where GYLD is grain weight, EPP is number of ears per plant,

ASI is anthesis-silking interval, PA is plant aspect, EA is ear aspect

and STGR is stay-green characteristics. Under this index, the higher

the LNBI, the greater is the tolerance of the line to LN stress. The

second method employed a low nitrogen tolerance index (LNTI)

proposed by Miti et al. (2010), using grain yield in each replication

under HN and LN within the same environment;

LNTI = 1 −
GY(LN)ij
GY(HN)ij

 !
�   100

GY(LN)ij denotes the GY recorded in a LN environment of the ith

line in the jth replication; GY(HN)ij denotes the GY of the ith line in

a HN environment in the jth replication. In this index, a lower LNTI

value indicates greater tolerance to LN stress.
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2.4 Genotyping of inbred lines

Leaf samples were collected from 150 inbred lines instead of the

160 lines phenotyped for genotyping because ten of the lines were

lost in the nursery due to poor germination. The leaf samples were

sent to LGC genomics, Germany for genotyping via the targeted-

genotyping-by-sequencing (SeqSNP) platform (https://

www.biosearchtech.com/services/sequencing/targeted-genotyping-

by-sequencing-seqsnp). The SeqSNP technology, which uses gene

targeting markers, enabled the selection of important SNPs

targeting QTLs and genomic regions relevant to the traits of

interest. The markers selected for this study targeted SNPs located

within or adjacent to QTL positions originally reported for grain

yield and LN tolerance traits, such as STGR, ASI and plant height in

QTL mapping studies or GWAS (Almeida et al., 2013; 2014; Nair

et al., 2015; Trachsel et al., 2016; Bouchet et al., 2017; Mandolino

et al., 2018; Morosini et al., 2017; Ribeiro et al., 2018; Ju et al., 2018)

(Supplementary Table 1). For QTL studies employing simple

sequence repeat (SSR) markers, the physical positions of SSR

markers associated with relevant QTLs were obtained from the

maize genome database (Lawrence et al., 2004; https://

www.maizegdb.org/) to guide the selection of SNPs within or

adjacent to these QTLs. A total of 2,500 SNPs were chosen from

the 50 K maize SNP genotyping array developed by Ganal et al.

(2011). Out of the 2500 markers, 90 SNPs with exact positions, as

previously reported for QTLs were found in the 50 K array. To

ensure that the relevant QTLs were targeted, 2000 SNPs were

selected close to (two markers each upstream and downstream)

the previously reported QTL positions because the exact SNP

positions were not available in the 50 K array. Additionally, 410

random markers distributed across the ten chromosomes were

selected for possible discovery of novel QTLs within the tropical

QPM populations used for this study.
2.5 Data analysis

2.5.1 Phenotypic data analysis
Analysis of variance was performed for all traits via the multi-

environment trait analysis with R for windows (META-R) software

(Alvarado et al., 2016). The Restricted Maximum Likelihood/Best

Linear Unbiased Predictor (REML/BLUP) was used to estimate the

predicted means of the inbred lines for each trait under the LN and

HN conditions. For the mixed model, the effects of environments

were considered as fixed, while replication within blocks, block

within replication, genotype, and genotype × environment were

considered as random.

The statistical model underlying the predicted means was;

y = Xe + Ur + Zg +Wb + Ti + e

In this model, y denotes the vector of phenotypic values of the

inbred lines for the traits under LN and HN, e denotes the main

effects of environments, r represents the effects of replications

within environments, g denotes the genotype effect, b is the effects

of blocks within replications, i is the effects of genotype ×
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environment interaction, and e represents experimental error. X, U,

Z, W and T represent the incident matrices for the independent

effect vectors (g, r, b, e and i) on the dependent vector y. Genotypic

and phenotypic variance components BLUP estimates were

employed to compute the broad sense heritability (H2) for all traits;

H2 = s 2
g=(s

2
g+ s 2

ge=e+ s 2
e=re)

s2
g represents the genotypic variance, s2

ge represents the

variance due to genotype x environment interaction, s2
e

represents the error variance, e represents the number of

environments and r is the number of replicates per environment

(Knapp et al., 1985). Furthermore, genetic correlations among traits

were estimated using correlation between BLUPs for the

different traits.

