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Characterization of the NAC
gene family in ‘Fengdan’ peony
(Paeonia ostii) insights into the
evolution and expression
patterns under abiotic stresses
and ABA treatment
Xiangli Yu1*, Qirui Meng2, Hongyan Hou1, Qiang Guo1,
Qingjie Wang1, Yuqing Yang1 and Yanzhao Zhang1*

1School of Life Science, Luoyang Normal University, Luoyang, Henan, China, 2School of Chemical
Engineering, Huaqiao University, Xiamen, Fujian, China
Background: As one of the largest plant-specific transcription factor families,

NAC proteins are crucial for plant growth and development processes and

responses to various abiotic and biotic stresses. The published sequenced

chromosome-level genome of ‘Fengdan’peony provides a powerful tool for

the analysis of the NAC gene family in this shrub.

Methods: The PoNAC gene family was identified and characterized using

bioinformatic analysis, and RT-qPCR analysis was performed on some PoNACs

from the ATAF and NAP subfamilies.

Results: In this study, a total of 82 NAC transcription factors (TFs) were identified

in the ‘Fengdan’ peony genome, with the uneven anchorage of 78 PoNAC genes

on 5 chromosomes, whereas only 4 PoNAC genes were found to be located on

unanchored scaffolds. Through the phylogenetic analysis, 66 PoNAC genes were

classified into 15 distinct subfamilies. The gene structure analysis revealed the

variation in the number of exons from 0 to 14. Moreover, the motif analysis

indicated that the identified PoNAC TFs possessed conserved NAC domains and

motifs. The duplication events of PoNAC genes included whole-genome

duplications (WGDs) or segmental duplications for 14 pairs, tandem

duplications for 2 pairs, and proximal duplications for 3 pairs. GO analysis

results suggested that the functions of PoNAC genes were mostly

concentrated in the “biological process” GO category. Additionally, the analysis

of the expression profiles of PoNAC genes in different plant organs revealed that

only 45 genes were expressed in various tissues, some of them exhibited tissue-

specific expression related to plant growth and development. RT-qPCR
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experiments demonstrated the responses of 8 genes from the ATAF and NAP

subfamilies to ABA, heat and drought, suggesting that they may serve as

important regulatory factor.
KEYWORDS

‘Fengdan’ peony, NAC transcription factors, bioinformatics, abiotic stresses and ABA
treatment, expression analysis
Introduction

During their growth and development, plants encounter both

biotic and abiotic stressors, which directly impact these processes as

well as their yield. To overcome these challenges, plants have evolved

complex regulatory networks over the course of their long-term

evolution, which not only play a crucial role in the growth and

development, but also have significant importance for plants in

coping with stress responses (Zuo et al., 2023). Transcription factors

(TF) regulate the expression of genes by either activation or inhibition

through binding to specific DNA sequences located in the upstream

promoter region of their target genes. The NAC TF family constitutes

one of the largest and most widely distributed transcription factor

families across the plant kingdom. Its proteins share a common

sequence in the NAC domains (Ooak et al., 2003), including no

apical meristem (NAM; in glory) (Duval et al., 2002), ATAF1/2 (in

Arabidopsis) (Christianson et al., 2010), and cup-shaped cotyledon

(CUC2; in Arabidopsis) (Aida et al., 1997).

Apart from a highly variable C-terminal transcriptional

regulatory region (TRR), members of the NAC gene family

possess a highly conserved N-terminal domain consisting of

around 150 amino acids, which can be further separated into five

subdomains (A to E) (Singh et al., 2021). Among them, subdomain

A is involved in the formation of functional dimers, while B and E

subdomains drive the functional diversity of NAC genes, and C and

D subdomains, which include nuclear localization signals perform

the DNA-binding activity (Jia et al., 2019). Although the NAC

domain of different plants shares structural similarities, it has

different functions in various plant parts and under different

stress factors. The roles that NAC genes play in plants comprise

the development of the whole plant, leaves (Hasson et al., 2011), and

lateral roots (Xie et al., 2000), meristem maintenance (Zhan et al.,

2021), secondary cell wall synthesis (Mccarthy et al., 2011), leaf

senescence (Wang et al., 2021; Melo et al., 2021), etc.

