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Astereae, the second-largest tribe within Asteraceae, includes numerous species

of economic and medicinal importance. While comprehensive systematic

studies have been conducted on Astereae classification, certain controversies

remain unresolved. The taxonomic boundaries between alpine Aster and

Erigeron are uncertain due to their morphological similarity, and the systematic

placement of Formania mekongensis remains debated. To address these issues,

we applied a combination of morphological and molecular phylogenetic

approaches. 21 species from 12 genera within Astereae were selected based

on a morphological and molecular phylogenetic framework. Sampling,

experiments, photography, and measurements were conducted using

standardized methods, resulting in 12 pollen trait parameters. These

parameters were then used to construct a hierarchical dendrogram of pollen

morphology. A molecular phylogeny was constructed based on ITS sequences to

further elucidate the systematic relationships among these species. The results

revealed that pollen morphology provides valuable insights into subtribal

classifications. Significant differences in pollen size and spine morphology were

observed between Aster and Erigeron, with the former exhibiting larger pollen

grains with long, broad, and sparsely distributed spines. Clustering results also

provided the first palynological evidence for placing F. mekongensis within

Asterinae. This study underscores the importance of integrating pollen

morphology and molecular evidence to refine the classification and phylogeny

of Astereae.
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1 Introduction

Morphological and molecular data provide essential evidence

for estimating evolutionary relationships in plants (Sattler and

Rutishauser, 1997, 2022; Janaćković et al., 2019; Bog et al., 2020;

Sattler, 2022; Zhang et al., 2024). While molecular techniques offer

insights at the genetic level, morphological analysis remains

fundamental for understanding phenotypic evolut ion

(Wanninger, 2015). The combined use of these approaches has

improved the resolution of classification and phylogenetic

relationships (Wortley and Scotland, 2006; Huang et al., 2013;

Bapst et al., 2018; Keating et al., 2023). Pollen morphology serves

as a valuable tool for species identification and classification due to

its conserved characteristics (Wang and Wang, 1983; Dajoz et al.,

1991; Blackmore, 2007; Lin et al., 2023). These stable features make

pollen morphology particularly useful in plant systematics (Hesse

and Blackmore, 2013; Lacourse et al., 2016; Bahadur et al., 2018).

Integrating morphological data with other approaches may further

advance our understanding in this field.

Astereae is the second-largest tribe within Asteraceae,

comprising approximately 222 genera and 3,100 species (Ling

et al., 1985; Anderberg et al., 2007; Funk et al., 2009). Its

classification remains challenging, partly due to the limited

sampling (Brouillet et al., 2009; Li et al., 2012). The taxonomic

framework of Astereae has undergone notable revisions since

Bentham’s (1873) initial division into six subtribes: Solidagininae,

Grangeinae, Bellidinae, Asterinae, Conyzinae, and Baccharidinae.

Zhang and Bremer (1993) later redefined this classification,

recognizing Grangeinae as basal and consolidating the remaining

taxa into two primary subtribes: Solidagininae and Asterinae.

Nesom (1994) further refined the classification system by

establishing 14 subtribes based on morphological features. Despite

these advances, several taxonomic uncertainties persist. Notably,

the morphological convergence between alpine Aster and Erigeron

has resulted in ambiguous generic boundaries (Cronquist, 1955;

Nesom, 1994). The systematic position of the monophyletic F.

mekongensis has puzzled taxonomists for a long time. While Shi

and Fu (1983) classified it within Chrysantheminae (Anthemideae),

Chen and Brouillet (2011b) regarded its taxonomic placement as

unresolved. Molecular phylogenetic evidence later prompted Fu

et al. (2016) to suggest its inclusion in Astereae, and more recently,

Nesom (2020) assigned it to the newly established subtribe

Formaniinae. These studies highlight the necessity for integrated

systematic approaches in Astereae classification.

Pollen morphology has long been employed to address

taxonomic questions within the Asteraceae (Tellerıá, 2017; Younis

et al., 2021; Lu et al., 2022; Usma et al., 2022; Ali et al., 2023; Hayat

et al., 2023). Key pollen characteristics, including size, shape,

aperture type, and exine ornamentation, provide valuable insights

for taxonomic classification (Ahmad et al., 2018; Reshmi and

Rajalakshm, 2019). Wortley et al. (2007) demonstrated its

importance in resolving the classification of problematic taxa.

Peng et al. (2023) used pollen morphology to examine Blumea

and Cyathocline, revealing discrepancies between palynological

evidence and molecular phylogenetic analyses in certain groups.
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Nevertheless, research on the pollen morphology of Astereae

remains limited (Zhang and Zhou, 2016). Few studies have

explored the integration of pollen data with molecular evidence,

and such combined approaches may help clarify taxonomic

boundaries within the tribe.

This study aims to explore the role of pollen traits in the

classification of Astereae by integrating pollen morphological data

with molecular phylogenetic frameworks. Systematic sampling was

conducted on 12 pollen traits across 21 representative species. The

specific objectives are as follows: (1) to compare the clustering

dendrogram of pollen traits with the molecular phylogenetic tree

and evaluate the relevance of pollen traits in systematics; (2) to

analyze the pollen morphological differences and phylogenetic

relationships among subtribes and genera within Astereae; and

(3) to provide foundational pollen data for the taxonomic study of

Astereae. This work presents a new perspective on Astereae

classification and contributes to the integration of morphological

and molecular evidence.
2 Materials and methods

2.1 Sampling strategy

To systematically analyze pollen morphological variation in

Astereae, we conducted light microscopy (LM) and scanning

electron microscopy (SEM) examinations, following the

phylogenetic frameworks for Asteraceae outlined by Li et al.

(2012). The subtribal classification was based on Anderberg et al.