2.5.2 Genotypic and association mapping data
analysis

SNPs having missing data above 10% were not included in the

analysis. Additionally, SNPs having minor allele frequency (MAF)

below 5% were excluded since markers with low MAF could result

in false-positive associations. The filtering was done in TASSEL

version 5.2.53 (Bradbury et al., 2007). Only SNPs with call rate >

90% were retained. PowerMarker version 3.25 (Liu and Muse, 2005)

was used to estimate polymorphic information content (PIC),

heterozygosity, gene diversity and major allele frequency (MaF)

for all the markers. Further quality control was done by removing

all SNPs with heterozygosity above 20%. After filtering and other

quality control procedures, 1,660 markers were retained for further

analysis. An unrooted neighbor-joining (NJ) tree was generated

using the Nei’s method (Nei and Takezaki, 1983) through 1000

nonparametric bootstraps replicated across several loci. The tree

was subsequently viewed in the Molecular Evolutionary Genetics

Analysis (MEGA) software X (Kumar et al., 2018) and edited in

Figtree software version 1.4.4 (Rambaut, 2018). To determine the

population structure, the admixture procedure of STRUCTURE

software version 2.3.4 was used. The K, which indicates the number

of clusters, was originally set from 1–12 which was run ten times

with 10,000 burn-ins and 10,000 Markov Chain Monte Carlo

(MCMC). Results from this analysis were fed into STRUCTURE

HARVESTER (Evanno et al., 2005) to determine the best K, based

on which the inbred lines were grouped into clusters using a

threshold of 70% and those that fell below the threshold were

grouped as admixture (Lu et al., 2009; Yang et al., 2011). Marker-

trait association analysis was performed using the Q+K model with

the mixed linear model procedure in TASSEL version 5.2.53

(Bradbury et al., 2007). The principal components (PC1 and

PC2), together with the population structure (Q matrix)

accounted for population stratification while the kinship matrix

(K) accounted for relationships among the lines using the following

model;

y = Xb + Zu + e

y represents the vector of phenotypes, b represents a vector of the

overall mean and the fixed effect estimate of each SNP, u is a vector of

the additive genetic background effects of a random line, X and Z
Frontiers in Plant Science 05
denotes incidence matrices and e represents a vector of random

residuals. The conservative Bonferroni correction factor –log10

(p-value) = 7 was considered too strict for determining significant

associations in this study, given that most (83.6%) of the SNPs used

were located within or adjacent to QTLs previously identified for the

trait of interest. A threshold of –log10 (p-value) = 3 was adopted to

avoid losing potentially important genomic regions to a stricter

threshold. A similar threshold has been adopted in previous studies

(Liu et al., 2016; Alves et al., 2019).