The overexpression of ANACO32 in Arabidopsis can cause the

downregulation of the expression of some anthocyanin biosynthesis

genes, including DFR, ANS, and LODX, under stress conditions, which
apical meristem; CUC,

salvianolic acids; GB,

on model per Million

ase chain reaction; GO,
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results in the regulation of anthocyanin biosynthesis (Meraj et al.,

2020). Under drought stress, the survival rate and antioxidant enzyme

activity of Arabidopsis plants overexpressing the maize ZmSNAC06-

T02 gene were both higher than those of the wild type (Wang et al.,

2025), whileGmNAC20 in soybean can improve the tolerance of rice to

cold stress (Yarra and Wei, 2021). Moreover, CaNAC2c can perform

various functions in pepper, including the activation of the heat shock

transcription factor CaHSFA5, prevention of the accumulation of

H2O2, and enhancement of heat stress tolerance in the plant (Cai

et al., 2021), and the arabidopsis ataf1mutant was found to have higher

survival rate and fresh weight than its wild-type counterpart under heat

stress (Alshareef et al., 2022).

‘Fengdan’ peony (Paeonia ostii) is a traditionally famous flower

native to China (Sheng et al., 2023) whose ornamental, medicinal,

and oil values (Yang et al., 2020; Wang et al., 2019) have driven the

rapid expansion and development of its seedling industry in recent

years (Guo et al., 2023). Tree peonies often experience

environmental stress factors such as heat, drought and low

temperature during their growth and development, which may

consequently be negatively affected and even lead to plant death.

Therefore, the mechanisms of stress resistance in tree peonies and

the cultivation of their stress-resistant varieties have attracted

increasing attention from researchers (Yang et al., 2024; Ma et al.,

2022; Gai et al., 2024; Xu et al., 2017). Due to its paramount

importance in various developmental processes and stress responses

in tree peonies, studying the NAC gene family in tree peonies is

crucial. In this study, members of NAC transcription factor family

were identified and performed bioinformatic analyses based on the

annotated genome of “Fengdan” peony. Furthermore, “Fengdan”

peony was subjected to drought stress, hot stress, and ABA

treatments, with RT-qPCR expression analysis conducted on 8

selected PoNAC genes. The results provide insights into the

structure and function of PoNAC genes.
Materials and methods

Plant materials and treatments

Three-year-old healthy seedlings of ‘Fengdan’ peony with

uniform size without any pest and disease symptoms, grown on

the campus of Luoyang Normal University, were transplanted into
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30-L pots filled with soil in winter. The potted tree peonies were first

placed under natural conditions and then transferred to an indoor

plant growth room under a 14-h photoperiod at 25°C, with a light

intensity of 25 mmol m-2s-1 and relative humidity of 70%. The

application of the ABA treatment and heat and drought stresses was

performed separately. Upon the maturity of leaves, plants were

placed in the incubator at 42°C to impose heat treatment for 45

days, while the 100mmol/L ABA solution and 20% PEG 6000

solution were sprayed on the leaves of plants in the thermostatic

growth room to perform the ABA treatment and simulate drought

stress, respectively, and control plants were sprayed with ddH2O.

