
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Zhenghong Yu,
Guangdong Polytechnic of Science and
Technology, China

REVIEWED BY

Liangshan Feng,
Liaoning Academy of Agricultural Sciences,
China
Fei Yuan,
Minnesota State University, Mankato,
United States

*CORRESPONDENCE

Hongye Wang

wanghy2010@alu.cau.edu.cn

RECEIVED 11 January 2025

ACCEPTED 29 July 2025
PUBLISHED 19 August 2025

CITATION

Ye H, Zhang B, Huang S, Nie C, Wei P,
Qin M and Wang H (2025) Extraction of
maize growth stages in the Sanjiang Plain of
China from 2003 to 2022 and their
spatio-temporal changes in response to
meteorological variables.
Front. Plant Sci. 16:1558990.
doi: 10.3389/fpls.2025.1558990

COPYRIGHT

© 2025 Ye, Zhang, Huang, Nie, Wei, Qin and
Wang. This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums
is permitted, provided the original author(s)
and the copyright owner(s) are credited and
that the original publication in this journal is
cited, in accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research

PUBLISHED 19 August 2025

DOI 10.3389/fpls.2025.1558990
Extraction of maize growth
stages in the Sanjiang Plain of
China from 2003 to 2022
and their spatio-temporal
changes in response to
meteorological variables
Huichun Ye1,2,3, Bingrui Zhang1,4, Shanyu Huang5, Chaojia Nie1,2,
Peng Wei1,6, Minghao Qin1,7 and Hongye Wang8*

1International Research Center of Big Data for Sustainable Development Goals, Beijing, China, 2Key
Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of
Sciences, Beijing, China, 3Key Laboratory of Earth Observation of Hainan, Hainan Aerospace
Information Research Institute, Sanya, China, 4College of Geoscience and Surveying Engineering,
China University of Mining and Technology, Beijing, China, 5Beijing Keda Tongrui Technology Co.,
Ltd, Beijing, China, 6College of Water Resources Science and Engineering, Taiyuan University of
Technology, Taiyuan, China, 7School of Transportation and Geomatics Engineering, Shenyang
Jianzhu University, Shenyang, China, 8Cultivated Land Quality Monitoring and Protection Center,
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How to quickly monitor the growth process of maize on a large scale is crucial for

regional maize growth assessment, yield estimation, and farmland management.

This article takes the Sanjiang Plain in Northeast China as the research area,

which is the main grain production area in China. Using MODIS NDVI time series

data and Savitzky Golay and Whittaker filtering techniques, a remote sensing

extraction method for key growth stages of maize (i.e., jointing stage, tasseling

stage, and maturity stage) was established. The spatiotemporal characteristics of

these growth stages from 2003 to 2022 were analyzed, alongside their

meteorological influences. Results show the Whittaker filter achieves high

accuracy, with errors under 8 days. Jointing stages typically fall between June

9th and June 25th, tasseling stages between July 20th and August 5th, andmaturity

stages between September 13th and September 29th. From 2003 to 2022, jointing

and tasseling stages advanced by 0.43 and 0.19 days/year, respectively, while the

maturity stage was delayed by 0.38 days/year, indicating an extended growing

season correlated with rising surface temperatures and precipitation in the

preceding month. These findings offer theoretical and technical guidance for

crop growth monitoring, yield assessment, and farmland management.
KEYWORDS

Sanjiang Plain, maize, growth stage, agricultural remote sensing, spatio-
temporal variation
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1 Introduction

Black soil, characterized by high fertility and suitability for

vegetation growth, is a precious resource endowed by nature. The

black soil zones of China serves as a crucial grain production base

for the country. Its grain output constitutes approximately one-

fourth of the national total, while its commodity quantity accounts

for about one-fourth, and the transferred quantity represents

around one-third (He et al., 2024). The Sanjiang Plain, a

renowned black soil region with a total area of 108,900 ha, was

once known as the “Northern famine” but is now referred to as

“Beidacang”. It stands as a significant commodity grain base in

China, particularly recognized as the production hub of China’s

maize commodity grain, one of the world’s most important food

crops (Luo C. et al., 2020). Consequently, timely and accurate

monitoring of maize crops in the Sanjiang Plain is of paramount

significance for advancing the agricultural economy and

formulating food policy.

The crop growth stage, also known as phenological period, is a

natural biological phenomenon of temporal cycles influenced by

anthropogenic activities and environmental factors (Fatima et al.,

2020; Xiao et al., 2021; Liu et al., 2021). This period corresponds

signifies when crop growth and development attain a critical state.

The dynamic changes in regional crop growth stages serve as vital

indicators in response to climate and environmental changes. The

timely and accurate acquisition of information regarding crop growth

stages plays an important role in agricultural monitoring, farmland

management, and other related fields. For instance, incorporating

growth stage into crop growth monitoring and yield estimation can

significantly enhance the accuracy of results (Li et al., 2019; Xie et al.,

2021; Luo et al., 2023). Traditional methods for monitoring crop

growth stages include manual observation and the accumulated

temperature method (Ma and Veroustraete, 2006; Huang et al.,

2020). However, these approaches are limited in scope, time-

consuming, labor-intensive, and often lack timeliness when

monitoring large areas. In contrast, remote sensing measurements

can cover extensive regions swiftly, access difficult-to-reach areas, and

thus have excellent applicability in the research fields of crop growth

monitoring and growth stage feature extraction.

The Normalized Difference Vegetation Index (NDVI) time

series data from MODIS can effectively reflects the temporal

changes in crops and is widely employed for growth stage and

phenological feature extraction (Dunn and de Beurs, 2011; Walker

et al., 2014; Cen et al., 2015; Shammi and Meng, 2021; Seguini et al.,

2024). However, satellite remote sensing data is influenced by

factors such as cloud cover, atmospheric interference and

bidirectional reflection. Consequently, NDVI values become

saturated when the vegetation coverage is excessively high.

Therefore, to utilize NDVI time series data for crop growth stage

extraction, it must be de-noised and smoothened (Cai et al., 2017; Li

S. et al., 2021; Li X. et al., 2021). Existing studies have demonstrated

the efficacy of the Savitzky-Golay (SG) and Whittaker filters in the

denoising of time series data (Kandasamy and Fernandes, 2015; Luo

Y. et al., 2020). The SG filter exhibits strong fidelity and effectively

captures local changes in time series, whereas the Whittaker filter
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offers a greater balance between fidelity and smoothness, with faster

processing speeds (Atzberger and Eilers, 2011; Qiu et al., 2016; Luo

et al., 2020; Sáenz et al., 2024). The application and impact of

various noise reduction methods on the accuracy of growth stage

extraction require further evaluation based on different crop types,

terrains, and planting systems (Li et al., 2020).