2.5.3 Candidate gene discovery
Candidate genes co-localizing or adjacent to genomic regions

for significantly associated SNPs were determined based on the B73

reference genome assembly (Schnable et al., 2009) version 3. The

maize genome database (Maize GDB) genome browser tool (Andorf

et al., 2010), accessible at https://www.maizegdb.org/gbrowse/

maize_v3 was used for candidate gene discovery. Only genes co-

localizing with or positioned near significant SNPs within a

maximum of one kilo base pair (1kb) sliding window were

considered as candidate genes. Transposable elements were not

considered in this study. Furthermore, putative functional

annotations of the candidate genes were retrieved via Phytozome

(Goodstein et al., 2012) using Phytozome 12, version AGPv3 - Zea

mays Ensembl-18.
3 Results

3.1 Phenotypic variation and genetic
correlation

In LN environments, significant genotypic variations were

detected among the inbred lines for all the measured traits

(Table 1). The results of the heritability analysis demonstrated

moderate to high values for most measured traits in the LN

environments with GY having 65%. Genotype × environment (G

× E) interaction variances were significant for all measured traits

except GY. Considering the HN environments, genetic variations

among the inbred lines were significant for all measured traits,

however, variances for the G x E suggested significant differences for

all the measured traits including GY. The estimated heritability

values displayed moderate to high values for majority of the

measured traits with heritability of GY estimated as 79%. In the

LN environments, STGR ranged between 3.5 – 7.2 while it was 2.5 –

4.8 under HN environments (Supplementary Table 2). Genetic

correlations among traits were significant for most pairwise traits

in LN and HN environments. In the LN environments, GY had a

positive genetic correlation with EPP, however, the correlation

between GY and ASI, PA and EA were negative and significant

(Table 2). Although the correlation between GY and ASI, EA and

PA were negative, it was desirable in this context because shorter

ASI, excellent EA and PA resulted in increased GY. No significant

correlation was detected between GY and STGR under LN.

Considering the genetic correlation among traits in the HN

environments, the correlation between GY and EPP was positive
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and significant, while GY had a negative and significant correlation

with STGR, PA, and EA.
3.2 Summary statistics for SNP markers

Among the 1,660 SNPs, the base pair changes were A/C (192), A/

G (631), A/T (15), C/T (621), T/G (172) and G/C (29). A/G and C/T
Frontiers in Plant Science 06
represented the highest base pair transitions among the SNP,

accounting for 38.0% and 37.4%, respectively. The distribution of

SNPs per chromosome varied between 117 for chromosome 7 to 334

for chromosome 1. The minor allele frequency of 64.9% of the SNPs

used for the study was >0.02. The major allele frequency varied

between 0.48 to 0.95 (mean = 0.73); the heterozygosity of the markers

varied between 0.00 and 0.19 (mean = 0.07); the polymorphic

information (PIC) varied between 0.09 and 0.56 (mean = 0.29).
TABLE 2 Genetic correlations coefficients of different traits with grain yield in LN environments.

Traits ASI STGR Plant aspect Ears per plant Ear aspect

Low N environment

STGR -0.1

Plant aspect -0.26** 0.59**

Ears per plant -0.82** -0.24 -0.01

Ear aspect 0.44** -0.19 -0.01 -0.49**

Grain yield -0.43** 0.15 -0.26** 0.29** -0.31**

High N environment

STGR 0.20**

Plant aspect 0.28** 0.54**

Ears per plant -0.67** -0.50** -0.66**

Ear aspect 0.09 0.52** 0.50** 0.24**

Grain yield -0.08 -0.41** -0.56** 0.32** -0.26**
STGR, stay-green characteristic. **(p ≤ 0.01)
TABLE 1 Estimates of variance components and heritability for traits under low nitrogen (LN) and high Nitrogen (HN) Conditions.

Traits
Variance components

Heritability (H2) Range
s2p s2g s2gxe s2error

LN Environment

ASI 0.865 0.437** 0.792** 1.843 0.5 1.6 - 6.0

STGR 10 WAP (1-9) 0.41 0.277** 0.174** 0.72 0.67 3.5 -7.2

Plant aspect (1-9) 0.236 0.074** 0.307** 0.684 0.31 3.9 - 6.4

Ears per plant 0.017 0.006** 0.028** 0.031 0.37 0.2- 1.0

Ear aspect (1-9) 1.038 0.444** 1.117** 2.514 0.43 3.3 - 7.3

Grain yield (kg ha-1) 72093 57206** 9480ns 100142 0.65 151 -1349

High N Environment

ASI 0.182 0.103** 0.002ns 0.468 0.57 1.3 - 2.8

STGR 10 WAP (1-9) 0.172 0.090** 0.050* 0.392 0.52 2.5 - 4.8

Plant aspect (1-9) 0.237 0.107** 0.095** 0.593 0.45 2.7 - 4.9

Ears per plant 0.037 0.022** 0.014** 0.064 0.59 0.5 - 1.2

Ear aspect (1-9) 1.504 0.594** 1.889** 1.682 0.4 3.2 – 6.1

Grain yield (kg ha-1) 133025 86930** 64515** 147540 0.79 258 - 1681
STGR, stay-green characteristics; s2p, phenotypic variance; s2g, genotypic variance, s2gxe, genotype × environment interaction variance; s2error, error variance; *(p ≤ 0.05); **p ≤ 0.01); ns
(not significant).
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3.3 Genetic relationship and population
structure