First, leaves were collected at 0 h, 3 h, 6 h, 12 h, and 24 h after the

treatments, frozen in liquid nitrogen, and finally stored at –80°C for

the subsequent extraction of total RNA and analysis of gene

expression. The Total RNA Extraction Kit (Lingjun, Shanghai,

China) was used to extract total RNA from ‘Fengdan’peony

plants, which was then reverse-transcribed into cDNA using

PrimeScript RT Reagent Kit, a reverse transcription kit (TaKaRa,

Dalian, China) for a RT-qPCR assay.
Genome-wide identification of NAC gene
family members in ‘Fengdan’peony and
prediction of protein subcellular
localization

All ‘Fengdan’peony genome data were obtained from the China

National GeneBank DataBase (CNGBdb) (https:db.cngb.org/search/

assembly/CAN0050666), while the genomic data for Arabidopsis

thaliana were derived from the Arabidopsis Information Resource

(TAIR) (https://www.arabidopsis.org/). The Hidden Markov Model

(HMM) profile of the NAM domain (PF02365) was retrieved from

the InterPro database (https://www.ebi.ac.uk/interpro/) to identify

NAC genes from the ‘Fengdan’ peony genome using the HMMER

3.3.2 software, and thereafter, the generated candidate proteins were

filtered based on a score value of higher than 50 and an E-value of

lower than 1 × 10−5 by NCBI Conserved Domain Search (CD-

Search) (https://www.ncbi.nlm.nih.gov/Structure/bwrpsb/

bwrpsb.cgi) and SMART (http://smart.embl-heidelberg.de). To

mine the NAC family members of ‘Fengdan’ peony, the proteins

without the NAM domains and repeats were manually deleted. The

ExPASy ProtParam tool (http://web.expasy.org/protparam/)

(Gaste iger et a l . , 2003) and WoLF PSORT (https : / /

wolfpsort.hgc.jp/) (Horton et al., 2006) were used to predict the

subcellular localization and physical and chemical properties of the

identified NAC proteins.
Analysis of chromosomal localization,
duplication events, and Ka/Ks of NAC gene
family members in ‘Fengdan’ peony

Data on the chromosomal location of NAC genes were obtained

from the genome GFF3 file of ‘Fengdan’ peony. TBtools software
Frontiers in Plant Science
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(Chen et al., 2023) was used for the analysis of duplication events of

NAC genes in ‘Fengdan’ peony and visual display. To calculate the

non-synonymous (Ka) and synonymous (Ks) substitution rates for

duplicated genes, KaKs_Calculator (Zhang, 2022) was used.
Phylogenetic analysis of the NAC gene
family

To further explore the phylogenetic relationships among

‘Fengdan’ peony NAC gene family members, the phylogenetic

tree of NAC proteins from P. ostii and A. thaliana was

constructed in the MEGA-11.0 software (Sudhir et al., 2018)

using the neighbor-joining (NJ) method with 1000 bootstrap

replicates and then edited with the Interactive Tree of Life online

tool (iTOL; https://itol.embl.de/). All PoNAC proteins were

classified according to the branching and classification standards

of ANAC proteins from Arabidopsis (Ooak et al., 2003).
Analysis of the gene structure, conserved
motifs, and conserved domains of the NAC
gene family

To further clarify the evolutionary relationships among

PoNAC gene family members, and predict the conserved

sequence of NAC proteins in ‘Fengdan’ peony, the MEME

online tool ( https://meme-suite.org/meme/tools/meme )

(Timothy et al., 2015) with 15 motifs was used, and the Hit Data

File was obtained from the NCBI Batch CD-Search (http://

www.ncbi.nih.gov) (Marchler-Bauer et al., 2015), while the NAC

gene structure in ‘Fengdan’ peony was analyzed using the organized

genome GFF3 file. Tbtools was used to visualize the conserved

motifs, conserved domains, and gene structure (Chen et al., 2023).
Gene ontology enrichment analysis

Gene ontology (GO) functional annotation of the PoNAC genes

was performed based on three distinct aspects, including cellular

component, molecular function, and biological process using the

WEGO online tool (https://wego.genomics.cn/) (Ye et al., 2018).
Analysis of transcript abundance of the
NAC gene family in different tissues of
‘Fengdan’ peony

The raw data of the expression of NAC genes in various tissues

of tree peony, such as seeds, leaves, and buds were explored based

on the genomic data from previous studies (Zhang et al., 2020).

