
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Sajad Ali,
Yeungnam University, Republic of Korea

REVIEWED BY

Anshika Tyagi,
Yeungnam University, Republic of Korea
Deepak Kumar,
Banaras Hindu University, India

*CORRESPONDENCE

Sajad Majeed Zargar

smzargar@skuastkashmir.ac.in

RECEIVED 13 January 2025
ACCEPTED 25 March 2025

PUBLISHED 24 April 2025

CITATION

Manzoor M, Sudan J, Nath A, Bhat B, Sofi PA,
Bhat MA, Prasad PVV and Zargar SM (2025)
Genome-wide identification and association
analysis of informative SNPs of various
nutri-nutraceutical traits in Buckwheat
(Fagopyrum spp.).
Front. Plant Sci. 16:1559621.
doi: 10.3389/fpls.2025.1559621

COPYRIGHT

© 2025 Manzoor, Sudan, Nath, Bhat, Sofi, Bhat,
Prasad and Zargar. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 24 April 2025

DOI 10.3389/fpls.2025.1559621
Genome-wide identification
and association analysis of
informative SNPs of various
nutri-nutraceutical traits in
Buckwheat (Fagopyrum spp.)
Madhiya Manzoor1, Jebi Sudan1, Adil Nath1, Basharat Bhat2,
Parvaze A. Sofi3, M. Ashraf Bhat1, P. V. Vara Prasad4

and Sajad Majeed Zargar1*

1Proteomics Lab, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences
and Technology of Kashmir, Srinagar, Jammu & Kashmir, India, 2Center of Artificial Intelligence and
Machine Learning (CAIML), Sher-e-Kashmir University of Agricultural Sciences and Technology of
Kashmir, Srinagar, Jammu & Kashmir, India, 3Division of Genetics and Plant Breeding, Sher-e-Kashmir
University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu & Kashmir, India,
4Sustainable Intensification Innovation Lab, Kansas State University, Manhattan, KS, United States
Buckwheat (Fagopyrum spp.) is a pseudocereal with nutraceutical properties that

offer several nutritional and health benefits. Buckwheat proteins are gluten-free

and have balanced quantities of amino acids and micronutrients, with a higher

content of health-promoting bioactive flavonoids that make it a golden crop of

the future. In the present study, we conducted a genome-wide association study

(GWAS) to investigate the genetic basis of nutraceutical traits in buckwheat. Using

132 diverse genotypes, we evaluated 10 key nutritional and nutraceutical traits:

phenol, flavonoids, antioxidants, methionine, lysine, protein content, nitrogen,

iron, zinc, and ascorbic acid. Fagopyrum tartaricum displayed higher levels of

phenols, flavonoids, antioxidants, iron, zinc, and nitrogen, while Fagopyrum

esculentum exhibited elevated methionine, lysine, protein, and ascorbic acid

levels. Genotyping by sequencing identified 3,728,028 single-nucleotide

polymorphisms (SNPs), with the highest density on chromosome 1. GWAS

detected 46 significant SNPs associated with the studied traits, including an

SNP on chromosome 6 linked to lysine with aphenotypic contribution of 49.62%.

Candidate gene analysis identified 138 genes within 100 kb of significant

quantitative trait loci (QTLs), involved in metabolic and biosynthetic pathways

such as amino acid and carbohydrate metabolism. Population structure analysis

grouped the genotypes into three populations, enhancing the reliability of

marker-trait associations. Gene Ontology analysis highlighted key biological

processes, including lipid transport, tryptophan metabolism, and protein

phosphorylation, providing insights into the molecular mechanisms governing
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these traits. The present study emphasizes the potential of molecular breeding to

enhance the nutritional quality of buckwheat and its role in addressing global

malnutrition. The identified SNP markers and candidate genes offer a valuable

foundation for developing high-yield, nutrient-rich buckwheat varieties through

genome editing and marker-assisted selection.
KEYWORDS

buckwheat, nutraceutical, single nucleotide polymorphisms, genotyping by
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1 Introduction

Buckwheat (Fagopyrum spp.) is one of the most important

pseudocereals that grow in hilly areas, especially in the Himalayas

above 1,500 to 4,500 m sea level. It is considered as the poor man’s

crop and is an alternate cereal that represents an important food

supply in remote places in the Himalayas. Out of nearly 30 species

belonging to the genus Fagopyrum, only two species, viz.,

Fagopyrum esculentum (common buckwheat) and Fagopyrum

tataricum (tartary buckwheat), are cultivated. They are diploid

(2n = 2x = 16) (Farooq et al., 2016) with an estimated genome

size of 505 Mb for F. tataricum and 1,340 Mb for F. esculentum.

Buckwheat as a nutraceutical crop has been recently introduced to

many countries in the form of flour and groats, and the food

prepared from it have beneficial effects on human health (Nepali

et al., 2019). The nutritional and nutraceutical characteristic is due

to the high concentration of essential amino acids, micronutrients

(Fe and Zn), antioxidants, phenols, flavonoids, ascorbic acid, folate,

resistant starch, and fiber (Bonafaccia and Fabjan, 2023; Manzoor

et al., 2023; Sofi et al., 2023). It is also a good source of bioactive

flavonoids such as rutin, quercetin, (iso)vitexin, and epicatechin,

which have proven beneficial effects on diabetes, hypertension, and

hyperlipidemia (Joshi et al., 2020; Zargar et al., 2023a). Buckwheat is

gluten-free, making it an excellent choice for individuals with celiac

disease or gluten sensitivity. Buckwheat contains all nine essential

amino acids, including lysine, which is often lacking in other grains.

Its high antioxidant content, particularly rutin, supports heart

health by improving blood circulat ion and reducing

inflammation. Additionally, its low glycemic index helps regulate

blood sugar levels, benefiting diabetics. Buckwheat promotes

digestive health due to its high fiber content and is a valuable

food for maintaining overall wellbeing and balanced nutrition.

Nutritional security is a major concern in the present era and

breeding for a nutrient-dense crop such as buckwheat will provide a

sustainable solution. Buckwheat, despite its high economic,

agricultural, and nutritional significance, is considered a minor or

underutilized crop. With the declining production and productivity,
02
improvement in the nutritional aspect is challenging for this crop.