In the face of global climate change, numerous traditional

agricultural practices and crop growth stage characteristics have

undergone gradual changes. Crop growth stage serves as a crucial

parameter for understanding the crop growth cycle and its response

to climate change (Fatima et al., 2020; Xiao et al., 2021; Liu et al.,

2021; Yuan et al., 2023; Xu et al., 2024). Studies on the dynamic

changes in crop phenology and its underlying mechanisms are

instrumental in various applications, including the scientific

adjustment and effective management of agricultural production,

the development of human responses and adaptation strategies to

climate change, and the reduction of agricultural production’s

vulnerability and instability (Li et al., 2013; Sisheber et al., 2023).

Current research on the spatio-temporal changes of growth stage

predominantly focus on vegetation phenology (Piao et al., 2011,

2019; Shao et al., 2021; Gao and Zhao, 2022; Limu et al., 2024),

while studies on crop growth stage remain limited. The alterations

in the global climate have induced specific changes in crop

phenology or crop growth stages (Liu et al., 2017; Wang et al.,

2022; Wakatsuki et al., 2023; Rezaei et al., 2023), which

consequently impact the management of crop conditions and the

formulation of crop production and marketing policies.

This paper focused on the Sanjiang Plain as the research area,

utilizing MODIS NDVI time series data and field crop growth stage

observation data. It employed Savitzky-Golay and Whittaker filters to

fit the time series curves and identify the growth process of maize. The

objectives of this study were: (1) to develop remote sensing methods

for extracting key growth stages of maize, including the jointing stage,

tasseling stage and mature stage, and generate the spatial distribution

data products of these stages in the Sanjiang Plain from 2003 to 2022;

(2) to analyze the spatiotemporal variation characteristics and

meteorological driving factors of the jointing, tasseling and mature

stages of maize in the Sanjiang Plain from 2003 to 2022. This study

aims to provide important information technology support for maize

growth monitoring, yield assessment, and farmland production

management in the Sanjiang Plain and similar regions.
2 Materials and methods

2.1 Study area

The study area is located in the Sanjiang Plain, which is situated in

the northeast of the Northeast Plain in China (Figure 1). It is enriched

with fertile plain soil formed by the alluvial deposits of the Heilongjiang,

Wusuli and Songhua Rivers, spanning approximately 108,900 km2. The

territory includes 52 farms within the national reclamation system. The

climate is defined by a temperate humid and semi-humid continental

monsoon type. Annual sunshine hours range from 2,400 to 2,500 hours.

The annual temperature changes significantly, with an average
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temperature of -21 – -18 °C in January and 21 – 22 °C in July. The

accumulated temperature above 10°C ranges from 2,300 to 2,500°C. The

annual precipitation is 500–650 mm, with 75-85% concentrated from

June to October. Rainfall and heat occur in the same season, which is

beneficial for agricultural growth. Additionally, the Sanjiang Plain is low

and flat, sloping from the southwest to northeast, with an average

elevation of 50 ~ 60m.Maize is a principal crop in the area, cultivated as

a single-season annual crop. Most crops are sown in April and reach

maturity in September.
2.2 Data acquisitions

The datasets used in this study include maize growth stage

observations collected during a field campaign, NDVI and surface

temperature products derived from MODIS onboard NASA’s Terra

and Aqua satellites, the hourly precipitation product from GSMaP

Operational, and vector data of the entire Sanjiang Plain.

2.2.1 Field investigation data
Observations of maize growth stage were performed in the

Sanjiang Plain during June and July 2022. When a growth period is

observed on the plant or stem, it is considered to have entered the

given growth stage. The growth phase of a crop population is

determined by the percentage of plants (stems) in that stage: onset

of development at ≥ 10%; common stage of development at ≥ 50%;

and completion of development at ≥ 80%. Finally, a total of 54

maize growth stages were investigated, including both the jointing

and tasseling stages./ Figure 1 shows the distribution of survey sites

for maize growth stage in this study.
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2.2.2 Remote sensing data
MODIS NDVI products, MOD13Q1 and MYD13Q1, were

acquired from the Google Earth Engine (GEE). These datasets

comprise 8-day time series with a spatial resolution of 250

meters. In total, 520 data points spanning April to October from

2003 to 2022 were collected. Additionally, the MODIS daily surface

temperature product, MYD11A1, was also obtained from GEE, with

a spatial resolution of 1000 meters. A total of 200 day and night LST

datasets fromMay to September of 2003–2022 were utilized. Hourly

precipitation data from GSMaP Operational, with a spatial

resolution of 10 kilometers, were employed. A total of 100

datasets from May to September between 2003 and 2022 were

downloaded from GEE.

2.2.3 Maize distribution dataset
Utilizing the 2022 maize distribution dataset in the Sanjiang

Plain as the foundational map data, which was obtained using

Sentinel-2 time series imagery and the random forest algorithm,

with an overall accuracy exceeding 90% (Wei et al., 2023).
2.3 Research methods

2.3.1 NDVI time series filtering
The products derived from satellite remote sensing data often

contain artefacts induced by cloud cover, precipitation, and various

other environmental impediments. Notably, the NDVI time-series

data is prone to erratic and significant fluctuations, which necessitates

the application of smoothing filters. This investigation employs two

filtering techniques: the Savitzky-Golay filter and the Whittaker filter.
FIGURE 1

Geographical location of Sanjiang Plain and distribution of survey sites for maize growth stage in this study.
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2.3.1.1 Savitzky-Golay filter

The Savitzky-Golay filter, introduced by Savitzky and Golay

(1964), is a method of least-squares convolution fitting designed for

the smoothing and derivative calculation of contiguous or spectral

data points. It constitutes a form of weighted moving average filter,

wherein the weights are determined by the polynomial order

employed in the least-squares fitting within the filter’s window.

This polynomial is crafted to retain significant data values while

mitigating the impact of outliers. Applicable to any continuous and

moderately smooth dataset with uniform intervals, the filter is

particularly suitable for NDVI time series data. The process of

smoothing NDVI time series data via the least-squares convolution

method can be articulated as shown in Equation 1.