Thereafter, to present the results, a heatmap was generated by

TBtools using the gene log2 (FPKM+1) values, which represent the

gene expression levels (Chen et al., 2023).
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RT-qPCR analysis

The primers presented in Supplementary Table 1 were designed

using the GenScript online website (https://www.genscript.com/

tools/real-time-pcr-taqman-primer-design-tool), while the analysis

of gene expression by RT-qPCR was performed with three technical

replicates using ubiquitin (Wang et al., 2012) as an appropriate

reference gene. Each qPCR reaction (20 µl) containing 10 µl TB

Green Premix Ex Taq II (2×), 2µl cDNA as template, 0.5 µl forward

primer, 0.5 µl reverse primers, and 7 µl nuclease-free water was run

under the conditions and according to the procedures described in

previous studies (Guo X, et al., 2024). To quantify the expression

levels of PoNAC genes, the 2−DDCt method was used, and data were

analyzed with analysis of variance (ANOVA) using SPSS 26.0 and

visualized with Graphpad Prism 9.3.
Results

Identification of PoNAC genes in ‘Fengdan’
peony

In this study, based on the whole-genome data of ‘Fengdan’

peony, 82 NAC proteins were identified and then named PoNAC1-

PoNAC82 according to the number of gene sequences, and their

characteristics are provided in Supplementary Table 2. These proteins

encoded by the PoNAC genes contained amino acids within the range

of 110 (PoNAC32) to 726 (PoNAC5), and their molecular weights

(MW) ranged from 12.72 (PoNAC5) to 83.09 KDa (PoNAC32), with

an average value of 39.71 KDa. The isoelectric points (pI) of these

proteins varied from 4.75 (PoNAC21) to 9.99 (PoNAC25) (average

value of 7.22). Except for PoNAC31, all PoNAC proteins had the

negative grand average of hydropathicity index (GRAVY), indicating

that they were hydrophilic proteins. Furthermore, the prediction of

subcellular localization of these proteins revealed that they were
Frontiers in Plant Science 04
mostly present in the nucleus (46), followed by cytoplasm (15) and

chloroplast (10).
Chromosome mapping and analysis of
duplication events and evolutionary
selection pressure of PoNACs

A total of 4 genes (PoNAC5, PoNAC65, PoNAC12, and PoNAC81)

were found to be located on unchr_scaffold_974, unchr_scaffold_5036,

and unchr_scaffold_2044. Figure 1A shows the distribution of 78

PoNAC genes on different chromosomes. The chromosomes 1, 2, 3,

4, and 5 contained 16 (20.51%), 19 (24.3%), 14 (17.95%), 15 (19.23%),

and 14 (17.95%) PoNAC genes, respectively, which were mainly

distributed at both ends, but less in the middle of each chromosome.

To facilitate the analysis of gene duplication events in tree

peonies, all unchr_scaffolds were deleted from the ‘Fengdan’ peony

genome, and only the information carried in 5 chromosomes was

retained (Figure 1B). A total of 19 pairs of gene duplication events

were detected in ‘Fengdan’ peony during its evolution, of which 14

pairs underwent whole-genome or segmental duplication, while 2

pairs(PoNAC12-PoNAC81 and PoNAC31-PoNAC37) were

tandemly duplicated genes, and 3 pairs including PoNAC25-

PoNAC26 , PoNAC30-PoNAC52 , and PoNAC41-PoNAC70

experienced proximal duplication.

The selection pressure of genes undergoing duplication events

was estimated based on the Ka (non-identical)/Ks (identical) values,

which were calculated using the Ka/Ks calculator software

(Supplementary Table 3). The Ks values of PoNAC gene pairs

ranged from 0.00966144 to 4.02808, with 15 pairs (78.9%) having

Ks values of above 1. The Ka/Ks values of 18 pairs (94,7%), however,

were below 1, indicating the evolution of these genes under strong

purifying selection. Only 1 pair (Ka/Ks > 1) might have undergone

evolution and functional changes under positive selection

after duplication.
FIGURE 1

Chromosomal distribution and duplication events of PoNAC genes in ‘Fengdan’ peony. (A) Localization of PoNAC genes on chromosomes. The scale
bar on the left indicates the length (Mb) of chromosomes (B) Duplication events of PoNAC genes. The red line in the circle indicates the collinearity
gene pair.
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Analysis of phylogenetic relationships of
PoNAC gene family members in ‘Fengdan’
peony