The lack of adequate intra-specific polymorphisms in buckwheat

has hindered the identification of robust genes or quantitative trait

loci (QTLs) linked to various nutritional and nutraceutical traits for

marker-assisted genetic improvement. To address this issue, it is

essential to utilize diverse buckwheat germplasm for mapping

desirable QTLs and then use high-throughput genotyping

platforms to generate genotypic data for the discovery of genome-

wide markers for multiple traits. This approach is crucial for

dissecting complex quantitative traits in buckwheat and for the

subsequent map-based QTL cloning. Although various genetic

molecular marker systems have been developed in buckwheat

(Konishi et al., 2006; Hara et al., 2011; Yabe et al., 2014; Yasui

et al., 2016), the use of single-nucleotide polymorphism (SNP)

markers in buckwheat remains limited.

SNPs are considered the most efficient markers for genome-

wide association studies (GWASs) because of their abundant

nature, heritability, and high resolution. GWAS, also known as

association mapping or linkage disequilibrium (LD) mapping study,

is preferred as it takes full advantage of the high phenotypic

variation within a species and the high number of historical

recombination events in the natural population. To identify the

genetic loci underlying traits at a relatively high resolution, GWAS

has become an alternative approach to the conventional QTL

mapping (Wei, 2016). In a number of economically valuable

crops, GWAS has been used to gain insight into the genetic

architecture of important nutritional traits; however, no such

efforts have been made in terms of exceptionally nutritional and

nutraceutical rich buckwheat. Recently, we have used the

genotyping by sequencing (GBS) approach for large-scale SNP

marker mining and genome-wide association analysis for various

metabolites and yield-attributing traits in buckwheat (Zargar et al.,

2023b; Naik et al., 2024).

In the current study, we integrate the high-throughput

genotyping data with various nutritional and nutraceuticals traits

for the identification of stable QTLs and their respective

candidate genes.
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2 Material and methods

2.1 Plant material

In the present study, a diverse set of 132 buckwheat genotypes

was used that includes the germplasm collected from different

regions of the Northwestern Himalayas along with some

accessions procured from NBPGR, New Delhi. The details of all

132 genotypes collected are given in Supplementary Table 1. The

material comprised both common (F. esculentum) and tartary (F.

tartaricum) buckwheat germplasm. The core set represented a

highly variable material with respect to morphological,

phenological, and yield traits as reported in our earlier studies,

with wide ranges reported for economically important traits. The

collected germplasm was purified and cultivated at the experimental

field of Sher-e-Kashmir University of Agricultural Sciences and

Technology of Kashmir (latitude 35°C30′N, longitude 75°C15′E,
and altitude 1,700 m) during 2020–2021 and 2021–2022. The

harvested plant materials (seeds) were used for biochemical

analysis after preparing flour from each genotype. In order to

reduce the error and increase the precision of the experiment,

three biological replicates of each genotype for every biochemical

(nutritional/nutraceutical) parameter was considered.
2.2 Nutritional and nutraceutical profiling

The buckwheat seed material of each genotype was powdered to

analyze traits, which include phenol, flavonoid, antioxidants,

methionine, lysine, protein content, nitrogen, iron, zinc, and

ascorbic acid.

2.2.1 Total phenols, flavonoids, and antioxidant
profiling

Total phenol content was estimated via the spectrophotometric

method using Folin Ciocalteu’s Reagent (FCR) (Samatha et al.,

2012). Phenols react with the oxidizing agent phosphomolybdate in

FCR to generate molybdenum blue, a blue-colored compound at a

wavelength of 725 nm. Total flavonoid content was estimated by the

aluminium chloride method. Flavonoids develop a brick red color

with AlCl3 and NaNO2 at alkaline pH (Talari et al., 2012). The

absorbance of the complex was recorded at 510 nm. The DPPH

(2,2-diphenyl-1-picrylhydrazyl) assay (Brand-Williams et al., 1995)

was carried out to assess the antioxidant property of the

plant extracts.

2.2.2 Amino acid profiling
For lysine estimation, 100 mg of finely ground sample was

taken, to which 5 ml of papain was added and incubated overnight

at 65°CC. Then, it was cooled to room temperature and centrifuged

for 5 min, and the supernatant was collected. One milliliter of

solution was taken out from each tube and 0.5 ml each of amino

acid mixture and copper phosphate suspension was added. This

mixture was vortexed for 5 min followed by centrifugation. 2-

Chloro-3,5 dinitropyridine solution (0.1 ml) was added to 1 mL of
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supernatant and was mixed well and shaken for 2 h. HCl (1.2 N)

was added and mixed. Extraction was done by 5 mL of ethyl acetate

and the top layer was discarded. Absorbance of aqueous layer at 390

nm was measured with blank (5 mL of papain) (Sandhya

et al., 2020).

For methionine estimation, 500 mg of sample was autoclaved

with 6 mL of 2 N HCl for 1 h. The sample was heated to boil with a

pinch of charcoal and filtered through Whatman filter paper. The

pH of the filtrate was adjusted to 6.5 with 10 N NaOH and volume

was raised to 50 mL and then it was transferred to a conical flask.

Three milliliters of 10% NaOH and 0.15 mL of 10% sodium

nitroprusside were added. Absorbance of red color was read at

520 nm in a spectrophotometer (Thakur and Guttikonda, 2017).

2.2.3 Seed nitrogen and protein content
The total nitrogen is estimated by micro-Kjeldahl method

(Barbano et al., 1990). In this method, 2 g of sieved sample was

taken in the Kjeldahl cylindrical tube and 25 mL of 0.32% potassium

permanganate and 20 mL of 2% boric acid in a conical flask were

added and both the cylindrical tube and the conical flask were

placed in the Kjeldahl assembly. Thirty milliliters of 2.5% sodium

hydroxide was added into the cylindrical tube, and the heat distils

out ammonium gas that was collected in the conical flask. The

contents were titrated in conical flask against 0.02 N sulfuric acid till

color changed from green to pink. Similarly, blank titration was

carried out.

Total protein content was calculated by the following formula:

Total Protein Content( % ) = Nitrogen content( % )� 6:25
2.2.4 Fe, Zn, and ascorbic acid estimation
For the estimation of Fe and Zn, 0.5 g of buckwheat seeds from

each sample was taken for di-acid digestion. To this, 20 mL of the

digestion solution (a mixture of nitric acid and perchloric acid at a

ratio of 9:4 V/V) was added. The mixture was left at room

temperature overnight, and the next day, this mixture was kept

on a hot plate and heated slowly until a clear solution was obtained

and brownish smoke is no longer released, indicating complete

digestion of the organic matter. This clear solution was allowed to

cool at room temperature, and the digested sample was transferred

to 50-mL volumetric flasks. The transfer was done by using ash-free

quantitative filter paper (No. 1). The volume of the solutions was

raised to 50 mL using distilled water. The samples were then further

diluted, and the concentration of these minerals was determined by

using ICP-OES (inductively coupled plasma optical emission

spectrometry) (Karpiuk et al., 2016).