The population structure analysis revealed the peak of the

ad hoc K as K= 6, which indicated that the inbred lines belonged

to six distinct populations (Figure 1b). Sub-populations 1 to 6

consisted of 15 (10.0%), 20 (13.3%), 2 (1.3%), 43 (28.7%), 13 (8.7%)

and 11 (7.3%) genotypes, respectively, which represented 69.33% of

the lines. Forty-six (46) genotypes (30.67%) were classified as mixed

populations because their probability of association was less than

the 70% threshold for any specific population. The classification of

the genotypes into sub-populations followed a pattern that could be

attributed to the ancestry, pedigree and endosperm colour except

for sub-population 3 which had mixed endosperm. Sub-population

1 consisted solely of inbred lines of yellow endosperm; sub-

population 2 had 6 orange with 14 genotypes having yellow

endosperm lines; sub-population 3 had yellow endosperm only;

sub-population 4 had solely white lines; sub-population 5 was

composed solely of white genotypes; sub-population 6 was

composed of orange lines only. The estimated mean fixation

index (FST), which indicated the extent of divergence in each of

the six sub-populations were given as 0.87, 0.43, 0.54, 0.63, 0.77 and

0.74 for populations 1 to 6 respectively. The unrooted neighbor-

joining phylogenetic tree displayed six clusters similar to the

population structure analysis, although the genotypes that
Frontiers in Plant Science 07
constituted the individual cluster in the NJ tree were different

from those in the population structure analysis (Figure 2). Cluster

1 consisted of 43 inbred lines that were all from the yellow

endosperm sub-population; cluster 2 also had 7 yellow

endosperm lines; cluster 3 had 15 (2 yellow and 13 orange

endosperm lines); cluster 4 had 12 (1 yellow and 11 orange);

cluster 5 had 58 (10 orange, 47 white and 1 yellow); and cluster 6

had 16 (1 yellow and 15 orange). In comparing the clustering

pattern in the structure analysis and the phylogenetic tree to the

performance under LN and HN, no specific patterns were detected.
3.4 Association mapping

Fifteen SNPs that reached a threshold of –log10 (p-value) = 3

were identified for the traits studied (Figure 3). Under LN, two SNPs

each were found to have a significant association with LNBI and

LNTI, respectively, while a single SNP had significant association

with GY in the LN environments. In contrast, ten SNPS were found

to have significant association with GY under the HN conditions.

Two out of the 15 SNPs were located on chromosome 1, three were

located on chromosome 2, one on chromosome 3 and three each on

chromosomes 6, 8 and 9 respectively. However, no coincidental

markers were detected for the traits. The significant SNPs had

minor allele frequencies ranging from 10% to 50%.
B

A

FIGURE 1

(A) A bar plot of population structure analysis revealing six sub-populations based on SNP markers. (B) A graph indicating the best K according to the
Evanno method based on which the genotypes were classified into sub-populations at k = 6 via SNP markers.
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FIGURE 2

Phylogenetic tree depicting the clustering of the inbred lines into six distinct groups based on SNP markers via the Nei’s method.
FIGURE 3

Manhattan plot of key traits under low and high nitrogen conditions; LNBI, low nitrogen base index; LNTI, low nitrogen tolerance index; YIELDLN,
grain yield under low nitrogen; YIELDHN, grain yield under low nitrogen.
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3.5 Candidate gene identification and
functional annotation