(2007), which employed morphological diagnostic characters for

systematic identification. A total of 21 taxonomically representative

species spanning Aster, Erigeron, and related genera, were included

in this study. Specimens were selected from voucher sheets in the

PE herbarium at the Institute of Botany, Chinese Academy of

Sciences (Table 1). All pollen samples, along with the scientific

names of genera and species, were verified against the Flora of

China (Shi et al., 2011) and Plants of the World Online (POWO,

https://powo.science.kew.org/, last access: 1 March 2025).
2.2 Collection of pollen morphological
trait data

Pollen samples were acetolysed by the standard methods

(Erdtman, 1960) and fixed in glycerine jelly. Processing and

observation under LM and SEM followed standard procedures

(Wang et al., 1995). The pollen grains were observed and

photographed at a magnification of ×600 under LM (Leica DM

4000) and at an accelerating voltage of 30 kV under SEM (Hitachi S-

4800). Descriptions of pollen morphology were based on the

terminology systems proposed by Halbritter et al. (2018) and

Hesse et al. (2009). As shown in Figure 1, the pollen

morphological traits measured under LM included P: polar length

in equatorial view; E: equatorial width in equatorial view; P/E; T:

exine thickness in polar view; L: pollen length in polar view; T/L.
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Each trait was measured on 20 pollen grains per species. The exine

ornamentation traits measured under SEM included D: diameter of

spinule base; H: spinule height; D/H; Ss: spinule spacing. For these

four traits, measurements were taken on five pollen grains per trait,

with four randomly selected regions per pollen grain, yielding 20

measurements per trait (Lu et al., 2022). Given the sample sizes of
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Galatella angustissima (n=16) and Aster taliangshanensis (n=15),

the mean values of the available data were used to supplement the

missing samples, ensuring a complete and representative sample

size of 20 for statistical analysis. The sexine/nexine (S/N) ratio was

measured based on LM observations of the exine structure (Table 2;

Supplementary Data).
TABLE 1 List of the voucher specimens in PE Herbarium, Institute of Botany, Chinese Academy of Sciences and the GenBank Numbers.

Subtribes Genera Species
Collection

Site
Collection

Date
Collector

Specimen
barcodes

GenBank
accession

number (ITS)

Asterinae
Arctogeron

DC.
Arctogeron

gramineum (L.) DC.
Nei Mongol,

China
2010.06.09 G. M. Zhou PE 01885469 JN315928

Asterinae
Callistephus

Cass.
Callistephus

chinensis (L.) Nees
Beijing, China 2004.08.18 L. Q. Li et al. PE 01776740 KP175224

Conyzinae
Eschenbachia

Moench
Eschenbachia japonica

(Thunb.) J. Kost.
Chongqing, China 1957.04.26 G. F. Li PE 00300678 JN315938

Grangeinae
Dichrocephala
L’Hér. ex DC.

Dichrocephala benthamii
C. B. Clarke

Guizhou, China 1986.07.06
Beijing

Youth Team
PE 01822413 MH808122

Formania W.
W. Sm. &
J. Small

Formania mekongensis
W. W. Sm. & J. Small

Sichuan, China 1981.08.29
Qinghai-Tibet

Team
PE 01190762 AY572951

Asterinae Galatella Cass.
Galatella angustissima
(Tausch) Novopokr.

Xinjiang, China 1956.08.03 Xinjiang Team PE 01824422 KJ711880

Lagenophorinae Myriactis Less. Myriactis wallichii Less. Yunnan, China 1940.10 R. C. Qin PE 00301584 LC027399

Nannoglottis
Maxim.

Nannoglottis
carpesioides Maxim.

Shaanxi, China 1955.06.28 Taibai Team PE 01648838 AY017161

Solidagininae Solidago L. Solidago altissima L. USA 2005.09.14 L. R. Phillippe PE 01505163 JN204176

Asterinae
Turczaninovia

DC.
Turczaninovia fastigiata

(Fisch.) DC.
Jilin, China 1960.08.27 J. X. Ye PE 01822716 JN543739

Asterinae Aster L.

Aster ageratoides Turcz. Hebei, China 1935.08 Y. Liu PE 00247756 ON427115

Aster yunnanensis
Franch.

Xizang, China 1990.07.23 J. S. Yang PE 01822320 JN543853

Aster brachytrichus
Franch.

Sichuan, China 2011.07.21
Y. S. Chen &

Y. C. Bi
PE 02016463 JN543838

Aster taliangshanensis
Y. Ling

Sichuan, China 1975.08.19 PE 01831078 JN543772

Aster turbinatus
S. Moore

Fujian, China 1987.08.31 L. G. Lin PE 01822347 JN543814

Aster homochlamydeus
Hand.-Mazz.

Sichuan, China 1951.09.07
W. G. Hu &

Z. He
PE 01825938 JN543784

Aster altaicus Willd. China 1956.09.03
Yellow River
Investigation

Team
PE 01607346 MT922723

Conyzinae Erigeron L.

Erigeron
lonchophyllus Hook.

USA 2011.07.31 R. R. Halse PE 01920570 AF118505

Erigeron strigosus Muhl.
ex Willd.

USA 2015.07.14 R. R. Halse PE 02110955 AF118490

Erigeron acris L. Canada 1977.08.05
J. M. Gillett &
M. Boudreau

PE 00246145 ON527430

Erigeron acris subsp.
politus (Fr.) H. Lindb.

Xinjiang, China 2007.07.18
S. V.

Smirnov et al.
PE 02016791 KJ711906
Due to the absence of ITS data for Solidago altissima L. in the NCBI database, Solidago decurrens L. was used as a reference species instead.
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Furthermore, for SEM analysis, standard polar and equatorial

views of each species were selected. A 10 µm × 10 µm square grid

was used to count the spines within, and the resulting trait

parameters, termed Np and Ne, were used to characterize the

distribution and number of spines in the polar and equatorial

views, respectively. The counting rule was: ‘‘count the top, but

not the bottom; count the left, but not the right.’ For these views, the

mean values (M) and standard deviations (SD) of 10 pollen traits (P,

E, P/E, T, L, T/L, D, H, D/H, Ss) were measured and calculated

across the 21 representative species. Unlike the other traits, Np and

Ne are presented as individual counts rather than M ± SD (Table 2;

Supplementary Data).
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2.3 Construction of the hierarchical
dendrogram of pollen morphology

Pollen trait data were standardized using Z-scores (Andrade,

2021) to eliminate dimensional differences and ensure comparability.