For ascorbic acid estimation, 0.5 g of buckwheat seed powder

was taken and dissolved in 20 mL of 4% oxalic acid solution. Then,

the buckwheat solution was filtered and liquid was collected. Then

an aliquot of 10 mL was transferred to a conical flask and bromine

water was added dropwise with constant mixing and then 2 mL of

extract was pipetted out and volume was made up to 3 mL by

adding distilled water. Then, 1 mL of DNPH reagent was added

followed by two drops of thiourea in each tube. The contents in the

tube were mixed thoroughly and were incubated at 37°C for 3 h.
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After incubation, 7 mL of 80% sulfuric acid was added and

absorbance was measured at 540 nm (Pisoschi et al., 2011).
2.3 Statistical analysis

All the biochemical observations were recorded in three

replicates and values were then averaged. One-way analysis of

variance (ANOVA) was applied to evaluate the variance of these

traits among the genotypes and Pearson’s pairwise correlation

coefficient was calculated for all traits using the R² programme

and heatmap was generated among all the traits. Frequency

distribution analysis was also done for all the traits of buckwheat.
2.4 Library preparation and genotyping by
sequencing

Seeds of 132 genotypes of buckwheat were sown in plastic trays

for 3 weeks in a polyhouse and the harvested shoots were used for

genomic DNA extraction using the CTABmethod (Doyle, 1991), and

the quality and quantity of DNA were checked on both gel

electrophoresis and nano-drop (mySPEC, Wilmington, USA). GBS

libraries were prepared by the already standardized method (Elshire

et al., 2011) with little modification. DNA (100 ng) was digested for 4

h at 75°C with ApeKI (New England Biolabs, Ipswitch, MA) in 20 μL

volumes containing 1× NEB Buffer and 3.6 U ApeKI. Barcoded

adapters were then ligated to sticky ends by adding 30 μL of a solution

containing 1.66× ligase buffer with ATP and T4 ligase (New England

Biolabs) to each well. Samples were incubated at 22°C for 1 h and

heated to 65°C for 30 min to inactivate the T4 ligase. Sets of 132

digested DNA samples, each with a different barcode adapter, were

combined (5 μL each) and purified using a commercial kit (QIA

quick PCR Purification Kit; Qiagen, Valencia, CA) according to the

manufacturer’s instructions. DNA samples were eluted to a final

volume of 25 μL. Restriction fragments from each library were then

amplified in 50-μL volumes containing 10 μL of pooled DNA

fragments, 25 μL of KAPA HiFi Hot Start Ready Mix PCR, and 1

μL each of the P5 and P7 dual indexing primers (12.5 pmol). These

primers contained complementary sequences for amplifying

restriction fragments with ligated adapters, binding PCR products

to oligonucleotides that coat the Illumina sequencing flow cell and

priming subsequent DNA sequencing reactions. The final PCR

products were purified with 0.9× AMPure XP beads (catalog:

A63881, Beckman Coulter) to remove unused primers. The

purified 132-plex final DNA library was quantified using a

Bioanalyzer (Agilent Technologies) and sequenced on a single lane

of Illumina HiSeq X10 platform (Illumina Inc., San Diego, CA, USA)

using V4 sequencing chemistry.
2.5 Post sequencing analysis

The raw reads were filtered for adapter sequences, low-quality

reads, and low-quality residues towards the 5′ region of the
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sequence. After quality filtering and data de-multiplexing, the

high-quality sequences were mapped to the Tartary buckwheat

reference genome assembly (GCA_002319775.1, URL: https://

www.ncbi.nlm.nih.gov/datasets/genome/GCA_002319775.1/)

using BWA program V 0.7.5 (Li et al., 2009). SNPs were mined

from the coding and non-coding regions and were subsequently

annotated. The SNPs were annotated to the genic, intergenic, non-

coding, and regulatory regions using the SNPEFF program

(Cingolani et al., 2012; De Pablo et al., 2012). Moreover, a

comprehensive comparison of the genetic sequences at the

genomic level between F. esculentum (Common Buckwheat) and

F. tartaricum (Tartary Buckwheat) was performed through pairwise

genome alignment, using GSALIGN program (https://github.com/

hsinnan75/GSAlign). This process aimed to elucidate the shared

characteristics and distinctions within the genomes of these two

buckwheat species. The pairwise genome alignment between the

two buckwheat genomes encompassed a series of steps, ensuring

accurate and reliable results. Initially, the genomic data of both

species underwent a preprocessing stage to eliminate any

extraneous elements that might introduce noise and potentially

hinder the alignment process. By reducing unwanted artifacts, the

subsequent alignment was enhanced, allowing for more precise

comparison of the genetic sequences. To optimize the alignment,

GSALIGN tends to maximize the similarity between corresponding

regions while minimizing any gaps that might occur in the

alignment. By strategically aligning the sequences, the software

facilitated the identification and comparison of specific genetic

elements shared between the two species. The results were

visualized using DotPlot (https://dotplot.soft112.com/).
2.6 Population structure analysis

Population structure was estimated using a Bayesian Markov

Chain Monte Carlo model (MCMC) implemented in STRUCTURE

v2.3.4 (Pritchard et al., 2000). A total of 944 filtered SNPs were

converted to structure format using PGD Spider version 2.1.1.5.

Three runs were performed for each number of population (K) set

from 2 to 7. Burn-in time and MCMC replication number were set

to 100,000 and 300,000, respectively, for each run. The most

probable K-value was determined by Structure Harvester, using

the log probability of the data [LnP(D)] and delta K (DK) based on

the rate of change in [LnP(D)] between successive populations. The

neighbor-joining tree was built using Phylip and MEGA5

(Felsenstein, 1989; Tamura et al., 2011).
2.7 Principal component analysis

Principal component analysis (PCA) was calculated using

PLINKV 1.9 (Purcell et al., 2007) and then plotted by using the R

program. Dendrogram analysis was done using TASSEL V4 using

the neighbor-joining method and then plotted with Structure Q-

matrix using iTOL. A PCA plot was made on four populations that

were detected using Structure. The population structure was scored
frontiersin.org

https://www.ncbi.nlm.nih.gov/datasets/genome/GCA_002319775.1/
https://www.ncbi.nlm.nih.gov/datasets/genome/GCA_002319775.1/
https://github.com/hsinnan75/GSAlign
https://github.com/hsinnan75/GSAlign
https://dotplot.soft112.com/
https://doi.org/10.3389/fpls.2025.1559621
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Manzoor et al. 10.3389/fpls.2025.1559621
for K-values ranging from 1 to 12 across the panel using high-

quality SNPs.
2.8 Marker–trait association

A compressed mixed linear model (CMLM) was used using

GAPIT V3 (Lipka et al., 2012), which is an R package that performs

a GWAS and genome prediction (or selection). This program uses

state-of-the-art methods developed for statistical genetics, such as

the unified mixed model, EMMA, CMLM, and P3D/EMMAx.