The phylogenetic tree was constructed by combining 82

proteins from ‘Fengdan’ peony with 105 ANAC proteins from

Arabidopsis using MEGA11.0 software (Figure 2). These 82

PoNACs in ‘Fengdan’ peony were further divided into 15

subfamilies including ONAC003 (7), ANAC063 (1), TERN (3),

ONAC022 (14), SENU5 (2), NAP (5), ANAC3 (3), ATAF (5),

NAC2 (5), ANAC011 (8), TIP (2), OsNAC8 (2), OsNAC7 (7),

NAC1 (2), and NAM (4) according to the phylogenetic tree.

However, the ANAC001 subfamily contained no ‘Fengdan’ peony

PoNACs. Since PoNAC protein sequences and unclassified protein

sequences from Arabidopsis were phylogenetically clustered, 16

PoNAC protein sequences could not be classified into subfamilies

temporarily. Figure 2 shows some specific NAC subfamilies in both

Arabidopsis and ‘Fengdan’ peony, most of which are common

among the two.
The gene structure and motif analysis of
PoNAC genes

The analysis of PoNAC gene family members’ conserved motifs,

domains, and exon-intron structures was performed. A
Frontiers in Plant Science 05
phylogenetic tree was reconstructed from evolutionary data using

the neighbor-joining (NJ) method based on the multiple sequence

alignment for the PoNAC gene family (Figure 3A). A total of 15

motifs representing the structural similarity and diversity of NAC

proteins in ‘Fengdan’ peony were discovered using the MEME

program (Figure 3B). The length of these conserved motifs varied

from 11 to 50 amino acids, among which at least 2-8 were present in

all 82 PoNAC proteins, and these motifs and phylogenetic

relationships showed consistent results. Members having similar

conserved motifs grouped in the same phylogenetic clades may also

share similar functions. Moreover, all PoNAC proteins contained a

conserved NAM domain, which is a specific conserved domain of

the NAC gene family, indicating the reliable identification of the

genes (Figure 3C). To further examine the structural characteristics

of the NAC gene family in tree peonies, the distribution of exons

and introns per PoNAC gene was visualized (Figure 3D). All PoNAC

genes had a number of introns varied from 0 to 14, and gene

members within the same subfamily exhibited a similar number of

introns. Among them, ONAC003 subfamily members had 4-6

introns, while NAP subfamily members possessed 2 introns, and

1-2 introns were present in ATAF subfamily members. The

existence of introns causes the structural diversity of NAC genes

and their functional diversification. The analysis results of

phylogenetic relationships, conserved motifs, conserved domains,

and gene structure indicated that PoNACs remained highly

conserved throughout the long evolutionary process.
FIGURE 2

A phylogenetic tree of NAC proteins from ‘Fengdan’peony and Arabidopsis. The colors on the left represent different subfamilies.
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Gene ontology annotation

A total of 193 different GO annotation classes of PoNAC genes

have been found (Figure 4), of which 11 are “molecular function”

terms, mainly associated with the nucleus (nucleus), organelles

(organelle, intracellular membrane-bounded organelle,

intracellular anatomical structure, obsolete intracellular part,

membrane-bounded organelle, and intracellular organelle) and

binding (organic cyclic compound binding, heterocyclic

compound binding, nucleic acid binding, and double-stranded

DNA binding). On the other hand, the “cellular component”