Comparing the positions of the 15 significant SNPs to the B73

reference genome version 3 enabled identification of candidate

genes for all the traits. Majority of the SNPs co-localized their

candidate genes, as they were mapped within the genes, with few

exceptions. GRMZM2G380319 and GRMZM2G026137 for LNBI on

chromosomes 1 and 3 were adjacent to their respective SNPs within

500 bp and 1 kbp sliding window, respectively. Candidate genes

GRMZM2G442057 and GRMZM2G338056 for grain yield under

HN were located within 500 bp sliding window. Interestingly,

the two SNPs identified for LNTI on Chromosome 2 were

mapped within the same gene GRMZM2G077863. Similarly, two
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gene host spots, GRMZM2G080314 on chromosome 6 and

GRMZM2G090928 on chromosome 8, were identified for GY

under HN as they both harbored two significant SNPs each

(Table 3). It was observed that all the 15 significant SNPs

detected were located within QTL genomic regions previously

reported. None of the random SNPs selected for this study was

found to be significantly associated with any trait. It was also

striking that all the two SNPs (PZE-101084671 and PZE-

103012466) significantly associated with LNBI had exact names

and position as those reported by previous QTLs studies by Ju et al.

(2018). Functional annotations and the putative protein family were

retrieved for all the candidate genes except GRMZM2G026137 for

LNBI and GRMZM2G111809 for gra in y ie ld in HN

environments (Table 3).
TABLE 3 List of significant SNP markers linked to low nitrogen base index (LNBI), low nitrogen tolerance index (LNTI), and grain yield under low
nitrogen (LN) and high nitrogen (HN) conditions via association mapping.

Trait ChrNo SNP ID
Base
Transition Position P-value

Minor
Allele
Frequency

Candidate
Gene Gene annotation

LNBI 1 PZE-101084671 A/G 73357546 7.72E-04 0.13 GRMZM2G026137 –

LNBI 3 PZE-103012466 T/C 6650941 4.42E-04 0.36 GRMZM2G380319 Putative MCB2 protein

LNTI 2 PZE-102090548 C/T 96081718 2.46E-04 0.12 GRMZM2G077863

GDSL-like lipase/
acylhydrolase
putative expressed

LNTI 2 PZE-102090550 C/T 96086002 2.46E-04 0.12 GRMZM2G077863

GDSL-like lipase/
acylhydrolase
putative expressed

Yield (LN) 2 PZE-102086253 C/T 79050153 1.01E-03 0.34 AC209972.4_FG005 Protein kinase

Yield (HN) 1 SYN27559 T/C 291864105 9.95E-04 0.26 GRMZM2G004459
ATP/GTP/Ca++
binding protein

Yield (HN) 2 SYN259 T/C 211523915 1.68E-04 0.39 GRMZM2G111809 –

Yield (HN)

6 PZE-106083594 G/T 141063673 9.11E-04 0.45 GRMZM2G442057

Tetratricopeptide repeat
(TPR)-like
superfamily protein

Yield (HN)
6 SYN38086 G/A 158286621 9.73E-04 0.48 GRMZM2G080314

ATBARD1/BARD1
putative expressed

Yield (HN)
6 SYN38080 T/C 158287119 9.73E-04 0.48 GRMZM2G080314

ATBARD1/BARD1
putative expressed

Yield (HN)

8 PZE-108014231 C/T 14071576 6.96E-04 0.33 GRMZM2G011213

Mitochondrial
glycoprotein
family protein

Yield (HN)
8 PZA01049-1 A/G 129940935 8.60E-04 0.33 GRMZM2G090928

Transmembrane
uncharacterized protein

Yield (HN)
8 PZE-108074836 T/C 129941989 4.69E-04 0.35 GRMZM2G090928

Transmembrane
uncharacterized protein

Yield (HN)
9 PZE-109016384 G/A 16485622 4.57E-05 0.17 GRMZM2G338056

ZOS11-10 - C2H2 zinc
finger protein expressed

Yield (HN)