SNPs were considered significant using threshold log10 (p-value)

< 1e−4. A threshold of p < 1e−4 balances sensitivity (the ability to

detect true associations) and specificity (the ability to avoid false

positives). It is stringent enough to minimize false positives while

still capturing potentially meaningful associations. Moreover,

using a threshold of p < 1e−4 allows researchers to focus on

associations with stronger statistical support, making subsequent

analysis more manageable and interpretable. Manhattan plots and

quantile–quantile (QQ) plots were developed using the R-package

QQMAN. Manhattan plots demonstrated statistically significant

associated markers, and QQ plots were prepared to graphically

visualize the distribution pattern for associated markers. The r2

values for markers were calculated using GAPIT. There are

typically two threshold lines to distinguish statistically significant

associations. The higher threshold line represents the associations

that are considered significant after correcting for multiple testing

across the entire genome. Points above this line indicate

associations that are highly likely to be true positives and are of

particular interest; meanwhile, the lower threshold line serves as a

reference point for associations that may not meet the genome-

wide significance threshold but still show potential for

being meaningful.
2.9 LD plot

LD was measured by the parameter r2 using SNPs with high

confidence. The values were calculated using TASSEL v5.0

(Bradbury et al., 2008), and the values were plotted against

genetic distance (in bp) in R software. A threshold of r2 = 0.2 was

used to determine LD extent. The r2 values were plotted against the

physical distance among markers, and the second LOESS decay

curve was fitted to determine the size of LD blocks.
2.10 Candidate gene identification and
Gene Ontology annotation

The gene containing the SNP was used to determine the probable

candidate gene search from the significant SNP–trait associations

obtained from GWAS using the SNPEFF program V5.1 against F.

esculentum annotation downloaded from NCBI (Cingolani et al.,

2012). The candidate genes were mapped to the Kyoto Encyclopaedia

of Genes and Genomes (KEGG) database using the KEGG-KAAS
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(KEGG Automatic Annotation Server) server for pathway analysis

and Gene Ontology (GO) annotation was carried out using stand-

alone BLASTP and BLASTX (Johnson, 2008) against the UniProt

database (release 2022_02) to gain insight into the functional role of

candidate genes with SNPs (The UniProt Consortium, 2019).
3 Results

3.1 Nutritional and nutraceutical profiling

Nutritional and nutraceutical profiling of 132 buckwheat

genotypes was carried out to study the variations and correlation

among these traits with respect to each other. Buckwheat seed

nutritional and nutraceutical profiling showed continuous variation

among all these traits. These traits were estimated by different

methods, and their mean values are shown in Supplementary

Table 2. The range for each trait (lowest content to highest

content) was recorded and showed huge variations. Phenol

ranged from 0.54 to 5.85 mg/g; flavonoids, 65.08–475.5 mg/100 g;

antioxidants, 17.23–37.53 μg/g; methionine, 1.09–4.71 g/16 g N;

Lysine, 5.1–6.9 g/16 g N; protein, 5.8%–18.9%; nitrogen, 0.98%–

2.90%; iron, 80.5–233.1 ppm; zinc, 12.78–57.70 ppm; and ascorbic

acid, 0.02–0.60 μg/g. Among all the 132 buckwheat genotypes,

phenol, flavonoids, antioxidants, iron, zinc, and nitrogen content

was found high in Fagopyrum tartaricum (Bitter buckwheat)

species, while methionine, lysine, protein, and ascorbic acid was

found high in F. esculentum (common buckwheat) species. All the

10 nutritional traits for 132 genotypes with the highest and lowest

performance (genotypes with the highest content and lowest

content) are depicted in Figure 1. Very low coefficients of

variation (CVs) were observed for all these nutritional and

nutraceutical traits. Frequency distribution analysis was also done

for all the 10 nutri-nutraceutical traits as represented in Figures 2A.

These frequency distribution histograms explained the distribution

of data by displaying the frequency of observations within different

intervals. These frequency distribution histograms also show how

often certain values occur within a dataset, giving a visual

representation of the data spread and concentration.
3.2 Correlation analysis

The correlation heatmap displayed the correlation between

multiple variables as a color-coded matrix. Each variable is

represented by a row and a column and the cells show the

correlation between them. The color of each cell represents the

strength and direction of the correlation, with darker colors

indicating stronger correlations. Pearson’s correlation analysis of

10 nutri-nutraceutical traits among 132 different genotypes showed

positive correlation between the traits like nitrogen and protein,

phenol and flavonoids, methionine and lysine, zinc and iron,

flavonoids and lysine, zinc and protein, and ascorbic acid and

nitrogen. However, methionine showed negative correlation with

protein and nitrogen (Figure 3).
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3.3 Characterization and chromosome-
wise distribution of SNPs

A total of 4,142,684 variants were identified from 132 diverse

genotypes, containing 3,728,028 SNPs and 414,656 InDels (214,798

insertions and 199,858 deletions). The highest number of SNPs

(582,710) was observed on chromosome 1, whereas the lowest

number of SNPs (362,087) was observed on chromosome 7. SNPs

have also been classified into high, low, moderate, and modifier

impact. SNP effects are categorized by impact as high (affecting

splice-site, stop, and start codons), moderate (non-synonymous), low

(synonymous coding/start/stop and start gained), and modifier

(upstream, downstream, intergenic, and untranslated region) with

the percentage of the high-impact SNPs being 0.413%; low, 1.566%;

moderate, 2.105%; and modifier, 95.916%. According to the effects by

functional class, missense percentage was 59.929%; nonsense,

3.3745%; and silent, 36.696%. Total number of transitions were

39,416,882 and total transversions were 23,590,338. The transition/

transversion ratio (Ts/Tv) was 1.6709. Average SNP frequency per

chromosome indicates the density of genetic variation within a given
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genomic region. This average SNP frequency is calculated by dividing

the total number of SNPs by the length of the genomic region being

analyzed, such as a chromosome (Supplementary Figure 1).
3.4 Genetic diversity and population
structure

The genetic distances between the 132 buckwheat accessions

were determined from SNP-based genotypic data. A neighboring

tree based on these genetic distances showed that the genotypes

were divided into four main groups and were further divided into

subgroups (Figure 4). PCA also showed diversity among the

buckwheat genotypes. In addition, population structure analysis

provides a robust analysis for understanding the genotypic origins

of a particular crop. The population structure was scored for K-

values ranging from 2 to 7 across the panel using high-quality SNPs.