comprised 7 predominant categories mainly involved in DNA

binding (DNA binding, DNA-binding transcription factor

activity, sequence-specific DNA binding, and sequence-specific

double-stranded DNA binding) and transcription regulation

(transcription cis-regulatory region binding, transcription

regulator activity, and transcription regulatory region nucleic acid

binding). The remaining 175 classes belong to the subcategory

“biological processes”, which is mainly related to cell division

(positive regulation of asymmetric cell division, somatic stem cell

division, regulation of asymmetric cell division, and stem cell
Frontiers in Plant Science 06
division), organ development (positive regulation of leaf

senescence, positive regulation of leaf development, root cap

development, formation of plant organ boundary, formation of

anatomical boundary, regulation of leaf senescence, and meristem

initiation), flavonoid biosynthesis (regulation of flavonoid

biosynthetic process), and stress responses (regulation of defense

response to fungus, and positive regulation of response to

water deprivation).
Expression profiles of PoNAC genes in
different tissues

Figure 5 presents the expression profiles of PoNAC genes

investigated in 6 different tissues based on previous RNA-Seq

data. The results showed the differential expression of only 45 in

at least one tissue out of all 82 identified PoNAC genes. Cluster

analysis of genes according to their expression profiles in different

tissues revealed that they were divided into 8 groups, of which 4

groups(I, II, IV and VII) exhibited tissue specificity expression

patterns, while 3 group (III, V, VI) were either not expressed in all
FIGURE 3

Classification, conserved motifs, and gene structure analysis of PoNAC. (A) Phylogenetic relationship of PoNAC based on NJ method. (B) Motif
distribution of PoNAC proteins, different motifs are represented by different colors, ranging from1 to 15. (C) Conserved domain organization in
PoNAC proteins. (D) Exon-intron structures of PoNAC genes.
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FIGURE 5

Expression profiles of PoNAC genes in 6 tissues of ‘Fengdan’ peony.
FIGURE 4

The GO annotation of PoNAC genes in ‘Fengdan’ peony. Biological process (BP) was marked in green, cellular component (CC) in red and molecular
function (MF) in blue.
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tissues or expressed at extremely low levels, and 1 group (VIII)

displayed expression in all tissues but with no obvious regularity of

expression levels. 12 PoNAC genes, highly expressed in all tested

tissues, included PoNAC6, PoNAC12, PoNAC68, etc., indicating

that they may be the key regulators of plant growth and

development. High levels of the expression of PoNAC56 were

observed in petals, whereas PoNAC6, PoNAC12, PoNAC68, and

PoNAC71 were highly expressed in pistils, and PoNAC6 and

PoNAC68 were expressed at high levels in leaves. Furthermore,

PoNAC6 and PoNAC12 achieved high expression levels in buds,

while the high expression of PoNAC48, PoNAC56, PoNAC6, and

PoNAC26 was obtained in seeds, and PoNAC39 and PoNAC56

showed stamen-specific high expression, indicating their important

roles in the development of different organs. All these tissue-specific

PoNAC genes are considered potential targets for further studying

their regulatory functions.
Expression analysis of PoNAC genes in
‘Fengdan’ peony under abiotic stresses and
ABA treatment

To investigate the expression patterns and potential functions of

PoNAC genes, 8 PoNAC genes associated with stress responses from

the ATAF and NAP subfamilies were selected, and their expression

levels were detected under hormone treatment (ABA) and abiotic

stresses (heat and drought) using RT-qPCR (Figure 6). Upon the

ABA treatment, all these 8 PoNAC genes showed upregulation, with

the maximum upregulation achieved for PoNAC70 after 24 hours of

the treatment, being 103 times higher than that observed for

control. Except for a decrease in the expression level of PoNAC16
Frontiers in Plant Science 08
between 0 and 12 hours of heat treatment, the peak of the

expression level of other genes occurred at 12 h. A significant

upregulation in the expression level of PoNAC68 was noted,

showing a 14-fold increase compared to that of the control group

at 12 h. Under drought stress, the expression of PoNAC26 and

PoNAC41 underwent little change within 24 h, while significant

changes were recorded for other genes. A highly significant up-

regulation trend was obtained for PoNAC68 at 3 hours after drought

stress, and its expression level was 37 times higher than that of the

control group.