9 SYN25338 T/C 143003020 3.93E-04 0.21 GRMZM2G150598

ATP-dependent Clp
protease ATP-
binding protein
ChrNo, chromosome number; LNBI, low nitrogen tolerance base index; LNTI, low nitrogen index.
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4 Discussion

The variances for genotype were significant in both LN and HN

environments for GY andmost traits, which indicated the presence of

genetic variability among the inbred lines and represented a good

genetic basis for identifying genomic regions related to the traits. The

study reported high heritability for GY under HN, which suggests

that the phenotypic variations observed among the inbred lines were

largely due to the effects of genes on the trait relative to the effects of

the environment. The heritability of GY in HN conditions were

higher compared to LN which indicated that the possibility of

identifying relevant genes for high GY in the HN environment was

relatively higher compared to the LN environments. This was

confirmed by the association mapping study which identified 10

significant SNP markers and nine candidate genes for GY in the HN

conditions compared to only one marker and a candidate gene in the

LN conditions. Low to moderate heritability estimates of GY under

non-optimum conditions have been previously reported by other

studies (Bänziger et al., 2000; Badu-Apraku et al., 2004) which

justifies the need to identify markers for enhanced genetic gain

from selection. The existence of significant genetic variance

together with moderate to high heritability for the majority of the

traits indicated a high resolution for the identification of SNPs or

genomic regions associated with the traits (Morosini et al., 2017;

Alves et al., 2019). The significant pairwise genetic correlation

observed between GY and other secondary traits indicated that a

common genetic base could possibly underline the phenotypic

variations observed among the lines. Alves et al. (2019)

demonstrated that traits that exhibit strong pairwise genetic

correlation are controlled by the same genomic regions with

pleiotropic genes or could be due to linkage. It is therefore

anticipated that the significant SNPs detected for LNBI could

enhance progress in breeding for LN tolerance when used together

with the base index in MAS. In this study, higher STGR (delayed

senescence) were observed under the HN compared to the LN

environments which indicated that chlorophyll retention was lower

under N stress. This suggests that plants that demonstrated better

STGR had improved N assimilation and probably possess genes for

improved N uptake. However, different correlation patterns were

observed between GY and STGR under the LN and HN

environments. The correlation between GY and STGR was not

significant under LN environment, however, a significant and

negative correlation was observed under HN environment. This

suggests that retaining chlorophyll in the leaves under stress

conditions does not guarantee that the plant would remobilize the

nitrogen or photosynthate directly for grain filling, hence there was

no benefit for grain filling. The negative correlation observed between

GY and STGR under HN indicates that delayed senescence extends

the period of grain filling thereby, enhancing grain yield under HN

environments. The observed yield penalty of 44% under LN indicated

that the stress imposed was appropriate for the expression of genes

for LN tolerance because it was within the threshold yield loss of 10-

50% reported by Wolfe et al. (1988).
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Understanding the genetic variation between and within

populations is critical for maximizing the potential of germplasm

in breeding programmes and for increasing the selection efficiency

for variety development (Makumbi et al., 2011). In this study, the

grouping of the inbred lines by both the admixture population

structure and cluster analysis into the six sub-population was largely

consistent with the pedigree, ancestry and the endosperm colour of

the three populations. Although the majority of the markers used

were located within or near genomic regions responsible for LN-

related traits hence were expected to discriminate the lines

according to their performance under LN, no such pattern was

detected. The inability of the lines to be grouped according to their

performance under low soil nitrogen conditions conformed with

the results of Xia et al. (2004) and Warburton et al. (2002) who

found that inbred lines from varying populations are more likely to

cluster according to their genetic distances rather than the

environmental performance.

The association mapping analysis identified a set of 15 SNPs for

the four traits studied; ten SNPs were detected for GY under HN.

The higher number of markers associations for GY under HN

relative to GY under LN could be attributed to the high

environmental influence and lower heritability of GY under LN.