Y
0
j =

oi=m
i=−mCiYj+i

N
(1)

where Y is the original NDVI value; Y 0  is the fitting value; Ci is

the filtering coefficient of the i-th NDVI value; N is the number of

convolutions, which is also equal to the size of the smoothing

window  (2m + 1); and j refers to the i-th data in the NDVI time

series. The smooth array contains (2m + 1) points and m is half the

size of the smoothing window.
2.3.1.2 Whittaker filter

The Whittaker filter operates on the principle of compensated

least squares. This filtering algorithm adeptly harmonizes the

fidelity and smoothness of time series data, automatically yielding

optimally filtered curves. Additionally, it is computationally efficient

and maintains signal integrity during the smoothing phase, as

indicated in reference (Atzberger and Eilers, 2011). The

underlying concept is as follows: Given a sequence y, of length N,

uniformly sampled, the goal is to derive a smooth sequence z from y

by striking a balance between two competing objectives: data

integrity and the smoothness of z. A smoother z inherently

sacrifices some data fidelity, as it diverges from y actual values,

and vice versa. The fitting efficacy, denoted as Q, can be articulated

as shown in Equations 2-4.

Q = S + lR (2)

S =o
i
(yi − zi)

2 (3)

R =o
i
(zi − 3zi−1 + 3zi−2 − zi−3)

2 (4)

where S is the fidelity, R is the roughness, and l is the user

parameter. The goal of the algorithm is to determine the sequence z

that minimizes Q. The larger the value of l, the greater the impact

of R on the objective function Q, and the smoother z becomes, and

vice versa. In this study, the l value is adjusted by minimizing the

error between the smoothed data and the observed data, iteratively

seeking the l that results in the smallest error. This ensures that the

smoothed data not only removes noise but also retains critical crop

phenological characteristics.
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2.3.2 Cubic spline interpolation
Cubic spline interpolation is widely used in time-series spectral

curve analysis. Its key advantages lie in low computational cost, high

fidelity, and consistent continuity, making it ideally suited for

applications where smooth interpolation between data nodes is

critical (Cai et al., 2017; Li et al., 2021). By constructing a set of

third-degree polynomials, the method ensures the interpolated curve is

smooth at each data location and in its vicinity, with continuous first

and second derivatives. As a result, interpolated spectral index series

can exhibit more continuous and precise trends (Qin et al., 2024).

In this study, the resampled NDVI time series data, initially

captured at an 8-day interval, was interpolated to a daily resolution

using cubic spline interpolation (Vorobiova and Chernov, 2017),

thereby aligning with the critical phenological stages of crop growth

expressed in Julian days.

2.3.3 Crop growth stage extraction
Based on the temporal characteristic curve of spectral indices, a

curve that reflects the crop’s growth trajectory, the slope feature node

method enables the identification of multiple key nodes. The inflection

node where the curve exhibits its maximum positive slope corresponds

to the period of most rapid vegetative growth, marking the maize

jointing stage (Qin et al., 2024). The subsequent peak of the curve,

characterized by a zero slope (first derivative = 0), represents the

maximum biomass accumulation and signals the transition from

vegetative to reproductive growth, coinciding with the tasseling stage

(Sakamoto et al., 2005). Furthermore, the point of maximum negative

slope in the declining phase indicates the onset of senescence and

physiological maturity, corresponding to the harvest-ready stage (Xu

and Zhang, 2012) the schematic diagram of maize growth stage

extraction based on NDVI time series filtering method as shown in

Figure 2.

In this study, we systematically identify three critical phenological

stages in maize development by analyzing the characteristics of the

temporal growth curve: (1) the jointing stage (maximum positive slope,

indicating peak growth rate), (2) the tasseling stage (slope = 0,

representing maximum biomass), and (3) the maturity stage

(maximum negative slope, reflecting rapid senescence).

2.3.4 Research analysis and verification methods
2.3.4.1 Person correlation analysis and trend analysis
methods

Person correlation analysis was employed to analyze the

relationship between various maize growth stage datasets and

meteorological variables in the Sanjiang Plain from 2003 to 2022.

Furthermore, Trend analysis was used to analyze the overall change

trend of the growth stages. The correlation coefficient was used as the

accuracy evaluation index, and its calculation formula is shown in

Equation 5:

Rxy =
on

i=1½(xi − �x)(yi − �y)�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(xi − �x)2on
i=1(yi − �y)2

q (5)

where Rxy is the correlation coefficient between various growth

stages and meteorological variables, such as surface temperature or
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precipitation. If Rxy surpasses the threshold of statistical significance

in the t-test at the 0.01 or 0.05 level, it denotes an extremely

significant or significant trend, respectively; otherwise, there is no

significant relationship. n refers to the number of years from 2003 to

2022 (n=20 in this study), xi is the meteorological parameter data

for the i-th year, and �x is the average of meteorological parameter

(surface temperature or precipitation) data over the n years. yi refers

to the day of the year (DOY) corresponding to the specific growth

stage of maize for the i-th year, �y refers to the average DOY

corresponding to the specific growth stage of maize over the n years.

The trend slope was calculated according to Equation 6.

b = o
n
i=1½(xi − �x)(yi − �y)�
on

i=1(xi − �x)2
(6)

where b is the slope, indicating the magnitude of the change

trend. If b<0, it indicates that the specific growth stage of maize has

advanced; otherwise, it indicates that the growth stage has

been delayed.
2.3.4.2 Evaluation indicators

In this study, the performance of maize growth stage extraction

was evaluated using three metrics: the root mean square error

(RMSE), the mean absolute error (MAE) and the mean absolute

percentage error (MAPE). The corresponding formulas are as as

shown in Equations 7-9.