The data were then imported into IBM SPSS Statistics 26 (IBMCorp.,

Armonk, NY) for clustering analysis using Ward’s method and

squared Euclidean distance. The proximity matrix was converted to

Newick format using the “ape” and “readxl” packages in R v4.3.3

(https://www.R-project.org/). Visualization and refinement of the

dendrogram were performed in Figtree v1.4.4, generating the

hierarchical dendrogram of pollen morphology.
FIGURE 1

Graphical illustration of measured pollen morphological traits in Astereae (A, Myriactis wallichii; B, Erigeron lonchophyllus; C, Galatella angustissima;
D, Arctogeron gramineum; E, F, Aster altaicus). Scale bar in LM and SEM overview 10µm, and in SEM close-up 1µm.
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TABLE 2 Quantitative morphological traits of pollen in 21 selected species.

L P (mm) E (mm) P/E S/N
Perforations

at base

0.02 30.11 ± 1.50 26.93 ± 1.27 1.12 ± 0.05 2 1-2

0.01 33.94 ± 1.82 32.45 ± 1.39 1.05 ± 0.06 1.5 2-3

0.01 23.18 ± 1.04 22.19 ± 0.92 1.05 ± 0.04 1.5 1-2

0.01 22.86 ± 2.52 21.93 ± 2.08 1.04 ± 0.08 2 1-2

0.01 26.05 ± 1.43 25.26 ± 2.30 1.04 ± 0.11 2.5 1

0.01 34.17 ± 1.25 31.37 ± 1.77 1.09 ± 0.05 2 2

0.01 32.06 ± 2.07 30.32 ± 1.75 1.06 ± 0.05 2.5 1

0.01 32.12 ± 2.04 30.07 ± 1.93 1.07 ± 0.07 2 0-1

0.01 25.70 ± 2.09 25.38 ± 1.08 1.01 ± 0.05 2.5 1-2

0.01 26.04 ± 1.12 28.25 ± 1.28 0.92 ± 0.02 2.5 2

0.01 31.35 ± 1.35 29.43 ± 1.88 1.07 ± 0.07 1.5 0-1

0.01 26.19 ± 1.04 28.24 ± 1.58 0.93 ± 0.06 2 2

0.01 27.17 ± 1.65 28.01 ± 1.73 0.97 ± 0.07 2 0-2

0.01 35.69 ± 2.32 35.32 ± 1.96 1.01 ± 0.09 2.5 2

0.01 28.66 ± 2.03 29.88 ± 1.52 0.96 ± 0.08 2.5 1-2

0.01 36.46 ± 2.96 34.93 ± 2.75 1.05 ± 0.08 3 1-2

0.02 25.72 ± 1.98 26.97 ± 2.12 0.96 ± 0.07 2.5 2

0.01 23.95 ± 2.76 22.69 ± 1.72 1.06 ± 0.09 2 2

0.02 21.80 ± 1.22 20.81 ± 1.08 1.05 ± 0.05 2.5 1-2

0.01 23.92 ± 1.54 23.02 ± 1.41 1.04 ± 0.05 2 1

0.01 23.59 ± 1.96 23.17 ± 1.37 1.02 ± 0.07 2 0-1
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Species Np Ne Ss (mm) D (mm) H (mm) D/H T (mm) L (mm) T

Arctogeron gramineum (L.) DC. 10 12 3.96 ± 0.66 2.83 ± 0.25 3.41 ± 0.27 0.83 ± 0.07 5.00 ± 0.53 30.73 ± 1.54 0.16 ±

Callistephus chinensis (L.) Nees 9 10 4.43 ± 0.72 3.09 ± 0.33 3.68 ± 0.52 0.85 ± 0.08 4.57 ± 0.41 34.74 ± 1.45 0.13 ±

Eschenbachia japonica (Thunb.)
J. Kost.

19 21 3.05 ± 0.49 2.34 ± 0.21 2.45 ± 0.35 0.97 ± 0.14 3.58 ± 0.35 25.80 ± 1.19 0.14 ±

Dichrocephala benthamii C.
B. Clarke

15 9 3.37 ± 0.92 2.61 ± 0.44 2.83 ± 0.55 0.93 ± 0.08 3.90 ± 0.37 23.90 ± 1.62 0.16 ±

Formania mekongensis W.W.Sm.
& J.Small

9 9 4.05 ± 0.41 2.83 ± 0.26 2.78 ± 0.23 1.02 ± 0.09 4.64 ± 0.44 28.22 ± 1.73 0.16 ±

Galatella angustissima
(Tausch) Novopokr.

9 8 4.29 ± 0.52 3.12 ± 0.32 3.22 ± 0.27 0.97 ± 0.09 5.01 ± 0.49 34.71 ± 2.60 0.14 ±

Myriactis wallichii Less. 10 10 4.16 ± 0.62 2.97 ± 0.35 3.74 ± 0.52 0.80 ± 0.07 5.50 ± 0.54 32.33 ± 2.16 0.17 ±

Nannoglottis carpesioides Maxim. 9 8 4.61 ± 0.74 3.03 ± 0.31 3.66 ± 0.34 0.83 ± 0.06 5.51 ± 0.46 33.33 ± 1.23 0.17 ±

Solidago altissima L. 15 14 3.67 ± 0.69 2.67 ± 0.23 2.88 ± 0.18 0.93 ± 0.09 4.28 ± 0.32 26.76 ± 1.24 0.16 ±

Turczaninovia fastigiata (Fisch.) DC. 10 9 4.24 ± 0.45 3.11 ± 0.27 3.41 ± 0.38 0.92 ± 0.12 4.99 ± 0.51 28.34 ± 1.05 0.18 ±

Aster ageratoides Turcz. 10 9 3.87 ± 0.40 2.65 ± 0.17 2.98 ± 0.21 0.89 ± 0.05 4.62 ± 0.47 32.59 ± 1.51 0.14 ±

Aster yunnanensis Franch. 10 9 4.15 ± 0.61 3.08 ± 0.36 3.28 ± 0.25 0.94 ± 0.09 4.64 ± 0.34 28.22 ± 1.28 0.16 ±

Aster brachytrichus Franch. 10 9 4.20 ± 0.83 3.14 ± 0.24 3.11 ± 0.37 1.02 ± 0.10 4.45 ± 0.39 29.43 ± 1.61 0.15 ±

Aster taliangshanensis Y. Ling 8 8 5.16 ± 0.66 3.48 ± 0.39 4.14 ± 0.44 0.84 ± 0.07 6.36 ± 0.63 39.72 ± 2.24 0.16 ±