The absence of significant coincidental marker associations among

the studied traits was surprising, especially for LNBI and LNTI,

which are both methods of estimating the level of LN tolerance.

This suggested that several genomic regions are responsible for LN

is a quantitatively inherited trait. The higher number of significant

SNP associations for grain yield under HN and the lack of

pleiotropic genetic effects among the traits is corroborated by

reports that grain yield and nitrogen use efficiency are complex

and quantitatively inherited (Kant et al., 2011; Morosini et al., 2017)

and are highly influenced by genotype x environment effects

(Gallais and Hirel, 2004; Morosini et al., 2017).

The 15 significant SNPs identified were positioned within QTLs

previously identified for LN associated traits (Almeida et al., 2013;

2014; Trachsel et al., 2016; Bouchet et al., 2017; Mandolino et al.,

2018; Morosini et al., 2017; Ribeiro et al., 2018; Ju et al., 2018), none

of the random SNPs selected were significantly associated with the

traits. Furthermore, 11 out of the 15 SNPs were mapped within

genes. This suggested that the identified SNPs could be useful in

MAS to integrate these genomic regions into populations to

improve their tolerance to LN and increase the grain yield. The

two SNPs, PZE-102090548 and PZE-102090550, found to have high

significant association with LNTI were mapped to the same

candidate gene GRMZM2G077863, suggesting a gene hotspot for

this trait. This gene encodes a putative protein and is a member of

the GDSL esterase/lipase gene family. The proteins in this family

have been described as multifunctional proteins involved in several

cellular, molecular and biological processes including lipid

metabolic processes (Chepyshko et al., 2012). This gene has been

found to exhibit a high expression pattern in the roots of young

seedlings at approximately 6 DAP and during tassel meiosis just

before flowering (Andorf et al., 2010). Similarly, two SNPs,
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SYN38086 and SYN38080, which had high significant association

with grain yield under high nitrogen condition were mapped to the

gene GRMZM2G080314. The gene is a ATBARD1/BARD1 protein

involved in DNA repair in plants (Reidt et al., 2006). This gene

exhibits high expression patterns in the immature tassel at the

vegetative stage and in the immature cob at flowering (Andorf et al.,

2010). The two SNPs, PZA01049–1 and PZE-108074836, with high

significant association with were mapped to the same gene

GRMZM2G090928. This gene is a putative transmembrane

protein that is known to transport specific substances across cell

membranes and is also involved in plant cell proliferation (Chen

et al., 2003). The gene exhibited a high expression pattern in anthers

during the silking stage at flowering (Andorf et al., 2010). The

candidate gene AC209972.4_FG005, which is associated with grain

yield under LN, belongs to the putative protein kinases family which

are known to regulate the expression of other genes. They act as

switches in cells by phosphorylating target proteins for expression

(McClendon et al., 2014). This gene has been found to exhibit a high

expression pattern in the primary roots of young maize seedlings

around 9 DAP, in the leaves at the five-leaf stage, and during the

yield formation period (Sekhon et al., 2011; Andorf et al., 2010). For

the genes associated with LNBI, functional annotation was not

found for GRMZM2G026137, and no information was available

on the gene ontology. However, the gene has been reported to be

highly expressed in the anthers at the silking stage of the maize plant

(Andorf et al., 2010). The other putative gene, GRMZM2G380319,

was discovered to be significantly associated with LNBI and is an

MCB2 protein that has been previously associated with

transcription regulatory functions (Hunt et al., 2018). However,

the expression of this gene has not yet been linked to any specific

plant part. The candidate gene GRMZM2G004459, associated with

grain yield under HN, is a putative ATP/GTP/Ca++ binding

protein, which is a regulatory protein involved in several

molecular and biological functions. This protein was previously

reported to play a major role in several biological processes,

including cell growth, reproduction and post-embryonic

development (Goodstein et al., 2012). High expression of this

gene in maize has been observed in the primary root post-

emergence and in the immature cob at flowering (Andorf et al.,

2010). GRMZM2G442057, identified as a candidate gene for grain

yield under HN, belongs to the tetratricopeptide repeat (TPR)-like

superfamily protein. TPR proteins play a significant role in the

regulation of various cellular functions (Rosado et al., 2006).