In conclusion, the PoNAC genes experienced significant

upregulation of their expression under different treatments, and

PoNAC68 was likely a major regulatory gene for abiotic stress

responses in tree peonies.
Discussion

The NAC transcription factor family is of paramount

importance in response to abiotic stresses (Nuruzzaman et al.,

2013). NAC family members appear to have arisen in response to

abiotic stresses in terrestrial plants during their transition from

aquatic to terrestrial lifestyles (You et al., 2015) but have not yet

been detected in multicellular algae. In this study, 82 PoNAC gene

family members were identified based on the whole-genome data of

tree peonies, which were higher in number than those found in

Scutellaria baicalensis (56) (He et al., 2023), Broussonetia papyrifera

(76) (Guo L. et al., 2024), and chickpea (72) (Singh et al., 2021), but

lower than those in peanut (166) and pigeon bean (96) (Singh et al.,

2021), Arabidopsis (117) and rice (151) (Ooak et al., 2003), oat (333)

(Xu et al., 2024), and salvia miltiorrhiza (84) (Zhang et al., 2021).
FIGURE 6

Expression levels of candidate PoNAC genes in the leaves of ‘Fengdan’ peony under different treatments. Error bars represent standard errors (SE) of
three biological replicates. Different lowercase letters indicate statistically significant differences among means of treatments (P<0.05).
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The variation in the number of NAC family members among

species reflects the evolutionary divergence between plants.

A total of 19 pairs of PoNAC duplicated genes were identified,

among which 14 pairs underwent WGD or segmental duplication,

while 3 pairs were proximal duplicated genes, and 2 pairs were

tandemly duplicated. It is speculated that all three types of

duplication events, which have contributed to the expansion of

the NAC family in ‘Fengdan’ peony, helping the plant to resist

various stresses and adapt to constantly changing environments,

mainly occurred in ONAC022, OSNAC7, and ANAC011

subfamilies. PoNAC35 and PoNAC72 in the OsNAC7 subfamily

underwent WGD or segmental duplications with multiple copies,

potentially driving the expansion of the PoNAC family. After gene

duplication events, PoNAC35 and PoNAC72 retained their original

function, while other gene copies could accumulate mutations

without losing their functions, following which new gene

regulatory networks arise and new functions and gene regulatory

mechanisms evolve, which facilitate the better adaptation of

‘Fengdan’ peony to their environment (He and Zhang, 2005).

Each of these 82 PoNAC proteins, which were identified in

‘Fengdan’ peony in the present study and then categorized into 15

subfamilies, had their own unique functions. NAM subfamily

members in Arabidopsis are crucial for floral organ development,

regulating the flowering time, and meristem maintenance (Collinge

and Boller, 2001). The high expression of PoNAC56 in the NAM

subfamily in petals, stamens, and seeds leads to the potential

regulation of floral organ development and the formation of floral

apical meristems in tree peonies. NAC proteins in ATAF, NAP, and

OsNAC003 subfamilies may participate in stress response processes

(Ooak et al., 2003). PoNACs in these subfamilies, on the other hand,

could perform vital functions in tree peonies, such as growth

regulation and stress responses. PoNAC68 in the ATAF subfamily

is homologous to ATAF1 (ANAC2), an NAC transcription factor in

Arabidopsis. It is anticipated that besides response to biotic and

abiotic stresses, PoNAC68 has various fundamental roles in seed

development, fruit maturation, promotion of leaf senescence and

cotyledon opening, and enhancement of tolerance to salt stress in

plants (Han et al., 2023).