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n
i=1(Yi − Y

0
i )
2

r
(7)

MAE =
1
no

n
i=1jYi − Y

0
i j (8)

MAPE =
1
no

n
i=1

Yi − Y
0
i

Yi

�����
������ 100% (9)

where Yi is the filtered NDVI value or the maize growth period

extracted based on remote sensing image; Y
0
i refers to the growth

period of maize spot in Sanjiang Plain based on original NDVI
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value or field experiment. n is the number of samples. Low MAE,

RMSE, and MAPE values indicate high model prediction accuracy

(Ruan et al., 2025).
3 Results and analysis

3.1 Verification of extraction accuracy of
maize growth stage using various filtering
methods

The day of year (DOY) values for maize jointing and tasseling

stages in 2022 were extracted using Savitzky-Golay and Whittaker

filtering approaches. The extraction accuracy of these methods was

validated by comparing against ground-based observational data

from 2022. Validation against ground-based phenological

observations revealed the superior performance of Whittaker

filtering (Table 1), as evidenced by consistently lower error

metrics (RMSE, MAE, and MAPE) for both growth stages

compared to Savitzky-Golay filtering. Furthermore, as illustrated

in Figure 3, the discrepancies in the Whittaker filter-extracted dates

for these stages were within the ± 8-day error bar, whereas the

Savitzky-Golay filter yielded errors that occasionally surpassed this

threshold, albeit remaining within ±16-day error bar. These

findings suggest a superior performance of the Whittaker filter in

the accurate delineation of maize growth stages. Consequently, for

the ensuing analyses in this investigation, the Whittaker filter was
FIGURE 2

Schematic diagram of maize growth stage extraction based on NDVI time series filtering method.
TABLE 1 The validation results of observed and extracted day of year
(DOY) values for the maize growth stage using various filtering methods
in the Sanjiang Plain in 2022.

Growth
stage

Savitzky-Golay filter Whittaker filter

RMSE MAE MAPE RMSE MAE MAPE

Jointing
Stage (day)

4.77 2.84 1.80 3.58 2.68 1.70

Tasseling
Stage (day)

5.29 4.11 2.01 4.34 3.83 1.85
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selected as the preferred method for the extraction and analysis of

maize growth stage data.
3.2 Temporal and spatial variation of maize
growth stages in the Sanjiang Plain

3.2.1 Characteristics of the spatial distribution of
maize growth stages

Figure 4 presents the spatial distribution characteristics of key

maize growth stages in 2022 across the Sanjiang Plain. The maize’s

jointing stage was largely concentrated around DOY 161 and 177,

spanning from June 9th to June 25th, with an average occurrence at

DOY 168, corresponding to June 17th. An overwhelming majority

of 85.21% of the study area was in this phase. Approximately

14.30% of the jointing stage occurred before June 9th, whereas

0.49% occurred after June 25th. In terms of spatial distribution, the

jointing stage of Hegang City in the northwest and Shuangyashan

City in the central region occurred from June 9th to June 17th; In

contrast, the outbreaks in Harbin City, Qitaihe City, Jixi City, and

Jimusi City occurred from June 17th to June 25th.

The tasseling stage of maize in the Sanjiang Plain

predominantly occurred within the span of DOY 201 to 217,

specifically from July 20th to August 5th, with an average of DOY

213, corresponding to June 31st. This period accounted for 90.61%

of the study area. A mere 0.84% of the tasseling events transpired

prior to July 20th, while 8.56% occurred subsequent to August 5th.

The peak tasseling stage in the Sanjiang Plain was typically observed

from July 28th to August 5th.

The maturity stage of maize was predominantly concentrated

between DOY 257 and 273, ranging from September 13 to

September 29, with an average at DOY 263, corresponding to

September 19. This period accounted for 96.82% of the study

area. Roughly 3.18% of the Sanjiang Plain’s maize reached

maturity before September 13th. In the western regions of Jiamusi

City and Shuangyashan City, as well as the southwestern sector of

Jixi City within the Sanjiang Plain, a scattered few maize fields
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matured between September 21st and September 29th. Elsewhere,

the bulk of maize maturity was observed between September 13th

and September 21st.
3.2.2 Characteristics of interannual variability in
maize growth stages

Figure 5 illustrates the interannual trends in the growth stages

of maize cultivation across the Sanjiang Plain from 2003 to 2022.

There was a notable propensity for the maize’s jointing phase to

commence earlier, with an average advancement rate of 0.43 days

per annum encompassing 86.90% of the region, whereas only 13.0%

demonstrated a tendency towards delay. Notably, the jointing stage

in Hegang City, Jixi City, and the northeastern part of Harbin City

has all advanced, with 5.21% of the areas advancing by an average of

more than one day per year (-1 d/yr). In contrast, a significant delay

in the jointing stage was identified in the central and northeastern

sectors of Jiamusi City, and the northeastern areas of Qitaihe and

Shuangyashan Cities, with 1.52% showing a delay surpassing one

day per year (+1 d/yr).

The tasseling stage exhibited a general trend of advancing, with

an average of -0.19 d/yr, covering 75.90% of the total area of the

study area. In contrast, the region experiencing a delayed tasseling

phase constitutes a mere 24.10%. Notably, the northern and western

sectors of Hegang City, Jiamusi City, and the majority of Jixi City

witnessed a marked forward shift in the tasseling phase, with

approximately 0.66% of the territory demonstrating an

advancement exceeding one day per year (-1 d/yr). Conversely,

certain areas in the northeast of Harbin, the western part of Qitaihe

City, the northwest of Shuangyashan City, and the southern part of

Jixi City showed a significant delay in tasseling stage, with about

0.23% of the areas delayed by more than one day (+1 d/yr).

The maturity stage showed a delayed trend, with an average

delay of 0.38 d/yr, covering 81.47% of the study area. Conversely,

only 18.53% of the regions indicated an advancement trend.

Specifically, small areas such as the central area of Hegang City,

the eastern part of Shuangyashan City, and the northeastern part of
FIGURE 3

Comparison of observed and extracted day of year (DOY) values for the maize growth stage using various filtering methods in the Sanjiang Plain in
2022. (a) Savitzky-Golay filter, and (b) Whittaker filter.
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Jixi City have significantly advanced maturity, with 0.04% of the

areas experiencing an advance of more than one day (-1 d/yr).

However, significant maturity delay was observed in the most areas

of Jimusi City and Qitaihe City, the northeastern part of Harbin

City, and western part of Shuangyashan City, with 6.35% of the

regions experiencing a delay of more than one day (+1 d/yr).
3.3 The influence of meteorological factors
on the maize growth stages in the Sanjiang
Plain

3.3.1 The influence of meteorological factors on
the maize growth stages

This study used correlation analysis to quantitatively investigate

the relationship between the growth stages of maize and the

meteorological factors (including monthly average temperature

and monthly cumulative precipitation) in the Sanjiang Plain from

2003 to 2022. The findings show that the jointing, tasseling, and

maturation stages of maize occur in June, July, and September,

respectively. Considering the delayed impact of climatic conditions

on maize growth, this study analyzed meteorological data from the
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month preceding these growth stages. T-tests were employed to

determine the significance of the correlation coefficients: p < 0.01

indicated an extremely significant correlation; p < 0.05 indicated a

significant correlation; and p ≥ 0.05 indicated a non-significant

correlation. Figure 6 shows the distribution map of correlation

between the growth stages of maize and the meteorological factor in

Sanjiang Plain from 2003 to 2022.