Aster turbinatus S. Moore 8 10 3.83 ± 0.56 2.86 ± 0.34 3.28 ± 0.42 0.88 ± 0.08 5.04 ± 0.55 32.17 ± 2.58 0.16 ±

Aster homochlamydeus Hand.-Mazz. 8 9 4.44 ± 0.76 2.98 ± 0.30 3.72 ± 0.39 0.80 ± 0.06 5.81 ± 0.72 39.13 ± 4.19 0.15 ±

Aster altaicus Willd. 14 10 4.02 ± 0.63 3.14 ± 0.36 2.87 ± 0.26 1.10 ± 0.11 3.67 ± 0.36 27.38 ± 0.93 0.13 ±

Erigeron lonchophyllus Hook. 13 11 3.53 ± 0.64 2.70 ± 0.33 2.78 ± 0.30 0.97 ± 0.09 4.18 ± 0.38 26.68 ± 1.67 0.16 ±

Erigeron strigosus Muhl. ex Willd. 24 18 2.47 ± 0.65 1.94 ± 0.27 2.08 ± 0.28 0.95 ± 0.14 3.16 ± 0.50 22.50 ± 1.54 0.14 ±

Erigeron acris L. 20 16 2.96 ± 0.45 2.25 ± 0.24 2.58 ± 0.18 0.87 ± 0.09 3.72 ± 0.50 24.91 ± 1.83 0.15 ±

Erigeron acris subsp. politus (Fr.)
H. Lindb.

15 12 2.92 ± 0.25 2.27 ± 0.18 2.58 ± 0.25 0.89 ± 0.10 3.56 ± 0.35 24.30 ± 1.38 0.15 ±

“Perforations at base” refers to the number of perforation rows (e.g., 1-2 rows) at the base of the spine.
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2.4 Construction of the ITS molecular
phylogenetic tree

This study constructed a molecular phylogenetic tree based on

ITS sequences from 21 species. Initially, the ITS sequences of these

species were downloaded from the NCBI database, followed by

quality control measures to ensure completeness and accuracy. Due

to the temporary unavailability of ITS data for Solidago altissima in

the NCBI database, S. decurrens, a congeneric species, was selected

as a substitute for subsequent analyses. The ITS sequences were

then aligned using MAFFT v.7.520 (Katoh and Standley, 2013) with

default parameters to optimize sequence alignment. The aligned

sequences were uploaded to the CIPRES Science Gateway platform

(https://www.phylo.org/), where a maximum likelihood (ML)

method was employed to construct the phylogenetic tree in

RAxML (Stamatakis et al., 2008) under the GTR + GAMMA

model, with 1,000 bootstrap replicates to enhance reliability. The

resulting tree was visualized and adjusted in Figtree v1.4.4 (http://

tree.bio.ed.ac.uk/software/figtree/), with branch modifications and

annotations guided by the findings of Li et al. (2012) to produce the

final phylogenetic tree. Throughout the adjustment process, clarity

of the branches and integrity of the information were maintained to

facilitate interpretation and presentation.
2.5 Data analysis and validation

Box plots of the 10 morphological traits measured under LM

and SEM were generated using Excel 2019 (Microsoft Corp.,

Redmond, WA, USA). To further analyze differences in these

morphological traits, an analysis of variance (ANOVA) was

conducted on pollen morphological traits for all species using

SPSS. Additionally, an independent samples t-test was conducted

on pollen morphological data from Aster and Erigeron to compare

morphological differences between these two genera.

In this study, the Robinson-Foulds (RF) distance method

(Briand et al., 2020) was employed to compare the topological

structures of the two phylogenetic trees. Initially, both trees were

manually imported using a file browser for analysis. The RF

distance between the trees was then calculated to assess their

topological differences quantitatively. To enhance the

interpretability of the results, we normalized the RF distance to

produce the Tree Congruence Index (TCI), which quantifies the

topological similarity between the two trees. A TCI value closer to 1

indicates higher topological similarity between the trees (de Vienne

et al., 2007; Mir et al., 2013).
3 Results

3.1 Pollen morphological characteristics of
the Astereae

Detailed pollen morphological data observed under LM and

SEM, along with habitat information for the 21 sampled species, are
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presented in Figures 2–8. Table 2 summarizes the quantitative

values of pollen morphological traits for these species. Except for

Np and Ne traits, the remaining 10 morphological characteristics

are expressed as mean ± standard deviation (M ± SD). Table 3

presents the qualitative morphological traits of pollen, providing an

overview of its key characteristics. Box plots (Figure 9) depict the

distribution patterns of these data, highlighting the interquartile

range (25%-75%). The specific trait information for each species is

detailed in the Supplementary Material.

3.1.1 Pollen shape and apertures
The results indicate that most pollen grains of the studied species

are nearly spheroidal (0.90 < P/E < 1.10), with only Arctogeron

gramineum exhibiting a subprolate shape (P/E = 1.12 > 1.10)

(Figure 4). All species display three-colporate apertures, which are

clearly observed as tricolporate structures under both LM and SEM.

The P/E (the length of polar axis/the length of equatorial axis) ranges

from 0.92 to 1.12. In equatorial view, P ranges from 21.80 to 36.46

µm, while E ranges from 20.81 to 35.32 µm. Significant interspecies

differences were observed in P, E, and P/E (p < 0.01).

3.1.2 Pollen exine ornamentation
All pollen grains exhibit spines, which are prominently spinose

under SEM. The spines gradually taper, typically conical in shape,

or have a noticeably widened base. The D ranges from 1.94 to 3.48

µm, the H ranges from 2.08 to 4.14 µm, and the D/H (diameter of

spinule base/spinule height) ranges from 0.80 to 1.10. Significant

interspecies differences were observed in D and H (p < 0.01). Tiny

pores are present at the spinule bases, with 1-3 layers that vary

depending on species and individual differences.
3.2 Pollen traits and clustering results of
the Astereae

Morphological traits, including pollen size, aperture type, and

exine ornamentation, were measured for 21 species of Astereae.

Based on these data, a hierarchical dendrogram of pollen

morphology was constructed (Figure 10). Nannoglottis

carpesioides was used as the outgroup, following the phylogenetic

framework proposed by Li et al. (2012). The clustering results

revealed that species within the same subtribe formed distinct, well-

defined clusters, with clear separation between subtribes. At the

genus level, Aster and Erigeron were grouped into well-separated

branches, reflecting differentiation between the two genera.