Upon the exposure of plants to external stimuli, this information

is transmitted to stress response systems through signal transduction

pathways, which activate the plant’s resistance responses, thereby

mitigating the damage caused by stress. NAC genes are of great

importance in these processes and can be expressed in large

quantities at high temperatures. For example, the expression of

SmNAC19 and SmNAC75 in eggplant occurred at high levels after

3 h of heat stress (Wan et al., 2021), while the expression of NAC

genes in ryegrass reached its peak at 24 or 48 hour post heat stress

(Nie et al., 2020). NAC transcription factors improve plant tolerance

to heat stress potentially through two pathways (the pathway of

activation of HSF and HSPs, and the one of salicylic acid

biosynthesis). In Arabidopsis, RCF2, the CBF gene regulator,

transfers heat signal through dephosphorylation of NAC019, which

subsequently binds to downstream of HSF promoters, leading to the

activation of the expression of downstream of HSF and HSPs, and

consequently helps the plant resist heat stress (Guan et al., 2014).
Frontiers in Plant Science 09
SIJA2 in tobacco could not only regulate the expression of the salicylic

acid degradation gene but also reduce the accumulation of salicylic

acid (SA), which may have been involved in heat stress response

through the salicylic acid biosynthesis pathway (Liu et al., 2017). The

variation of expression patterns of the selected 8 PoNAC genes

occurred under heat stress, among which the expression of 6

PoNAC genes was rapidly induced within 0-12 hours, followed by a

gradual decrease after 24 hours, while that of the remaining PoNAC

genes underwent an initial decrease and then increased, indicating the

quick response of peonies to heat stress. However, the regulatory

mechanisms of PoNAC genes underlying heat stress response remain

to be further investigated.

The gene duplication and functional diversification of NAC genes

in plants during their evolution cause significant differences in their

responses to stress. The ABA-dependent pathway is involved in

drought stress response in plants (Yoshida et al., 2014). In

Arabidopsis under drought stress, AtNAC016 not only directly binds

to the promoter of AREB1 and causes the subsequent inhibition of its

transcription but also directly targets AtNAP, which leads to the

simultaneous regulation of AtAREB1. Although mutants of

AtNAC016 and AtNAP exhibited stronger drought resistance,

reduced drought tolerance was observed in plant lines overexpressing

them (Sakuraba et al., 2015). Meanwhile, apart from the direct

activation of the transcription of the genes involved in GA

inactivation (SlGA2ox3) and SA synthesis (SlPAL3), SlNAP also

improved the drought resistance of tomatoes by activating the ABA

synthesis gene SlNCED1 (Wang et al., 2020). The increased drought

resistance is also accompanied by reduced accumulation of reactive

oxygen species (ROS) in plants. In rice, besides indirectly regulating

PCD by activating OsAP37 to stimulate caspase activity, OsNAC2

suppresses OsCOX11 to reduce ROS accumulation, which leads to

enhanced drought resistance in the plant (Li et al., 2022). Under

drought stress, PoNAC26, PoNAC41, and PoNAC74, which lacked the

ABA-responsive element (ABRE) promoter, were expressed at lower

levels, while the others containing the ABRE promoter exhibited higher

expression levels, implying that the expression of PoNAC in ‘Fengdan’

peony may be controlled through the ABA-dependent pathway.
Conclusions

In summary, a total of 82 PoNAC gene family members were

identified from the genome of the ‘Fengdan’ peony and then

classified into 15 subfamilies based on the phylogenetic analysis.

PoNAC genes were relatively conserved while showing structural

variation during the evolution. Additionally, duplication events

occurred for 19 PoNAC gene pairs, which might drive the

expansion of the NAC family in ‘Fengdan’ peony. The GO

analysis results suggested that PoNAC genes were mostly

concentrated in the “biological process” category. The differential

expression patterns of 45 PoNAC genes in different tissues were

observed, indicating their roles in the growth and development of

some plant tissues. Meanwhile, the expressions of PoNAC genes

were induced in response to the ABA treatment, and abiotic

stresses. Overall, the systematic analysis of the NAC gene family
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in tree peonies contributed to our further study of the distinct

functions of PoNAC genes, which lay a foundation for molecular

breeding of tree peonies to enhance their stress resistance.
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