The results indicate that there is spatial heterogeneity in the

correlation between different growth stages of maize and the

meteorological factors of the preceding month, characterized by

the coexistence of positive and negative correlation areas. For the

jointing stage, the correlation between its DOY value and the average

land surface temperature in May shows a negative correlation in

58.57% of the areas and a positive correlation in 41.43% of the areas

(Figure 6a). Regarding the correlation with the accumulated

precipitation in May, it is negative in 80.10% of the areas and

positive in only 19.90% of the areas (Figure 6b). For the tasseling

stage, the correlation between its DOY value and the average land

surface temperature in June shows a negative correlation in 60.21%

of the areas and a positive correlation in 39.79% of the areas

(Figure 6c). As for the correlation with the accumulated

precipitation in June, it is negative in 54.77% of the areas and
FIGURE 4

Spatial distribution of maize growth stages in the Sanjiang Plain in 2022. (a) Jointing stage, (b) tasseling stage, and (c) maturity stage.
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positive in 45.23% of the areas (Figure 6d). For the maturity stage, a

different trend is observed. The correlation between its DOY value

and the average temperature in August is positive in 64.94% of the

areas and negative in 35.06% of the areas (Figure 6e). The correlation

with the total precipitation in August is even more pronounced,

being positive in as high as 83.74% of the areas and negative in only

16.26% of the areas (Figure 6f). However, the T-test results indicate

that, regardless of temperature or precipitation, the correlation is

relatively weak in the vast majority of areas. This suggests that

meteorological factors at the monthly scale have limited explanatory

power for maize phenological variation, implying that we need to

consider the cumulative effects of meteorological factors and the

coupling interactions among multiple factors.

3.3.2 The maximum meteorological influencing
factor on maize at different growth stages

Regional climatic variations lead to differing effects of

temperature and precipitation on maize growth, suggesting that

the primary meteorological factors influencing maize cultivation
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vary by location. This study further investigated the maximum

meteorological related factors of maize growth stages in different

regions of the Sanjiang Plain, as shown in Figure 7. During the

jointing stage, 63.33% of the area was more influenced by

precipitation than by average land surface temperature in May,

primarily in the southwest of the Sanjiang Plain; conversely, 36.67%

of the area, mainly in the northeast, was more affected by average

land surface temperature than by precipitation. For the tasseling

stage, 54.21% of the area was more impacted by June precipitation

than by June average land surface temperature, scattered across

various regions of the Sanjiang Plain; while 45.79% of the area,

located in the central and southern parts, was more influenced by

average land surface temperature than by precipitation. In the

maturity stage, 64.42% of the area was predominantly affected by

August precipitation over August average land surface temperature,

mainly in the southern and southwestern regions; whereas 35.58%

of the area, scattered in the central and northeastern parts, was

more impacted by average land surface temperature than

by precipitation.
FIGURE 5

Spatial distribution of annual average change rate of maize growth stages in the Sanjiang Plain from 2003 to 2022. (a) Jointing stage, (b) tasseling
stage, and (c) maturity stage.
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4 Discussion

In this study, two methods—the Savitzky-Golay (SG) filter and

the Whittaker filter—were employed to fit the MODIS NDVI time

series curve. The findings revealed that the curves fitted by these
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methods closely resembled the original ones, maintaining high

fidelity, in alignment with previous studies (Atzberger and Eilers,

2011; Luo et al., 2020; Sáenz et al., 2024). These time series curves

were instrumental in extracting the growth stage characteristics of

maize in the Sanjiang Plain and were validated using ground
FIGURE 6

Distribution map of correlation between the growth stages of maize and the meteorological factor in Sanjiang Plain from 2003 to 2022. (a) Jointing
stage & average land surface temperature in May, (b) jointing stage & accumulated precipitation in May, (c) tasseling stage & average land surface
temperature in June, (d) tasseling stage & accumulated precipitation in June, (e) maturity stage & average land surface temperature in August, and (f)
maturity stage & accumulated precipitation in August.
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measurement data. The results indicated that both filtering methods

demonstrated commendable extraction accuracy, with the

Whittaker filter outperforming the SG filter in terms of

performance. The growth stage error derived from the Whittaker

method’s fitted curve is typically within 8 days, whereas the error for

the SG filtering method is within 16 days, though predominantly

within 8 days. This may be attributed to the Whittaker filter’s ability

to more flexibly control signal smoothing by adjusting the

smoothing parameter while effectively reducing boundary

distortion, making it particularly effective in handling non-linear

or non-periodic signals (Kong et al., 2019; Khanal et al., 2020).

Additionally, the analysis errors arise from the impact of clouds,

aerosols, and other atmospheric factors on remote sensing satellite

data, as the noise from these elements cannot be entirely eliminated

through filtering methods. Furthermore, while MODIS data offer

the advantage of long-term continuity, this study employs a

synthesized data product with an 8-day temporal resolution and a

250-meter spatial resolution. To achieve a 1-day temporal

resolution, interpolation was performed, which may introduce

some errors. The spatial resolution of MODIS data being 250

meters means that maize planting areas contain mixed pixels,
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further influencing the extraction of growth stage results. In the

future, higher-resolution satellite data (i.e., Sentinel-2) could be

considered for such studies to meet the needs of more refined

monitoring and management.

This study demonstrates that there are significant spatial and

temporal variations in the growth period of maize in the Sanjiang

Plain. The significant changes in climate conditions, especially key

factors such as temperature and precipitation, across different years

and regions profoundly affect the growth and development process

of maize. This study systematically analyzed the key growth stage

trends of maize in the Sanjiang Plain from 2003 to 2022 and their

correlations with average surface temperature and cumulative

precipitation, providing a scientific basis for developing

agricultural adaptation strategies in the context of future climate

change. The findings revealed an overall trend of advancement in

the maize jointing stage, while the tasseling and maturity stages

exhibited a general trend of delay. These results align closely with

the findings of Li et al. (2011). The jointing stage typically shows a

negative correlation with surface temperature and precipitation; the

tasseling stage also generally shows a negative correlation with these

factors, whereas the maturity stage exhibits a positive correlation
FIGURE 7

Distribution map of maximum meteorological influencing factors on maize at different growth stages in the Sanjiang Plain from 2003 to 2022. (a) Jointing
stage, (b) tasseling stage, and (c) maturity stage.
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with surface temperature and precipitation. Against the backdrop of

global climate change, maize in the Sanjiang Plain from 2003 to

2022 demonstrated an overall trend toward earlier planting and

later harvesting, along with a lengthened growing season, which is

consistent with previous studies (Li et al., 2011, 2013; Zhang et al.,

2017). Furthermore, evaluating the robustness of this method

over long time series is crucial for enhancing the robustness of

the proposed technology. In future work, it is necessary to carry

out the collection of multi-year verification-related data to

comprehensively evaluate the performance and robustness of the

method over long time spans.