Based on the clustering results, the branches corresponding to

the Asterinae and Conyzinae were designated as Clade A and Clade

B, respectively. Clade A was further subdivided into four branches:

Clade A1, Clade A2, Clade A3, and Clade A4 (Figure 10). Principal

component analysis (PCA) of the 21 Astereae species identified

eight key pollen morphological traits—Ss, E, D, L, H, Np, P, and T

— that distinguished these clusters. The results of the t-test for these

traits are presented in Table 4.

Several pollen traits partially explain the differences between the

pollen types of Aster and Erigeron. The L values of Aster pollen
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(Clade A1 and Clade A2) range from 27.38 to 39.72 mm,

significantly larger than those of Erigeron (Clade B), which range

from 22.50 to 26.76 mm (t-test, p < 0.01). This trait serves as a

reliable distinguishing feature for the latter. Within Aster, Clade A2

(A. taliangshanensis and A. homochlamydeus) exhibits higher L

values (39.72 mm and 39.13 mm, respectively) compared to

Clade A1 (27.38-32.17 mm). Similarly, The Ss shows

significant differences between the two genera (Aster: 3.83-5.16

mm; Erigeron: 2.47-3.67 mm; t-test, p < 0.01), making it another
Frontiers in Plant Science 07
critical parameter for differentiation. In contrast, the Np and Ne

values are generally higher in Erigeron, reflecting a denser spine

distribution compared to Aster. Regarding D and H, Erigeron

exhibits smaller values (D: 1.94-2.70 mm; H: 2.08-2.88 mm) than

Aster (D: 2.83-3.48 mm; H: 2.78-4.14 mm). These differences

highlight the short and narrow spines in Erigeron, in contrast to

the long and wide spines in Aster. Additionally, pollen grains of

Erigeron observed in polar view under LM are significantly smaller

than those of Aster.
FIGURE 2

Pollen grains and the habitats of their source plants. (A-G) Aster altaicus; (H-N) Aster ageratoides; and (O-U) Aster homochlamydeus. Pollen grains in
equatorial view under LM (A, H, O) and SEM (C, E, J, L, Q, S), in polar view under LM (B, I, P) and SEM (D, F, K, M, R, T), along with the habitats of
their source plants (G cited from https://ppbc.iplant.cn/tu/10803110, last access: 6 November 2024, by © Y. S. Chen, N cited from https://
ppbc.iplant.cn/tu/5937894, last access: 6 November 2024, by © R. (B) Zhu, U cited from https://ppbc.iplant.cn/tu/10697277, last access: 6 November
2024, by © Y. S. Chen). Scale bar in LM and SEM overview 10µm, and in SEM close-up 1µm.
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Meanwhile, some species exhibit unique characteristics. For

instance, A. ageratoides, grouped within Clade A3, shares most of its

pollen traits with other Aster species. However, its D value (2.65

mm) is lower than the minimum observed in other Aster species,

while its P/E (1.07) exceeds their maximum. Similarly, Arctogeron

gramineum displays the highest P/E (1.12), indicating a pollen

shape approaching subprolate. Additionally, Myriactis wallichii

(Lagenophorinae), Solidago decurrens (Solidagininae), and

Dichrocephala benthamii (Grangeinae), each cluster within
Frontiers in Plant Science 08
distinct branches corresponding to their respective subtribes,

reflecting clear subtribal-level separation.
3.3 ITS molecular phylogenetic tree
of the Astereae

A molecular phylogenetic tree was constructed based on

ITS sequence data from 21 Astereae species (Figure 11),
FIGURE 3

Pollen grains and the habitats of their source plants. (A-G) Aster turbinatus; (H-N) Aster taliangshanensis; and (O-U) Aster brachytrichus. Pollen grains
in equatorial view under LM (A, H, O) and SEM (C, E, J, L, Q, S), in polar view under LM (B, I, P) and SEM (D, F, K, M, R, T), along with the habitats of
their source plants (G cited from https://ppbc.iplant.cn/tu/15652366, last access: 6 November 2024, by © X. Y. Ye, N cited from https://ppbc.iplant.cn/
tu/451749, last access: 6 November 2024, by © Y. S. Chen, U cited from https://ppbc.iplant.cn/tu/15002989, last access: 6 November 2024, by © Y. S.
Chen). Scale bar in LM and SEM overview 10µm, and in SEM close-up 1µm.
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following the framework proposed by Li et al. (2012).

N. carpesioides, identified as basal or near-basal within the

Astereae (Liu et al., 2002), was selected as the outgroup. This tree

illustrates the phylogenetic relationships among the studied species

and serves as a basis for comparison with the pollen

morphology dendrogram.

The molecular phylogenetic tree reveals the evolutionary

relationships within the Astereae. Asterinae species form a major
Frontiers in Plant Science 09
branch, with closely clustered representatives such as A.

taliangshanensis, A. homochlamydeus, and A. altaicus. Conyzinae

is represented by Erigeron species (e.g., E. acris, E. lonchophyllus),

forming a distinct lineage, while Eschenbachia japonica appears as a

separate branch within the subtribe. Other subtribes, such as

Lagenophorinae (M. wallichii), Solidagininae (S. decurrens), and

Grangeinae (D. benthamii), each form independent branches,

reflecting their phylogenetic distinctiveness.
FIGURE 4

Pollen grains and the habitats of their source plants. (A-G) Aster yunnanensis; (H-N) Turczaninovia fastigiata; and (O-U) Arctogeron gramineum.
Pollen grains in equatorial view under LM (A, H, O) and SEM (C, E, J, L, Q, S), in polar view under LM (B, I, P) and SEM (D, F, K, M, R, T), along with
the habitats of their source plants (G cited from https://ppbc.iplant.cn/tu/11716277, last access: 6 November 2024, by © Y. P. Zeng, N cited from https://
ppbc.iplant.cn/tu/8233925, last access: 6 November 2024, by © Q. W. Lin, U cited from https://ppbc.iplant.cn/tu/8258978, last access: 6 November
2024, by © Q. W. Lin). Scale bar in LM and SEM overview 10µm, and in SEM close-up 1µm.
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3.4 Comparison of molecular phylogeny
and pollen morphology dendrogram
in the Astereae

The TCI value between the pollen morphology dendrogram and

the molecular phylogenetic tree was 0.545.