The peak of delta K was found to be the highest at K = 3 and thus

grouped the 132 genotypes of buckwheat into three populations

(Supplementary Figure 2).
FIGURE 1

The list of buckwheat genotypes with high concentration of different nutri-nutraceutical contents.
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3.5 Marker–trait association

GWAS was performed for 10 seed nutri-nutraceutical traits:

phenol, flavonoid, antioxidants, methionine, lysine, nitrogen,

protein content, iron, zinc, and ascorbic acid. With these traits,

46 SNPs were found having significant association. The details of

these significant SNPs/marker–trait associations (MTAs) are

summarized in Table 1 and depicted in Manhattan and QQ plots

(Figure 5). The QQ plots illustrate the observed association between

markers and phenotype of interest (POI) compared to expected

association after accounting for population structure. For phenol, a

single SNP was found significantly associated on chromosome 1.

This single SNP on chromosome 1 positioned at 40004476 (p-value

= 0.00019) contributed 27.27% phenotypic variation. For flavonoid,

three SNPs were found significantly associated on chromosomes 1

and 2. One SNP on chromosome 2 positioned at 50997418 (p-value

= 0.000144) contributed 35.98% phenotypic variation. In the case of

antioxidants, five SNPs were found significantly associated on

chromosomes 1, 2, and 4. One SNP on chromosome 2 positioned

at 19941896 (p-value = 6.73E−05) contributed 42.04% phenotypic

variation. A total of 14 SNPs were found associated with the amino

acid lysine that are positioned on chromosomes 1, 2, 4, 6, 7, and 8.

Among these 14 SNPs, the highest number of SNPs, i.e., 4,
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associated with lysine was found on chromosome 1. One SNP on

chromosome 6 positioned at 26920730 (p-value = 1.05E-05)

contributed 49.62% of phenotypic variation. For methionine, only

one SNP was found significantly associated on chromosome 5. This

single SNP on chromosome 5 positioned at 19139581 (p-value =

0.00019) contributed 32.95% phenotypic variation. For nitrogen,

three SNPs that are positioned on chromosomes 5 and 7 were

found significantly associated. One SNP on chromosome 5

positioned at 24057542 (p-value = 0.000172) contributed 23.86%

phenotypic variation. For protein, two SNPs were found

significantly associated on chromosomes 5 and 7. One SNP on

chromosome 5 positioned at 24057542 (p-value = 0.000166)

contributed 23.86% phenotypic variation. For iron, eight SNPs

that are positioned on chromosomes 1, 2, 4, 5, 6, and 7 were

found significantly associated. For zinc, eight SNPs that are

positioned on chromosomes 1 and 3 were found significantly

associated, with an equal number of SNPs each on chromosomes

1 and 3. One SNP on chromosome 3 positioned at 35689620 (p-

value = 3.40E−06) contributed 20.79% phenotypic variation. For

ascorbic acid, a single SNP was found significantly associated on

chromosome 6. The genome location of 46 significant SNPs for

different nutritional and nutraceutical traits of buckwheat was

generated by map inspect software (Figure 6).
FIGURE 2

Histogram-based frequency distribution of 10 different nutri-nutraceutical components in buckwheat, i.e., phenol, flavonoid, antioxidants,
methionine, lysine, protein content, nitrogen, iron, zinc, and ascorbic acid.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1559621
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Manzoor et al. 10.3389/fpls.2025.1559621
3.6 LD plot

LD was calculated from 4,142,684 pairs using a 100-marker

sliding window operation, out of which 8% had zero LD and 23%

was found in the significant range (p-value < 0.05). As the physical

distance increases, the r2 distribution showed a rapid LD decay for
Frontiers in Plant Science 08
all genotypes. LD values for each chromosome is represented by

color gradient with different colors indicating different levels of LD.

Chromosomes with red shades represent high LD, while

chromosomes with blue or green shade represent low LD. In the

combined LD plot, chromosome 8 represents high LD and

chromosome 1 represents low LD (Figure 7).
FIGURE 3

The heatmap showing the correlation between phenol, flavonoid, antioxidants, lysine, methionine, zinc, iron, nitrogen, protein, and ascorbic acid. ns,
non significant.
FIGURE 4

SNP marker-based population relationship among genotypes. The unweighted pair group method with arithmetic mean (UPGMA) dendrogram
showing the genetic relationship among 132 diverse buckwheat genotypes.
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TABLE 1 The list of significant SNPs/QTLs along with candidate genes for 10 nutritional and nutraceutical traits of buckwheat.

Traits QTLs Chromosome SNP
Position

P-value Minor
allele

frequency
(MAF)

Start End Candidate
Genes ID

Phenol QPHN1.1 1 40004476 7.59E−05 0.272 39954476 40054476 FtPinG0007197200.01,
FtPinG0007196500.01,
FtPinG0007196400.01,
FtPinG0007196900.01,
FtPinG0007196800.01

Flavonoid QFLA1.1 1 14639543 0.000149034 0.143 14589543 14689543 FtPinG0005599700.01,
FtPinG0005599400.01,
FtPinG0005601600.01,
FtPinG0005602100.01

QFLA1.2 1 56206331 3.75E−05 0.189 56156331 56256331 FtPinG0009546300.01,
FtPinG0009547000.01,
FtPinG0009546100.01,
FtPinG0009546600.01

QFLA2.1 2 50997418 0.000144117 0.359 50947418 51047418 FtPinG0006999000.01,
FtPinG0006999200.01,
FtPinG0006999300.01

Antioxidant QANT1.1 1 56207465 0.000113025 0.151 56157465 56257465 FtPinG0009546300.01,
FtPinG0009547000.01,
FtPinG0009546100.01,
FtPinG0009546600.01

QANT2.1 2 7855102 0.000116183 0.087 7805102 7905102 FtPinG0009542600.01,
FtPinG0009541700.01,
FtPinG0001547800.01,
FtPinG0009542100.01