While this study has made significant progress in characterizing

changes in key growth stages of maize in the Sanjiang Plain over the

past two decades, several limitations remain. First, the validation for

this study utilized only 54 ground samples; the limited sample size

may affect the reliability of the evaluation and the model’s

universality. Furthermore, since the validation was based on data

from a single year (2022), it limits a comprehensive assessment of

the method’s performance over the entire 2003–2022 period.

Additionally, the assumption that the maize planting distribution

remained unchanged for 20 years (based solely on 2022 data), while

in reality there were local variations, further reduced the accuracy of

the results. Second, analytically, this study solely employed

correlation coefficient analysis to examine the relationship

between maize phenological stages and meteorological factors.

Although correlation analysis is a commonly used tool for

assessing relationships, it may be insufficient for fully revealing

the potential nonlinear interaction mechanisms between crop

phenology and complex climatic conditions. Furthermore, the

results indicate that in most cases, no significant correlation was

found between the occurrence timing of maize growth stages and

corresponding meteorological factors (monthly mean temperature

and cumulative precipitation) from the preceding month. This

phenomenon likely stems from multiple intertwined factors. For

instance, this study only considered meteorological data from one

month prior to each growth stage, whereas crop development is

typically a cumulative process more closely related to accumulated

temperature and precipitation from sowing onwards. Additionally,

crop growth stages themselves represent complex ecological

processes influenced by various environmental factors (e.g.,

temperature, precipitation, solar radiation, relative humidity)

(Wang et al., 2019; Sun et al., 2022). Concurrently, anthropogenic

factors cannot be overlooked, as farming decisions and

management practices including cultivar selection, sowing date,

fertilization and irrigation significantly impact the specific timing

and spatial manifestation of growth stages (Ayoola and Makinde,

2009; Liu et al., 2010; Lee et al., 2022; Ma et al., 2024). Moreover,

spatial heterogeneity in soil types, topography and microclimatic

conditions within the region also plays important roles (Ashiq et al.,

2021; Chen et al., 2021; Pérez-Hernández et al., 2021; Shuqin et al.,

2024), while extreme weather events like droughts and floods may

introduce unpredictable constraints (Venkatappa et al., 2021;

Furtak and Wolińska, 2023; Iqbal et al., 2025). However,

systematically collecting detailed data encompassing all these

factors across large regions presents substantial challenges.
Frontiers in Plant Science 11
Therefore, future research should focus on enhancing the

collection and integration of relevant multi-source data, while

employing more advanced modeling approaches to thoroughly

analyze the relative contributions of various factors to

spatiotemporal variability in maize phenology, with the goal of

achieving a more comprehensive and profound understanding of its

driving mechanisms.

This study successfully implemented precise monitoring of crop

growth stages, providing farmers with crucial data support and

decision-making guidance for aspects such as variety selection,

water and fertilizer management, pest and disease control, and field

management. The observed advancement of the maize jointing and

tasseling stages, coupled with a delayed maturity phase, represents a

significant trend in maize phenology under the context of climate

change. Of course, factors such as crop variety improvement have

also contributed to these changes. A deep understanding of these

shifts in growth stages and their underlying driving factors is key to

optimizing crop management strategies, effectively addressing the

challenges posed by climate change, and ensuring the stability of

maize yield and quality. Additionally, monitoring the crop growth

period can help farmers accurately assess crop maturity and

determine the optimal harvest timing, thereby maximizing the final

yield and quality of maize. Moreover, the findings of this research are

not only applicable to the current study area and crop types but also

provide technical method references for extracting the growth

periods of different crops in other geographical regions with

varying climatic conditions. With the continuous advancement of

machine learning and deep learning technologies, remote sensing

extraction of crop growth stages is moving towards more precise and

intelligent directions (Adhinata et al., 2024; Ahmed et al., 2024;

Naseer et al., 2024). The application of full time-series data, combined

with deep learning models, can more comprehensively capture subtle

changes in the plant growth process, improving the accuracy and

reliability of phenology identification (Chen et al., 2025). The rapid

development of AI-driven agricultural monitoring systems will also

greatly enhance the timeliness and accuracy of crop phenology

monitoring, as well as agricultural decision-making capabilities (Yu

et al., 2024, 2025), thereby promoting the development of precision

agriculture and smart agriculture.
5 Conclusions

This study focuses on the Sanjiang Plain as the research area,

utilizing MODIS NDVI time series data along with Savitzky-Golay

and Whittaker filtering techniques to establish a remote sensing

extraction method for the key growth stages of maize (including the

jointing stage, tasseling stage, and maturity stage). Based on this

method, we extracted and analyzed the spatiotemporal variation

characteristics of maize jointing, tasseling, and maturity stages in

the Sanjiang Plain from 2003 to 2022, as well as their influence by

meteorological factors. The results indicate that the maze growth

stages extracted using the Whittaker filter demonstrate higher

accuracy, with errors within 8 days. The extracted growth stages

of maize show that the jointing stage was mainly concentrated
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between DOY 161(June 9th) and DOY 177 (June 25th), the tasseling

stage between DOY 201 (July 20th) and DOY 217 (August 5th), and

the maturity stage between DOY 257 (September 13) and DOY 273

(September 29). From 2003 to 2022, the jointing and tasseling stages

of Maize in the Sanjiang Plain exhibited an advancing trend, with

advancements of 0.43 days per year and 0.19 days per year,

respectively, while the maturity stage showed a delaying trend,

with a delay of 0.38 days per year. This phenomenon is generally

reflected in an extended growth season, which is positively

correlated with rising surface temperatures and increased

precipitation in the month preceding the growth stage. However,

the study further indicated that the explanatory power of

meteorological factors at the monthly scale (i.e., temperature and

precipitation) alone remains limited for variations in maize

phenology. This suggests that we need to consider the cumulative

effects of meteorological factors as well as the coupling interactions

between multiple factors. The research findings provide important

information technology support for maize growth monitoring, yield

assessment, and farmland production management in the Sanjiang

Plain and similar regions.
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Sáenz, C., Cicuéndez, V., Garcıá, G., Madruga, D., Recuero, L., Bermejo-Saiz, A., et al.
(2024). New insights on the information content of the normalized difference
vegetation index sentinel-2 time series for assessing vegetation dynamics. Remote
Sens. 16, 2980. doi: 10.3390/rs16162980