At the subtribal level, the pollen morphology dendrogram

revealed well-defined clustering patterns. Species of Asterinae were

primarily grouped in Clade A (Figure 10), whereas their distribution
Frontiers in Plant Science 10
in the molecular phylogenetic tree was more dispersed. Notably,

although Erigeron species within Conyzinae clustered together in a

single branch in the molecular tree, E. lonchophyllus was separated

from the main cluster of Erigeron species in the pollen dendrogram.

Other subtribes, including Lagenophorinae, Solidagininae, and

Grangeinae, formed independent branches in both trees.

At the genus level, species of Aster and Erigeron showed

consistent clustering patterns in both trees. Species of Aster (e.g.,

A. altaicus , A. turbinatus , A. homochlamydeus , and A.
FIGURE 5

Pollen grains and the habitats of their source plants. (A-G) Callistephus chinensis; (H-N) Galatella angustissima; and (O-U) Formania mekongensis.
Pollen grains in equatorial view under LM (A, H, O) and SEM (C, E, J, L, Q, S), in polar view under LM (B, I, P) and SEM (D, F, K, M, R, T), along with
the habitats of their source plants (G cited from https://ppbc.iplant.cn/tu/2409876, last access: 6 November 2024, by © R. (B) Zhu, N cited from https://
ppbc.iplant.cn/tu/10824525, last access: 6 November 2024, by © Y. S. Chen, U cited from https://ppbc.iplant.cn/tu/836417, last access: 6 November
2024, by © Y. S. Chen). Scale bar in LM and SEM overview 10µm, and in SEM close-up 1µm.
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taliangshanensis) clustered within Clades A1 and A2 in the pollen

dendrogram, closely matching their distribution in the molecular

phylogenetic tree. Similarly, species of Erigeron (e.g., E. acris and E.

strigosus) formed distinct major branches in both trees, reinforcing

their phylogenetic independence. In contrast, genera such as

Callistephus and Solidago showed lower congruence between the

two trees. Notably, F. mekongensis clustered with Asterinae species

in Clade A1 (Figure 10), but appeared on a neighboring branch

in Figure 11.
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4 Discussion

4.1 The significance of pollen morphology
in the systematic classification
of the Astereae

The TCI value of 0.545 indicates a moderate topological

similarity (de Vienne et al., 2007; Mir et al., 2013) between the

molecular and morphological trees, which is expected given the
FIGURE 6

Pollen grains and the habitats of their source plants. (A-G) Erigeron acris; (H-N) Erigeron acris subsp. politus; and (O-U) Erigeron lonchophyllus.
Pollen grains in equatorial view under LM (A, H, O) and SEM (C, E, J, L, Q, S), in polar view under LM (B, I, P) and SEM (D, F, K, M, R, T), along with
the habitats of their source plants (G cited from https://ppbc.iplant.cn/tu/15006256, last access: 6 November 2024, by © Y. S. Chen, N cited from
https://ppbc.iplant.cn/tu/8196316, last access: 6 November 2024, by © Q. W. Lin, U cited from https://www.inaturalist.org/observations/28542542, last
access: 6 November 2024, by © J. Grant). Scale bar in LM and SEM overview 10µm, and in SEM close-up 1µm.
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different data types used. While some differences are inevitable, this

cross-validation strongly supports the use of pollen morphology in

classification (Keating et al., 2023). The pollen morphology

clustering tree clearly shows species groupings within the same

subtribe, highlighting its effectiveness. Lagenophorinae and

Grangeinae form independent branches, distinct from Asterinae

and Conyzinae. These findings underscore the significance of pollen

traits in subtribal classifications and phylogenetic studies (Moon
Frontiers in Plant Science 12
et al., 2008). Moreover, the high concordance with the macroscopic

morphological classification framework (Anderberg et al., 2007)

and the molecular phylogenetic tree (Li et al., 2012) reinforces the

reliability of pollen morphology in subtribal-level classification. At

the genus level, variations in pollen traits reflect phylogenetic

relationships and distinctions among genera, highlighting their

unique evolutionary trends and affinities with closely related taxa

(Wodehouse, 1935; Zhang and Zhou, 2016).
FIGURE 7

Pollen grains and the habitats of their source plants. (A-G) Erigeron strigosus; (H-N) Eschenbachia japonica; and (O-U) Myriactis wallichii. Pollen
grains in equatorial view under LM (A, H, O) and SEM (C, E, J, L, Q, S), in polar view under LM (B, I, P) and SEM (D, F, K, M, R, T), along with the
habitats of their source plants (G cited from https://ppbc.iplant.cn/tu/7206727, last access: 6 November 2024, by © A. Liu, N cited from https://
ppbc.iplant.cn/tu/11445230, last access: 6 November 2024, by © Y. P. Zeng, U cited from https://ppbc.iplant.cn/tu/11461423, last access: 6 November
2024, by © Y. P. Zeng). Scale bar in LM and SEM overview 10µm, and in SEM close-up 1µm.
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N. carpesioides occupies the basal position of the pollen

morphology dendrogram (Figure 10), showing a trend of

decreasing pollen size as species radiate outward. Within

Asterinae, species in Clades A2, A3, and A4 exhibit larger pollen

parameters (P and E) compared to Clade A1. In contrast, Conyzinae

species consistently display smaller P and E values. These

findings provide important insights into the phylogenetic

relationships within Astereae, particularly the separation of

Erigeron from Asterinae, which aligns more closely with
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Conyzinae (Zhang and Zhou, 2016; Iamonico, 2018;