QANT2.2 2 19941896 6.73E−05 0.420 19891896 19991896 FtPinG0000053600.01

QANT4.1 4 37948541 3.87E−05 0.132 37898541 37998541 FtPinG0006787400.01,
FtPinG0006787600.01,
FtPinG0004996400.01,
FtPinG0006787100.01

QANT4.2 4 47186890 8.41E−05 0.166 47136890 47236890 FtPinG0005258300.01,
FtPinG0005259000.01,
FtPinG0007507100.01,
FtPinG0005258100.01,
FtPinG0005258700.01

Methionine QMET5.1 5 19139581 0.000189768 0.329 19089581 19189581 FtPinG00034919.01

Lysine QLYS1.1 1 47054068 0.000126124 0.201 47004068 47104068 FtPinG0006245400.01,
FtPinG0006244900.01

QLYS1.2 1 63056676 9.31E−06 0.140 63006676 63106676 FtPinG0007146800.01,
FtPinG0007147500.01,
FtPinG0007147100.01,
FtPinG0007147800.01,
FtPinG0007146900.01

QLYS1.3 1 63056706 0.000102386 0.162 63006706 63106706 FtPinG0007146800.01,
FtPinG0007147500.01,
FtPinG0007147100.01,
FtPinG0007147800.01,
FtPinG0007146900.01

QLYS1.4 1 67182755 0.000175398 0.106 67132755 67232755 FtPinG0007906400.01,
FtPinG0007907500.01,
FtPinG0007911300.01,
FtPinG0007909900.01,
FtPinG0007905200.01,
FtPinG0007908700.01

(Continued)
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TABLE 1 Continued

Traits QTLs Chromosome SNP
Position

P-value Minor
allele

frequency
(MAF)

Start End Candidate
Genes ID

QLYS2.1 2 48025684 6.32E−05 0.268 47975684 48075684 FtPinG0001529700.01,
FtPinG0001529600.01,
FtPinG0001529300.01,
FtPinG0001530000.01

QLYS4.1 4 23778598 0.000143468 0.284 23728598 23828598 FtPinG0009843200.01

QLYS4.2 4 43826569 9.23E−05 0.238 43776569 43876569 FinG0001537500.01,
FtPinG0001538600.01,
FtPinG0001538200.01,
FtPinG0001538800.01,
FtPinG0001537000.01,
FtPinG0001538300.01

QLYS4.3 4 47186890 5.54E−05 0.166 47136890 47236890 FtPinG0005258300.01,
FtPinG0005259000.01,
FtPinG0007507100.01,
FtPinG0005258100.01,
FtPinG0005258700.01

QLYS6.1 6 10161864 0.000122356 0.208 10111864 10211864 FtPinG0007535500.01,
FtPinG0007534900.01,
FtPinG0007534300.01,
FtPinG0007534500.01,
FtPinG0007535200.01,
FtPinG0007534800.01,
FtPinG0007535700.01,
FtPinG0007535300.01,
FtPinG0007535900.01,
FtPinG0007536100.01

QLYS6.2 6 26920730 1.05E−05 0.496 26870730 26970730 FtPinG0008711500.01,
FtPinG0003067000.01

QLYS7.1 7 40000527 3.23E−05 0.143 39950527 40050527 FtPinG0005842300.01,
FtPinG0005842700.01

QLYS7.2 7 40000561 0.000169696 0.132 39950561 40050561 FtPinG0005842300.01,
FtPinG0005842700.01

QLYS7.3 7 40000586 1.30E−05 0.121 39950586 40050586 FtPinG0005842300.01,
FtPinG0005842700.01

QLYS8.1 8 23398412 0.000128189 0.196 23348412 23448412 FtPinG0006164000.01,
FtPinG0006160900.01,
FtPinG0006163100.01,
FtPinG0006164200.01,
FtPinG0006161800.01,
FtPinG0006163600.01

Protein QPRO5.1 5 24057542 0.000165662 0.238 24007542 24107542 FtPinG0005685000.01,
FtPinG0005685100.01

QPRO7.1 7 36559176 0.000165418 0.170 36509176 36609176 FtPinG0006636800.01,
FtPinG0008784600.01,
FtPinG0008785000.01,
FtPinG0006637600.01,
FtPinG0006636600.01,
FtPinG0006637400.01

Nitrogen QNIT5.1 5 19640595 0.00016449 0.208 19590595 19690595 FtPinG0004866200.01,
FtPinG0004865100.01,
FtPinG0004866000.01,
FtPinG0004865400.01,
FtPinG0004865700.01

QNIT5.2 5 24057542 0.000172165 0.238 24007542 24107542

(Continued)
F
rontiers in Pla
nt Science
 10
 frontiersin.org

https://doi.org/10.3389/fpls.2025.1559621
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Manzoor et al. 10.3389/fpls.2025.1559621
TABLE 1 Continued

Traits QTLs Chromosome SNP
Position

P-value Minor
allele

frequency
(MAF)

Start End Candidate
Genes ID

FtPinG0005685000.01,
FtPinG0005685100.01

QNIT7.1 7 36559176 0.000195294 0.170 36509176 36609176 FtPinG0006636800.01,
FtPinG0008784600.01,
FtPinG0008785000.01,
FtPinG0006637600.01,
FtPinG0006636600.01,
FtPinG0006637400.01

Iron QIRO1.1 1 14675782 4.39E−05 0.215 14625782 14725782 FtPinG0005599700.01,
FtPinG0004691300.01,
FtPinG0005599400.01

QIRO2.1 2 7853900 0.000114287 0.117 7803900 7903900 FtPinG0009542600.01,
FtPinG0009541700.01,
FtPinG0001547800.01,
FtPinG0009542100.01

QIRO2.2 2 42749461 9.89E−05 0.170 42699461 42799461 FtPinG0004496500.01,
FtPinG0004496400.01,
FtPinG0004496700.01

QIRO2.3 2 44458379 1.26E−05 0.299 44408379 44508379 FtPinG0006324700.01,
FtPinG0006324300.01,
FtPinG0006323500.01,
FtPinG0006323700.01,
FtPinG0006324000.01,
FtPinG0006324200.01

QIRO4.1 4 18606963 0.000120993 0.151 18556963 18656963 FtPinG0003491500.01,
FtPinG0003491700.01,
FtPinG0003492100.01,
FtPinG0003491900.01