GRMZM2G011213 is a mitochondrial glycoprotein involved in

cellular mitochondrial functions, mainly for cell energy

production (Goodstein et al., 2012). The gene demonstrated

remarkable expression pattern in the roots of young seedlings at

about 6 DAP and in the leaves at the vegetative stage (Andorf et al.,

2010).GRMZM2G338056 is a putative ZOS11-10 - C2H2 zinc finger

protein involved in molecular functions such as sequence-specific

DNA binding. The gene is substantially expressed in both the

primary roots and shoots at the three-leaf stage and in the silks

during the silking stage of flowering. GRMZM2G150598 is a

potential ATP-dependent protease ATP-binding protein and
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protein linked to molecular functions such as protein binding, for

biological processes such as protein metabolism and as cellular

components of plastids. The gene is highly expressed in the leaves of

seedlings at the emergence and three-leaf stage and later in the

topmost leaves just before flowering (Andorf et al., 2010). Although

functional annotation was not available for GRMZM2G111809, data

available in the Maize GDB suggested substantial expression

patterns of the gene in the roots of young seedlings after

emergence and in immature cobs at flowering (Andorf et al.,

2010). The candidate genes associated with LNBI and LNTI have

been found to be highly expressed in the plant roots possibly for

enhanced nitrogen uptake. Morosini et al. (2017) reported higher

root length in maize under LN stress compared to HN environment.

Higher root length under LN stress is an adaptive response

mechanism aimed at conserving plant nitrogen while increasing

the potential for nitrogen uptake from the soil (Morosini et al.,

2017). It has also been previously reported that a common response

of maize plant to soil nitrogen deficiency is an increased root length

and altered root architecture (Gaudin et al., 2011). Interestingly, one

of the SNPs (PZE-103012466) significantly associated with LNBI

had been previously reported to flank QTL for root length under LN

stress in a study by Ju et al. (2018). This indicated that the candidate

gene GRMZM2G380319 possibly caused an increased root length

under LN for maximum nitrogen uptake. The marker PZE-

103012466 together with the other markers found in this research

could potentially be employed in MAS to select for increased

nitrogen uptake or tolerance to LN among our QPM inbred lines

and other tropical and non-tropical maize populations.
5 Conclusion

Both the population structure analysis and phylogenetic tree

grouped the inbred lines into six distinct sub-populations, primarily

based on their ancestral origins, pedigree information, and

endosperm colour. Fifteen SNP markers were found to have

significant associations with the low nitrogen tolerance base index

(LNBI), the low nitrogen tolerance index (LNTI), and grain yield in

both high nitrogen and low nitrogen environments. All the

significant SNPs were located within QTLs previously reported

for LN tolerance and related traits. The majority of these SNPs co-

localized genes with a few adjacent to their candidate genes within

500 bp or 1 kbp sliding window. Two SNPs significantly associated

with LNTI were mapped within the same gene, GRMZM2G077863,

indicating that this gene is strongly associated with LN tolerance.

Similarly, GRMZM2G080314 co-localized two significant SNPs

detected for high grain yield under HN conditions. Functional

annotations for the candidate gene revealed that a large majority of

the candidate genes were involved in root functions, expressed for

tassel meiosis prior to flowering, or in the anther and silk during

flowering. The marker PZE-103012466 associated with LNBI was

found to have the same SNP ID and position as a SNP marker

previously reported for increased root length for nitrogen uptake;

hence, it could be used for MAS in our population and other
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tropical populations. The 15 identified markers could be useful to

breeding programmes for LN tolerance breeding through MAS

because they are located within known QTLs and were mapped

within or very close to genes related to the traits.
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