Bhattacharjee et al., 2024; Chakraborty et al., 2024). Interestingly,

Turczaninovia fastigiata (P/E = 0.92) and Arctogeron gramineum

(P/E = 1.12) cluster closely in Figure 11, yet are positioned at

opposite ends of Asterinae (Clade A) in Figure 10. This discrepancy

may be attributed to their P/E values representing the minimum

and maximum observed in this study, suggesting that the P/E may

be an important factor influencing pollen morphology clustering

(Wodehouse, 1928; Bahadur et al., 2022).
FIGURE 8

Pollen grains and the habitats of their source plants. (A-G) Dichrocephala benthamii; (H-N) Solidago altissima; and (O-U) Nannoglottis carpesioides.
Pollen grains in equatorial view under LM (A, H, O) and SEM (C, E, J, L, Q, S), in polar view under LM (B, I, P) and SEM (D, F, K, M, R, T), along with
the habitats of their source plants (G cited from https://ppbc.iplant.cn/tu/11457706, last access: 6 November 2024, by © Y. P. Zeng, N cited from
https://ppbc.iplant.cn/tu/10518902, last access: 6 November 2024, by © Y. S. Chen, U cited from https://ppbc.iplant.cn/tu/11485800, last access: 6
November 2024, by © Y. P. Zeng). Scale bar in LM and SEM overview 10µm, and in SEM close-up 1µm.
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The taxonomic placement of F. mekongensis remains

unreso l ved . Sh i and Fu (1983) c l a s s ified i t w i th in

Chrysantheminae of Anthemideae, while Chen and Brouillet

(2011b) considered its classification uncertain. Fu et al. (2016)

placed it in Astereae based on molecular phylogenetic analysis,

and Nesom (2020) later assigned it to the newly established subtribe

Formaniinae within Astereae. In this study, pollen morphological

clustering places F. mekongensis with Asterinae species in Clade A1
Frontiers in Plant Science 14
(Figure 10), providing the first palynological evidence supporting its

placement in Asterinae. This finding builds on earlier studies that

recognized F. mekongensis within Astereae (Fu et al., 2016).

In summary, pollen morphological analysis reveals significant

phylogenetic patterns and evolutionary trends across taxonomic

levels. Unlike molecular methods, it offers unique structural insights

and visual evidence (Wodehouse, 1928, 1929; Keating et al., 2023).

This study underscores the value of pollen morphology in subtribal
TABLE 3 Qualitative morphological traits of pollen in 21 selected species.

Species
Pollen
shape

Colporus
Exine

sculpturing
(LM)

Exine
sculpturing

(SEM)

Aperture
membrane

Spine shape
Inter-
spinal

Arctogeron gramineum (L.) DC. subprolate tricolporate spinose echinate granulate
tapering to a sharp,

pointed tip
perforate

Callistephus chinensis (L.) Nees spheroidal tricolporate spinose echinate granulate
base expanded,
tapering to a
sharp tip

perforate

Eschenbachia japonica (Thunb.)
J. Kost.

spheroidal tricolporate spinose echinate granulate tapering to a sharp perforate

Dichrocephala benthamii C.
B. Clarke

spheroidal tricolporate spinose echinate granulate tapering to a sharp perforate

Formania mekongensis W.W.Sm.
& J.Small

spheroidal tricolporate spinose echinate granulate tapering to a sharp perforate

Galatella angustissima
(Tausch) Novopokr.

spheroidal tricolporate spinose echinate granulate tapering to a sharp perforate

Myriactis wallichii Less. spheroidal tricolporate spinose echinate granulate
tapering to a sharp,

pointed tip
perforate

Nannoglottis carpesioides Maxim. spheroidal tricolporate spinose echinate granulate tapering to a sharp perforate

Solidago altissima L. spheroidal tricolporate spinose echinate granulate tapering to a sharp perforate

Turczaninovia fastigiata
(Fisch.) DC.

spheroidal tricolporate spinose echinate granulate
tapering to a sharp,

pointed tip
perforate

Aster ageratoides Turcz. spheroidal tricolporate spinose echinate granulate
tapering to a sharp,

pointed tip
perforate

Aster yunnanensis Franch. spheroidal tricolporate spinose echinate granulate tapering to a sharp perforate

Aster brachytrichus Franch. spheroidal tricolporate spinose echinate granulate tapering to a sharp perforate

Aster taliangshanensis Y. Ling spheroidal tricolporate spinose echinate granulate
tapering to a sharp,

pointed tip
perforate

Aster turbinatus S. Moore spheroidal tricolporate spinose echinate granulate tapering to a sharp perforate

Aster homochlamydeus
Hand.-Mazz.

spheroidal tricolporate spinose echinate granulate tapering to a sharp perforate

Aster altaicus Willd. spheroidal tricolporate spinose echinate granulate
base expanded,

tapering to a point
perforate

Erigeron lonchophyllus Hook. spheroidal tricolporate spinose echinate granulate
tapering to a sharp,

pointed tip
perforate

Erigeron strigosus Muhl.
ex Willd.

spheroidal tricolporate spinose echinate granulate
tapering to a sharp,

pointed tip
perforate

Erigeron acris L. spheroidal tricolporate spinose echinate granulate
tapering to a sharp,

pointed tip
perforate

Erigeron acris subsp. politus (Fr.)
H. Lindb.

spheroidal tricolporate spinose echinate granulate tapering to a sharp perforate
f
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classification within Astereae, helps distinguish between the Aster

and Erigeron, and provides new insights into the taxonomic

placement of F. mekongensis. Although focused on Astereae, the

approach presented here has broader implications for using pollen

traits in plant systematics. By integrating molecular and

morphological data, this work paves the way for more

comprehensive plant classification at various taxonomic levels

and encourages future research into combining these data types.
Frontiers in Plant Science 15
4.2 Taxonomic significance of pollen
morphology in Aster and Erigeron

Aster, the largest genus in Astereae, is of considerable economic

importance. Its capitula are typically solitary or arranged in

corymbiform or paniculiform synflorescences (Chen et al., 2011,

2024). Erigeron, the second-largest genus in the tribe, is

characterized by radiate capitula (Chen and Brouillet, 2011a;
FIGURE 9

Boxplots of 21 sampled taxa showing the variations in pollen morphological traits. 1. Nannoglottis carpesioides; 2. Dichrocephala benthamii; 3.
Galatella angustissima; 4. Formania mekongensis; 5. Aster yunnanensis; 6. Aster brachytrichus; 7. Eschenbachia japonica; 8. Myriactis wallichii; 9.
Solidago altissima; 10. Erigeron acris; 11. Erigeron acris subsp. Politus; 12. Erigeron lonchophyllus; 13. Erigeron strigosus; 14. Callistephus chinensis;
15. Arctogeron gramineum; 16. Aster taliangshanensis; 17. Aster ageratoides; 18. Turczaninovia fastigiata; 19. Aster turbinatus; 20. Aster
homochlamydeus; 21. Aster altaicus.
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Zhang and Zhou, 2016). Despite these differences, morphological

similarities between certain species of Aster and Erigeron have

complicated their classification (Nesom, 1994; Li et al., 2012; Fu

et al., 2016). This study identifies significant differences in pollen

size and exine ornamentation between the two genera, offering new

insights into their taxonomic distinction.
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SEM reveals differences in exine ornamentation, with Aster

pollen exhibiting long, broad, and sparsely distributed spines, while

Erigeron pollen features short, narrow, and more densely arranged

spines. Under LM, the pollen grains of Aster are significantly larger

than those of Erigeron, with nearly a twofold difference in size.