QIRO5.1 5 49199435 0.000115213 0.212 49149435 49249435 FtPinG0006495600.01,
FtPinG0006496800.01,
FtPinG0006362500.01,
FtPinG0006496100.01,
FtPinG0006495900.01,
FtPinG0006496300.01

QIRO6.1 6 22925002 0.000146404 0.208 22875002 22975002 FtPinG0006104000.01,
FtPinG0006103300.01,
FtPinG0006103100.01,
FtPinG0006104100.01

QIRO7.1 7 49444717 0.000174248 0.201 49394717 49494717 FtPinG0003509300.01,
FtPinG0003509800.01,
FtPinG0003508600.01,
FtPinG0003507700.01,
FtPinG0003507500.01,
FtPinG0003509500.01

Zinc QZIN1.1 1 34715704 9.78E−05 0.306 34665704 34765704 FtPinG0004724200.01,
FtPinG0004725500.01,
FtPinG0004725400.01,
FtPinG0006706600.01,
FtPinG0004726000.01,
FtPinG0004724400.01

QZIN1.2 1 34715713 4.20E−06 0.295 34665713 34765713 FtPinG0004724200.01,
FtPinG0004725500.01,
FtPinG0004725400.01,
FtPinG0006706600.01,

(Continued)
F
rontiers in Pla
nt Science
 11
 frontiersin.org

https://doi.org/10.3389/fpls.2025.1559621
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Manzoor et al. 10.3389/fpls.2025.1559621
3.7 Candidate gene identification

To further reveal the molecular function of the SNPs

significantly associated with the 10 different nutritional and

nutraceutical traits, the genes within the 100 kb upstream and

downstream regions of the significant QTLs were also extracted. A

100-kb region is typically large enough to encompass multiple genes

and their surrounding regulatory regions. This allowed us to explore

the potential effects of genetic variants on nearby genes and

regulatory elements, providing a broader understanding of the

genetic architecture underlying the trait of interest. Moreover, LD

between genetic variants tends to decay with increasing physical

distance along the genome; thus, by focusing on a 100-kb region, we

were able to capture genetic variants that were likely to be in LD

with each other and were associated within the trait. A total of 138
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candidate genes were identified. These candidate genes were found

involved in various biological and molecular functions such as lipid

metabolic process, carbohydrate metabolic process, and zinc ion

binding. The 46 different SNPs along with the candidate genes

associated with them are enlisted in Table 1. Genomic variants and

gene annotations of buckwheat are provided in Supplementary

Tables 3 and 4.
3.8 Gene Ontology analysis

GO analysis was performed to gain insight into the biological

process being affected by candidate genes identified close to the

significant SNPs associated with traits of interest. GO analysis

divided annotation terms into biological process (BP), cellular
TABLE 1 Continued

Traits QTLs Chromosome SNP
Position

P-value Minor
allele

frequency
(MAF)

Start End Candidate
Genes ID

FtPinG0004726000.01,
FtPinG0004724400.01

QZIN1.3 1 40493945 6.68E−05 0.151 40443945 40543945 FtPinG0009458700.01,
FtPinG0006043600.01,
FtPinG0009458400.01,
FtPinG0009459500.01,
FtPinG0009459200.01,
FtPinG0009458500.01

QZIN1.4 1 56716710 2.22E−05 0.201 56666710 56766710 –

QZIN3.1 3 15675077 0.000162978 0.147 15625077 15725077 FtPinG0008630900.01,
FtPinG0008630500.01,
FtPinG0008631200.01,
FtPinG0008630300.01,
FtPinG0008630800.01,
FtPinG0008631700.01,
FtPinG0008631900.01,
FtPinG0008631600.01

QZIN3.2 3 17689541 5.03E−05 0.181 17639541 17739541 FtPinG0006132400.01

QZIN3.3 3 35689615 8.80E−05 0.201 35639615 35739615 FtPinG0005355100.01,
FtPinG0005354800.01,
FtPinG0005355500.01,
FtPinG0005355700.01,
FtPinG0005355000.01,
FtPinG0005355300.01

QZIN3.4 3 35689620 3.40E−06 0.204 35639620 35739620 FtPinG0005355100.01,
FtPinG0005354800.01,
FtPinG0005355500.01,
FtPinG0005355700.01,
FtPinG0005355000.01,
FtPinG0005355300.01

Ascorbic
acid

QASC6.1 6 12715547 0.000187 0.122 12665547 12765547 FtPinG0007082400.01,
FtPinG0007082600.01,
FtPinG0007081300.01,
FtPinG0007083200.01,
FtPinG0007081800.01,
FtPinG0007083500.01,
FtPinG0007081000.01,
FtPinG0007081200.01
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FIGURE 5

Manhattan and QQ plots of different marker associations with nutri-nutraceutical traits in buckwheat.
FIGURE 6

Chromosomal localization and distribution of quantitative trait loci (QTLs) in buckwheat. Position of each QTL is indicated by line, whereas scale bar
represents the length of chromosomes in megabases (Mb).
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components (CC), and molecular function (MF). The candidate

genes identified associated with significant SNPs with various traits

recorded are involved in biological processes like glycolytic process,

carbohydrate metabolic process, RNA processing, protein

methylation, and translation (Supplementary Figure 3). However,

in the case of molecular functions, the gene coding for DNA, RNA,

and protein binding activity was significantly enriched in the

dataset (Supplementary Figure 4). According to GO analysis, the

key biological processes involved are amino acid metabolic process,

protein import into mitochondrial matrix, lipid transport,

tryptophan metabolic process, carbohydrate metabolic process,

DNA integration, RNA processing, protein phosphorylation,

transmembrane transport, regulation of DNA-templated

transcription, and biosynthetic process. The key molecular

functions of the identified candidate genes were ATP binding,

hydrolase activity, methyltransferase activity, acyltransferase

activity, catalytic activity, nucleic acid binding, magnesium ion

binding, phosphoprotein phosphate activity, DNA-binding

transcription factor activity, and protein kinase activity. However,

further in vitro validation of candidate genes is needed for

establishing the proof of concept.
4 Discussion

The present study was a first attempt to utilize diverse

buckwheat genotypes, facilitating the identification of novel SNP

loci associated with 10 nutri-nutraceutical traits (phenol,
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flavonoids, antioxidants, methionine, lysine, protein content,

nitrogen, iron, zinc, and ascorbic acid). These findings offer

significant implications for the development of molecular markers

to accelerate genomics-led breeding efforts and providing new

insights into the genetic architecture regulating these traits of

interest in buckwheat. Furthermore, this analysis could facilitate

the identification of genetically diverse parental lines to improve

nutritional and agronomic traits, contributing to strategies aimed at

addressing malnutrition.