Sakamoto, T., Yokozawa, M., Toritani, H., Shibayama, M., Ishitsuka, N., and Ohno,
H. (2005). A crop phenology detection method using time-series MODIS data. Remote
Sens. Environ. 96, 366–374. doi: 10.1016/j.rse.2005.03.008

Savitzky, A., and Golay, M. J. E. (1964). Smoothing and differentiation of data by
simplified least squares procedures. Analytical. Chem. 36, 1627–1639. doi: 10.1021/
ac60214a047

Seguini, L., Vrieling, A., Meroni, M., and Nelson, A. (2024). Annual winter crop
distribution fromMODIS NDVI timeseries to improve yield forecasts for Europe. Int. J.
Appl. Earth Observ. Geoinform. 130, 103898. doi: 10.1016/j.jag.2024.103898

Shammi, S. A., and Meng, Q. (2021). Use time series NDVI and EVI to develop
dynamic crop growth metrics for yield modeling. Ecol. Indic. 121, 107124. doi: 10.1016/
j.ecolind.2020.107124
frontiersin.org

https://doi.org/10.4314/ajfand.v9i1.19214
https://doi.org/10.3390/rs9121271
https://doi.org/10.1109/WHISPERS.2015.8075501
https://doi.org/10.1016/j.isprsjprs.2024.12.018
https://doi.org/10.1016/j.agwat.2020.106535
https://doi.org/10.1016/j.rse.2011.01.005
https://doi.org/10.1038/s41598-020-74740-3
https://doi.org/10.1016/j.catena.2023.107378
https://doi.org/10.1016/j.catena.2023.107378
https://doi.org/10.1016/j.scitotenv.2022.157227
https://doi.org/10.3389/fsufs.2023.1332595
https://doi.org/10.3390/rs12213536
https://doi.org/10.1016/j.rse.2015.04.014
https://doi.org/10.3390/rs12182888
https://doi.org/10.1016/j.isprsjprs.2019.06.014
https://doi.org/10.3390/agronomy12092125
https://doi.org/10.3390/rs12203383
https://doi.org/10.3390/rs12203383
https://doi.org/10.1016/j.jag.2021.102640
https://doi.org/10.3390/rs13245018
https://doi.org/10.11975/j.issn.1002-6819.2019.14.020
https://doi.org/10.5846/stxb201304010573
https://doi.org/10.5846/stxb201304010573
https://doi.org/10.3864/j.issn.0578-1752.2011.20.006
https://doi.org/10.3864/j.issn.0578-1752.2011.20.006
https://doi.org/10.1109/LGRS.2024.3355153
https://doi.org/10.1109/LGRS.2024.3355153
https://doi.org/10.1007/s11442-017-1423-3
https://doi.org/10.1111/j.1365-2486.2009.02077.x
https://doi.org/10.1016/j.jenvman.2021.112874
https://doi.org/10.1016/S2095-3119(19)62871-6
https://doi.org/10.1016/S2095-3119(19)62871-6
https://doi.org/10.1016/j.agsy.2023.103711
https://doi.org/10.5194/essd-12-197-2020
https://doi.org/10.5194/essd-12-197-2020
https://doi.org/10.1016/j.compag.2024.109566
https://doi.org/10.1016/j.asr.2005.08.037
https://doi.org/10.1016/j.asr.2005.08.037
https://doi.org/10.1109/ACCESS.2024.3365356
https://doi.org/10.17129/BOTSCI.2640
https://doi.org/10.17129/BOTSCI.2640
https://doi.org/10.1016/j.agrformet.2011.06.016
https://doi.org/10.1016/j.agrformet.2011.06.016
https://doi.org/10.1111/gcb.14619
https://doi.org/10.3390/agriculture14112052
https://doi.org/10.1016/j.jag.2015.11.009
https://doi.org/10.1038/s43017-023-00491-0
https://doi.org/10.3390/rs17101755
https://doi.org/10.3390/rs16162980
https://doi.org/10.1016/j.rse.2005.03.008
https://doi.org/10.1021/ac60214a047
https://doi.org/10.1021/ac60214a047
https://doi.org/10.1016/j.jag.2024.103898
https://doi.org/10.1016/j.ecolind.2020.107124
https://doi.org/10.1016/j.ecolind.2020.107124
https://doi.org/10.3389/fpls.2025.1558990
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Ye et al. 10.3389/fpls.2025.1558990
Shao, Y., Wang, J., and Yan, X. (2021). The phenological characteristics of
Mongolian vegetation and its response to geographical elements. Geograph. Res.
40, 3029–3045. doi: 10.11821/dlyj020210139

Shuqin, B., Li, Q., Ren, Y., Shi, L., Dong, X., Chai, X., et al. (2024). Effects of maize
plant type and row spacing on the field microclimate and yield of intercropping ginger.
Plant Prod. Sci. 27, 85–98. doi: 10.1080/1343943X.2024.2308335

Sisheber, B., Marshall, M., Mengistu, D., and Nelson, A. (2023). Detecting the
long-term spatiotemporal crop phenology changes in a highly fragmented agricultural
landscape. Agric. For. Meteorol. 340, 109601. doi: 10.1016/j.agrformet.2023.109601

Sun, M., Zhang, Y., Xin, Y., Zhong, D., and Yang, C. (2022). Vegetation phenology
and its response to climate change in the Western Sichuan Plateau during the past 20
years. Ecol. Environ. Sci. 31, 1326–1339. doi: 10.16258/j.cnki.1674-5906.2022.07.005

Venkatappa, M., Sasaki, N., Han, P., and Abe, I. (2021). Impacts of droughts
and floods on croplands and crop production in Southeast Asia – An application
of Google Earth Engine. Sci. Total. Environ. 795, 148829. doi: 10.1016/
j.scitotenv.2021.148829