Despite these morphological differences, both genera share a typical

spinulose ornamentation pattern (Skvarla et al., 1977; Zhang and

Zhou, 2016). Zhang and Zhou (2016) reported a close relationship

between E. strigosus, A. batangensis, and T. fastigiata. Chen et al.

(2024) further demonstrated that A. batangensis and A.

yunnanensis cluster within the “Alpine Aster” group, supporting

their recognition as a distinct taxonomic unit. In our phylogenetic

analysis (Figure 10), A. yunnanensis and T. fastigiata closely cluster

within Clade A1, showing a phylogenetic affinity with E. strigosus in

Clade B. These findings corroborate previous studies and, coupled

with the observed pollen morphological differences, highlight the

complex evolutionary relationships among these taxa.

From a biogeographical perspective, Aster and Erigeron belong

to the Eurasian (EA) and North American (NA) evolutionary

lineages of the Astereae, respectively (Li et al., 2012). Molecular

phylogenetic studies have revealed a significant genetic divergence

between the EA and NA lineages (Noyes and Rieseberg, 1999;

Selliah and Brouillet, 2008; Brouillet et al., 2009; Li et al., 2012; Jafari

et al., 2015; Korolyuk et al., 2015). The observed differences in

pollen morphology likely reflect divergent natural selection
FIGURE 10

The hierarchical dendrogram of pollen morphology depicts the classification of pollen types within the Astereae based on morphological features.
TABLE 4 The t-test analysis results for the pollen morphological
characteristics of the Aster L. and the Erigeron L.

Pollen
morphological characters

Aster L. Erigeron L.

Ss (mm) significant significant

D (mm) significant significant

H (mm) significant significant

D/H non-significant non-significant

T (mm) significant significant

L (mm) significant significant

T/L non-significant non-significant

P (mm) significant significant

E (mm) significant significant

P/E significant significant
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pressures as the two lineages adapted to distinct ecological

environments (Wang and Wang, 1983). Aster has diversified in

temperate climates, exhibiting high species diversity (Chen et al.,

2011, 2024). In contrast, Erigeron has adapted to arid environments,

where the role of insect pollination is reduced, leading to changes in

pollen size and other traits, such as spine reduction, as part of the

adaptation to these conditions (Zhang and Zhou, 2016; Zhang et al.,

2019; Bhattacharya et al., 2022). These ecological adaptations,

reflected in pollen morphology, are also supported by molecular

phylogenetic evidence (Li et al., 2012; Jafari et al., 2015).
4.3 Roles and prospects of pollen
morphology in Asteraceae phylogenetics

Pollen morphology, combining the strengths of both

morphological and molecular analyses, provides an accurate and

cost-effective tool for plant taxonomy (Kriebel et al., 2017; Keating

et al., 2023). In the Astereae, pollen morphology analyses of Aster

and Erigeron reveal significant differences in pollen grain size and

exine spine morphology. These microstructural traits offer reliable

evidence for taxonomic classification and are essential for

elucidating the phylogenetic relationships within the Astereae.

The application of pollen morphology is highly operable and

reliable, overcoming the limitations of single-method

morphological or molecular studies, and serves as a critical

complement to systematic plant taxonomy (Kriebel et al., 2017;

Wang et al., 2023).

Future research on pollen morphology in Asteraceae may focus

on the following aspects: (1) employing high-resolution imaging
Frontiers in Plant Science 17
techniques, such as SEM and transmission electron microscopy

(TEM), to conduct detailed analyses of pollen microstructures,

uncovering subtle interspecific differences and improving

classification accuracy (Polevova et al., 2023; Gabarayeva et al.,

2024); (2) integrating molecular markers, such as ribosomal DNA

and chloroplast DNA, to further explore genetic diversity and

phylogenetic relationships within the Asteraceae (Zhang et al.,

2024); and (3) expanding sample sizes and ecological ranges,

thereby deepening our understanding of the role of pollen in

ecological adaptation and evolutionary processes (Martı ́n-
Hernanz et al., 2019; Cozzolino et al., 2021).
5 Conclusions

This study integrates molecular systematics and pollen

morphology to examine phylogenetic relationships within

Astereae. The alignment of pollen morphology with molecular

phylogenetic trees demonstrates that palynology is a reliable tool

for plant taxonomy at both the genus and subtribal levels.

Significant morphological differences were observed between

Aster and Erigeron, and the placement of F. mekongensis provides

further evidence for its taxonomic position. These findings highlight

the potential of pollen data to refine classification and clarify

evolutionary relationships within Astereae. The integration of

palynological and molecular data offers a comprehensive

approach to plant systematics. Future studies incorporating

broader taxon sampling, additional molecular markers, and more

detailed morphological analyses will be essential for developing a

robust phylogeny of Astereae.
FIGURE 11

The molecular phylogeny tree of the Astereae is based on nuclear ribosomal DNA internal transcribed spacer sequences. Subtribus classification
follows the framework of Anderberg et al. (2007) as outlined. (Note: ※Solidago decurrens replaces S. altissima).
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Martıń-Hernanz, S., Martıńez-Sánchez, S., Albaladejo, R. G., Lorite, J., Arroyo, J., and
Aparicio, A. (2019). Genetic diversity and differentiation in narrow versus widespread
taxa of Helianthemum (Cistaceae) in a hotspot: The role of geographic range, habitat,
and reproductive traits. Ecol. Evol. 9, 3016–3029. doi: 10.1002/ece3.4481
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