The evaluation of nutritional and nutraceutical traits revealed

considerable variation among the 132 genotypes. Pearson’s

correlation analysis revealed significant positive correlations

between protein, nitrogen, flavonoids, phenol, zinc, and iron,

indicating that the simultaneous selection of these traits could

enhance the quality of this crop and can help breeders in utilizing

correlated responses in the selection process. The nutritionally

relevant bioactive compounds such as phenols, flavonoids, and

antioxidants play a significant protective role in promoting

human health by mainly preventing major lifestyle-related ailments.

Moreover, huge variations were observed in phenol content

(0.54 ± 0.06 mg/g to 5.85 ± 0.005 mg/g), flavonoids (65.08 ± 0.97

mg/100 g to 475.5 ± 0.99 mg/100 g), and antioxidants (17.23 ± 0.045

μg/g to 37.53 ± 0.081 μg/g). These results align with previous studies

(Inglett et al., 2010; Zielińska et al., 2012a; Hua et al., 2014) and

highlight the genetic potential for enhancing these traits through

breeding. In the case of amino acids, the levels of methionine (1.09 ±

0.05 g/16 g N to 4.71 ± 0.14 g/16 g N) and lysine (5.19 ± 0.06 g/16 g

N to 6.91 ± 0.38 g/16 g N) vary moderately among the genotypes.
FIGURE 7

Combined LD plot for 132 genotypes of buckwheat. The X-axis represents the physical position of genetic variants along the chromosome, and the
Y-axis represents the measure of LD between pairs of genetic variants.
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However, the results are slightly higher but within the ranges

reported in previous studies (Culetu et al., 2021a). These findings

align with the known variation in protein content of F. esculentum

and F. tataricum (Huda et al., 2021). Micronutrient analysis also

revealed considerable variation, with some potential genotypes

(BWM-39 and BWM-19) having high Fe and Zn possibly directly

involved in further breeding programs.

GWASs have been widely used as a valuable tool in dissecting and

understanding complex quantitative traits by identifying significant

SNPs. However, it is often challenged by false positives due to

unaccounted genetic structure and kinship, as well as false negatives

from overly stringent statistical corrections (Zhang et al., 2017a). To

address these issues, this study employed a CMLM via the GAPIT

software and applied a false discovery rate (FDR) approach. This

method balances the trade-off between false positives and false

negatives more effectively than the conservative Bonferroni

correction (Skrabanja et al., 2001). Previous research (Zhang et al.,

2017b; Pandey et al., 2020) also emphasized the necessity of accounting

for population structure and kinship in GWAS to reduce erroneous

correlations, which was successfully done in this study.

The present study identified 46 SNPs significantly associated

with the 10 traits, with varying degrees of phenotypic variation

explained by each SNP. Given the limited availability of MTA data

for buckwheat, these findings represent a significant contribution to

the understanding of its genetic basis. A single SNP found on

chromosome 1 was strongly related to phenol content, accounting

for 27.27% of the phenotypic variation. This conclusion is

consistent with a previous study on the genetic control of

phenolic chemicals, which provides antioxidant capabilities to

buckwheat, hence increasing its health advantages (Zielińska

et al., 2012b). Similarly, SNPs on chromosomes 1 and 2 were

linked to flavonoid content, with one SNP accounting for 35.98%

of the variance. Flavonoids play important roles in plant defense

and human health; therefore, these findings are useful for breeding

programs targeted at improving these compounds. Furthermore, 14

SNPs associated with lysine content across many chromosomes,

including one on chromosome 6 that accounts for 49.62% of the

variation, highlight its potential for altering amino acid

composition. Similarly, an SNP on chromosome 5 linked to

methionine concentration explained 32.95% of variation,

indicating potential for biofortification. These results are

comparable to those reported by Culetu et al. (2021b), who found

significant genetic variation in amino acid content among

buckwheat genotypes. A shared SNP on chromosome 5

accounted for 23.86% of variation in nitrogen and protein

concentration, indicating that these variables are genetically

controlled together. This result indicates that the genetic basis of

protein and nitrogen content is linked, as evidenced by their

positive correlation, and offers opportunities for simultaneous

improvement through marker-assisted selection.

LD analysis found considerable levels of LD throughout the

genome, with chromosome 8 having the highest level and

chromosome 1 having the lowest. The observed LD decay pattern

in this study aligns with findings in related cereal and pseudocereals.

In rice (Oryza sativa), LD decay has been reported to occur within
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6–8 cM across cultivated varieties, indicating a moderate rate of

decay in this self-pollinating species (Ouyang et al., 2011). Similarly,

in quinoa (Chenopodium quinoa), a pseudocereal, LD decay

between SNPs was found to be 32.4 kb, suggesting a relatively

slower decay compared to maize (Ruiz et al., 2020).

Moreover, the present study also identified certain candidate

genes that lie within the 0.1-Mb flanking regions of significant

SNPs/QTLs associated with various traits. Our analysis highlighted

key metabolic and biosynthetic pathways, including butanoate

metabolism, glycerophospholipids, arachidonic acid, and

glutathione, as well as the biosynthesis of flavonoids,

sesquiterpenoids, and triterpenoids. These pathways contribute to

stress resilience and play roles in amino acid metabolism, energy

processes, and antioxidant defense (Supplementary Figures 1 and

2). The identified candidate genes provide molecular resources for

future studies, with potential applications in molecular breeding,

marker-assisted selection, and gene editing.
5 Conclusion

The increasing appreciation for the value of healthy and

balanced diets for promoting better human health has led to

increased demand for foods with nutritional and nutraceutical

values. Buckwheat is an underutilized crop but holds tremendous

promise as an alternative diet to staple cereals on account of its

nearly perfect composition. In order to introduce this valuable crop

in existing farming systems, genetic resources and OMICS tools can

enhance the understanding of nutraceutical value and identify

genotypes that can competitively be aligned with major cereal

crops. The SNP markers and candidate genes revealed in this

study can help establish a dependable molecular marker-based

selection method to speed up conventional breeding efforts. Early

identification of desired genotypes will simplify breeding and

conserve resources. Buckwheat, known for its nutritional value

and drought resistance, has the potential for better nutritional

features via GWAS. This research can serve to influence breeding

efforts, improve the nutritional value of buckwheat, combat

malnutrition, and promote sustainable food systems, all of which

enhance world health and food security.
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