Vorobiova, N., and Chernov, A. (2017). Curve fitting of MODIS NDVI time series in
the task of early crops identification by satellite images. Proc. Eng. 201, 184–195.
doi: 10.1016/j.proeng.2017.09.596

Wakatsuki, H., Ju, H., Nelson, G. C., Farrell, A. D., Deryng, D., Meza, F., et al. (2023).
Research trends and gaps in climate change impacts and adaptation potentials in major
crops. Curr. Opin. Environ. Sustainabil. 60, 101249. doi: 10.1016/j.cosust.2022.101249

Walker, J. J., de Beurs, K. M., and Wynne, R. H. (2014). Dryland vegetation
phenology across an elevation gradient in Arizona, USA, investigated with fused
MODIS and Landsat data. Remote Sens. Environ. 144, 85–97. doi: 10.1016/
j.rse.2014.01.007

Wang, T., Li, N., Li, Y., Lin, H., Yao, N., Chen, X., et al. (2022). Impact of climate
variability on grain yields of spring and summer maize. Comput. Electron. Agric. 199,
107101. doi: 10.1016/j.compag.2022.107101
Frontiers in Plant Science 14
Wang, X., Xiao, J., Li, X., Cheng, G., Ma, M., Zhu, G., et al. (2019). No trends in
spring and autumn phenology during the global warming hiatus. Nat. Commun. 10,
2389. doi: 10.1038/s41467-019-10235-8

Wei, P., Ye, H., Qiao, S., Liu, R., Nie, C., Zhang, B., et al. (2023). Early crop mapping
based on sentinel-2 time-series data and the random forest algorithm. Remote Sens. 15,
3212. doi: 10.3390/rs15133212

Xiao, D., Zhang, Y., Bai, H., and Tang, J. (2021). Trends and climate response in the
phenology of crops in Northeast China. Front. Earth Sci. 9, 811621. doi: 10.3389/
feart.2021.811621

Xie, X., Yang, Y., Tian, Y., Liao, L., Wei, J., Zhou, Z., et al. (2021). Extraction of the
phenology of sugarcane in Guangxi based on MODIS-LAI data. Res. Agric.
Modernization. 42, 165–174. doi: 10.13872/j.1000-0275.2021.0017

Xu, Q., Liang, H., Wei, Z., Zhang, Y., Lu, X., Li, F., et al. (2024). Assessing climate
change impacts on crop yields and exploring adaptation strategies in Northeast China.
Earth’s. Future 12, e2023EF004063. doi: 10.1029/2023EF004063

Xu, Y., and Zhang, J. (2012). Identification of main rice phenology in northeast
China based on MODIS-EVI data and Symlet11 wavelet. Acta Ecol. Sin. 32, 2091–2098.
doi: 10.5846 /stxb201108131186

Yu, L., Du, Z., Li, X., Zhao, Q., Wu, H., Weise, D., et al. (2024). Near surface camera
informed agricultural land monitoring for climate smart agriculture. Climate Smart.
Agric. 1, 100008. doi: 10.1016/j.csag.2024.100008

Yu, L., Du, Z., Li, X., Zheng, J., Zhao, Q., Wu, H., et al. (2025). Enhancing global
agricultural monitoring system for climate-smart agriculture. Climate Smart. Agric. 2,
100037. doi: 10.1016/j.csag.2024.100037

Yuan, Y., Ton, B. L., Thomas, W. J., Batley, J., and Edwards, D. (2023). Supporting crop
plant resilience during climate change. Crop Sci. 63, 1816–1828. doi: 10.1002/csc2.21019

Zhang, Y., Li, L., Wang, H., Zhang, Y., Wang, N., and Chen, J. (2017). Land surface
phenology of Northeast China during 2000–2015: temporal changes and relationships with
climate changes. Environ. Monit. Assess. 189, 1–13. doi: 10.1007/s10661-017-6247-1
frontiersin.org

https://doi.org/10.11821/dlyj020210139
https://doi.org/10.1080/1343943X.2024.2308335
https://doi.org/10.1016/j.agrformet.2023.109601
https://doi.org/10.16258/j.cnki.1674-5906.2022.07.005
https://doi.org/10.1016/j.scitotenv.2021.148829
https://doi.org/10.1016/j.scitotenv.2021.148829
https://doi.org/10.1016/j.proeng.2017.09.596
https://doi.org/10.1016/j.cosust.2022.101249
https://doi.org/10.1016/j.rse.2014.01.007
https://doi.org/10.1016/j.rse.2014.01.007
https://doi.org/10.1016/j.compag.2022.107101
https://doi.org/10.1038/s41467-019-10235-8
https://doi.org/10.3390/rs15133212
https://doi.org/10.3389/feart.2021.811621
https://doi.org/10.3389/feart.2021.811621
https://doi.org/10.13872/j.1000-0275.2021.0017
https://doi.org/10.1029/2023EF004063
https://doi.org/10.5846 /stxb201108131186
https://doi.org/10.1016/j.csag.2024.100008
https://doi.org/10.1016/j.csag.2024.100037
https://doi.org/10.1002/csc2.21019
https://doi.org/10.1007/s10661-017-6247-1
https://doi.org/10.3389/fpls.2025.1558990
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	Extraction of maize growth stages in the Sanjiang Plain of China from 2003 to 2022 and their spatio-temporal changes in response to meteorological variables
	1 Introduction
	2 Materials and methods
	2.1 Study area
	2.2 Data acquisitions
	2.2.1 Field investigation data
	2.2.2 Remote sensing data
	2.2.3 Maize distribution dataset

	2.3 Research methods
	2.3.1 NDVI time series filtering
	2.3.1.1 Savitzky-Golay filter
	2.3.1.2 Whittaker filter

	2.3.2 Cubic spline interpolation
	2.3.3 Crop growth stage extraction
	2.3.4 Research analysis and verification methods
	2.3.4.1 Person correlation analysis and trend analysis methods
	2.3.4.2 Evaluation indicators



	3 Results and analysis
	3.1 Verification of extraction accuracy of maize growth stage using various filtering methods
	3.2 Temporal and spatial variation of maize growth stages in the Sanjiang Plain
	3.2.1 Characteristics of the spatial distribution of maize growth stages
	3.2.2 Characteristics of interannual variability in maize growth stages

	3.3 The influence of meteorological factors on the maize growth stages in the Sanjiang Plain
	3.3.1 The influence of meteorological factors on the maize growth stages
	3.3.2 The maximum meteorological influencing factor on maize at different growth stages


	4 Discussion
	5 Conclusions
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References


